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Synchronization: Advanced

18-213/18-613: Introduction to Computer Systems
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Review: Semaphores
 Semaphore: non-negative global integer synchronization variable

 Manipulated by P and V operations:
▪ P(s):  [  while (s == 0) wait(); s--; ]

▪ Dutch for “Proberen” (test)

▪ V(s):  [  s++; ]

▪ Dutch for “Verhogen” (increment)

 OS kernel guarantees that operations between brackets [ ] are 
executed indivisibly/atomically

▪ Only one P or V operation at a time can modify s.

▪ When while loop in P terminates, only that  P can decrement s

 Semaphore invariant: s ≥ 0
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Review: Using Semaphores to
Protect Shared Resources via Mutual Exclusion

 Basic idea:
▪ Associate a unique semaphore mutex, initially 1, with each shared 

variable (or related set of shared variables)

▪ Surround each access to the shared variable(s) with P(mutex) and 

 V(mutex) operations

mutex = 1

  P(mutex)

  cnt++

  V(mutex)
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Review: Using Lock for Mutual Exclusion

 Basic idea:
▪ Mutex is special case of semaphore that only has value 0 (locked) or 1 

(unlocked)

▪ Lock(m):  [  while (m == 0); m=0; ]

▪ Unlock(m):  [  m=1]

 ~2x faster than using semaphore for this purpose
▪ And, more clearly indicates programmer’s intention

mutex = 1

  lock(mutex)

  cnt++

  unlock(mutex)

mutex = 1

  P(mutex)

  cnt++

  V(mutex)

vs.
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Note about Examples

 Lecture examples will use semaphores for both counting 
and mutual exclusion
▪ Code is much shorter than using pthread_mutex
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Review: Using Semaphores to
Coordinate Access to Shared Resources

 Basic idea: Thread uses a semaphore operation to notify 
another thread that some condition has become true
▪ Use counting semaphores to keep track of resource state.

▪ Use binary semaphores to notify other threads. 

 The Producer-Consumer Problem

▪ Mediating interactions between processes that generate information 
and that then make use of that information

▪ Single entry buffer implemented with two binary semaphores

▪ One to control access by producer(s)

▪ One to control access by consumer(s)

▪ N-entry buffer implemented with semaphores + circular buffer

producer
thread

Shared buffer
consumer

thread
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Today

 Using semaphores to schedule shared resources     CSAPP 12.5.4
▪ Readers-writers problem

 Other concurrency issues         CSAPP 12.7
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling
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Readers-Writers Problem

 Problem statement:
▪ Reader threads only read the object

▪ Writer threads modify the object (read/write access)

▪ Writers must have exclusive access to the object

▪ Unlimited number of readers can access the object concurrently

 Occurs frequently in real systems, e.g.,
▪ Online airline reservation system

▪ Multithreaded caching Web proxy

W1

W3

W2

R1

R3

R2

Read/
Write
Access

Read-only
Access



Carnegie Mellon

10

Readers/Writers Examples

W1

W3

W2

R1

R3

R2

W1

W3

W2

R1

R3

R2
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Variants of Readers-Writers 

 First readers-writers problem (favors readers)
▪ No reader should be kept waiting unless a writer has already been 

granted permission to use the object. 

▪ A reader that arrives after a waiting writer gets priority over the 
writer. 

 Second readers-writers problem (favors writers)
▪ Once a writer is ready to write, it performs its write as soon as 

possible 

▪ A reader that arrives after a writer must wait, even if the writer is 
also waiting. 

 Starvation (where a thread waits indefinitely) is possible 
in both cases. 
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Solution to First Readers-Writers Problem

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

  while (1) {

    P(&mutex);

    readcnt++;

    if (readcnt == 1) /* First in */

      P(&w);          

    V(&mutex);          

    /* Reading happens here */

    P(&mutex);

    readcnt--;

    if (readcnt == 0) /* Last out */

      V(&w);

    V(&mutex);

  }

}

void writer(void) 

{

  while (1) {

    P(&w);

    /* Writing here */ 

    V(&w);

  }

}

Readers: Writers:

rw1.c

A reader that arrives 

after a waiting writer
gets priority over the writer
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Readers/Writers Examples

W1

W3

W2

R1

R3

R2

W1

W3

W2

R1

R3

R2

w = 0
readcnt = 0

W1

W3

W2

R1

R3

R2

w = 1
readcnt = 0

w = 0
readcnt = 2
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Solution to First Readers-Writers Problem

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

  while (1) {

    P(&mutex);

    readcnt++;

    if (readcnt == 1) /* First in */

      P(&w);          

    V(&mutex);          

    /* Reading happens here */

    P(&mutex);

    readcnt--;

    if (readcnt == 0) /* Last out */

      V(&w);

    V(&mutex);

  }

}

void writer(void) 

{

  while (1) {

    P(&w);

    /* Writing here */ 

    V(&w);

  }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
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Solution to First Readers-Writers Problem

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

  while (1) {

    P(&mutex);

    readcnt++;

    if (readcnt == 1) /* First in */

      P(&w);          

    V(&mutex);          

    /* Reading happens here */

    P(&mutex);

    readcnt--;

    if (readcnt == 0) /* Last out */

      V(&w);

    V(&mutex);

  }

}

void writer(void) 

{

  while (1) {

    P(&w);

    /* Writing here */ 

    V(&w);

  }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1 

readcnt == 1
w == 0
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Solution to First Readers-Writers Problem

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

  while (1) {

    P(&mutex);

    readcnt++;

    if (readcnt == 1) /* First in */

      P(&w);          

    V(&mutex);          

    /* Reading happens here */

    P(&mutex);

    readcnt--;

    if (readcnt == 0) /* Last out */

      V(&w);

    V(&mutex);

  }

}

void writer(void) 

{

  while (1) {

    P(&w);

    /* Writing here */ 

    V(&w);

  }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1 

readcnt == 2
w == 0

R2 
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Solution to First Readers-Writers Problem

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

  while (1) {

    P(&mutex);

    readcnt++;

    if (readcnt == 1) /* First in */

      P(&w);          

    V(&mutex);          

    /* Reading happens here */

    P(&mutex);

    readcnt--;

    if (readcnt == 0) /* Last out */

      V(&w);

    V(&mutex);

  }

}

void writer(void) 

{

  while (1) {

    P(&w);

    /* Writing here */ 

    V(&w);

  }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1 

readcnt == 2
w == 0

R2 

W1 
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Solution to First Readers-Writers Problem

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

  while (1) {

    P(&mutex);

    readcnt++;

    if (readcnt == 1) /* First in */

      P(&w);          

    V(&mutex);          

    /* Reading happens here */

    P(&mutex);

    readcnt--;

    if (readcnt == 0) /* Last out */

      V(&w);

    V(&mutex);

  }

}

void writer(void) 

{

  while (1) {

    P(&w);

    /* Writing here */ 

    V(&w);

  }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

R1 

readcnt == 1
w == 0

R2 

W1 
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Solution to First Readers-Writers Problem

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

  while (1) {

    P(&mutex);

    readcnt++;

    if (readcnt == 1) /* First in */

      P(&w);          

    V(&mutex);          

    /* Reading happens here */

    P(&mutex);

    readcnt--;

    if (readcnt == 0) /* Last out */

      V(&w);

    V(&mutex);

  }

}

void writer(void) 

{

  while (1) {

    P(&w);

    /* Writing here */ 

    V(&w);

  }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

R1 

readcnt == 2
w == 0

R2 

W1 

R3 
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Solution to First Readers-Writers Problem

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

  while (1) {

    P(&mutex);

    readcnt++;

    if (readcnt == 1) /* First in */

      P(&w);          

    V(&mutex);          

    /* Reading happens here */

    P(&mutex);

    readcnt--;

    if (readcnt == 0) /* Last out */

      V(&w);

    V(&mutex);

  }

}

void writer(void) 

{

  while (1) {

    P(&w);

    /* Writing here */ 

    V(&w);

  }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 1
w == 0

R2 

W1 

R3 
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Solution to First Readers-Writers Problem

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

  while (1) {

    P(&mutex);

    readcnt++;

    if (readcnt == 1) /* First in */

      P(&w);          

    V(&mutex);          

    /* Reading happens here */

    P(&mutex);

    readcnt--;

    if (readcnt == 0) /* Last out */

      V(&w);

    V(&mutex);

  }

}

void writer(void) 

{

  while (1) {

    P(&w);

    /* Writing here */ 

    V(&w);

  }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 0
w == 1

W1 

R3 
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Other Versions of Readers-Writers

 Shortcoming of first solution
▪ Continuous stream of readers will block writers indefinitely

 Second version
▪ Once writer comes along, blocks access to later readers

▪ Series of writes could block all reads

 FIFO implementation
▪ See rwqueue code in code directory

▪ Service requests in order received

▪ Threads kept in FIFO

▪ Each has semaphore that enables its access to critical section
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Solution to Second Readers-Writers Problem
int readcnt, writecnt;      // Initially 0

sem_t rmutex, wmutex, r, w; // Initially 1

void reader(void) 

{

  while (1) {

    P(&r);

    P(&rmutex);

    readcnt++;

    if (readcnt == 1) /* First in */

      P(&w);          

    V(&rmutex); 

    V(&r)         

    /* Reading happens here */

    P(&rmutex);

    readcnt--;

    if (readcnt == 0) /* Last out */

      V(&w);

    V(&rmutex);

  }

} A reader that arrives after a writer must
wait, even if the writer is also waiting

void writer(void) 

{

  while (1) {

    P(&wmutex);

    writecnt++;

    if (writecnt == 1)

        P(&r);

    V(&wmutex);

    P(&w);

    /* Writing here */ 

    V(&w);

 

    P(&wmutex);

    writecnt--;

    if (writecnt == 0);

        V(&r);

    V(&wmutex);

  }

}
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Managing Readers/Writers with FIFO

 Idea
▪ Read & Write requests are inserted into FIFO

▪ Requests handled as remove from FIFO

▪ Read allowed to proceed if currently idle or processing read

▪ Write allowed to proceed only when idle

▪ Requests inform controller when they have completed

 Fairness
▪ Guarantee every request is eventually handled

R WRWWRRRWR

Time

Requests

Allowed
Concurrency
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Readers Writers FIFO Implementation

 Full code in rwqueue.{h,c}

/* Queue data structure */

typedef struct {

  sem_t mutex;      // Mutual exclusion

  int reading_count;   // Number of active readers

  int writing_count;   // Number of active writers

  // FIFO queue implemented as linked list with tail

  rw_token_t *head;

  rw_token_t *tail;

} rw_queue_t;

/* Represents individual thread's position in queue */

typedef struct TOK {

  bool is_reader;

  sem_t enable;       // Enables access

  struct TOK *next;  // Allows chaining as linked list

} rw_token_t;
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Readers Writers FIFO Use

 In rwqueue-test.c
/* Get write access to data and write */

void iwriter(int *buf, int v)

{

  rw_token_t tok;

  rw_queue_request_write(&q, &tok);

  /* Critical section */

  *buf = v;

  /* End of Critical Section  */

  rw_queue_release(&q);

}
/* Get read access to data and read */

int ireader(int *buf)

{

  rw_token_t tok;

  rw_queue_request_read(&q, &tok);

  /* Critical section */

  int v = *buf;

    /* End of Critical section */

  rw_queue_release(&q);

  return v;

}

Enqueue write request.
Blocked until its your turn.

(One writer per turn)

R WWRRRWR

Enqueue read request.
Blocked until its your turn.

(Multiple readers OK in same turn)
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Library Reader/Writer Lock

 Data type pthread_rwlock_t

 Operations
▪ Acquire read lock

Pthread_rwlock_rdlock(pthread_rw_lock_t *rwlock)

▪ Acquire write lock

Pthread_rwlock_wrlock(pthread_rw_lock_t *rwlock)

▪ Release (either) lock

Pthread_rwlock_unlock(pthread_rw_lock_t *rwlock)

 Observation
▪ Library must be used correctly!

▪ Up to programmer to decide what requires read access and 
what requires write access
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Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling



Carnegie Mellon

29

Recall: One Worry: Races

 A race occurs when correctness of the program depends on one 
thread reaching point x before another thread reaches point y

/* a threaded program with a race */

int main(int argc, char** argv) {

    pthread_t tid[N];

    int i;

    for (i = 0; i < N; i++)

        Pthread_create(&tid[i], NULL, thread, &i);

    for (i = 0; i < N; i++)

       Pthread_join(tid[i], NULL);

    return 0;

}

/* thread routine */

void *thread(void *vargp) {

    int myid = *((int *)vargp);

    printf("Hello from thread %d\n", myid);

    return NULL;

}

race.c
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Race Elimination
 Don’t share state

▪ E.g., use malloc to generate separate copy of argument for each 
thread

 Use synchronization primitives to control access to shared 
state
▪ Different shared state can use different primitives
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Today

 Using semaphores to schedule shared resources
▪ Producer-consumer problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling
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Another Worry: Deadlock

 Def: A process is deadlocked iff it is waiting for a condition 
that will never be true. 

 Typical Scenario
▪ Processes 1 and 2 needs two resources (A and B) to proceed

▪ Process 1 acquires A, waits for B

▪ Process 2 acquires B, waits for A

▪ Both will wait forever!

 More fully (and beyond the scope of this course), a deadlock 
has four requirements
▪ Mutual exclusion

▪ Circular waiting

▪ Hold and wait

▪ No pre-emption
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Deadlocking With Semaphores
int main(int argc, char** argv) 

{

    pthread_t tid[2];

    Sem_init(&mutex[0], 0, 1);  /* mutex[0] = 1 */

    Sem_init(&mutex[1], 0, 1);  /* mutex[1] = 1 */

    Pthread_create(&tid[0], NULL, count, (void*) 0);

    Pthread_create(&tid[1], NULL, count, (void*) 1);

    Pthread_join(tid[0], NULL);

    Pthread_join(tid[1], NULL);

    printf("cnt=%d\n", cnt);

    return 0;

}

void *count(void *vargp) 

{

    int i;

    int id = (int) vargp;

    for (i = 0; i < NITERS; i++) {

        P(&mutex[id]); P(&mutex[1-id]);

 cnt++;

 V(&mutex[id]); V(&mutex[1-id]);

    }

    return NULL;

}

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s1);

P(s0);

cnt++;

V(s1);

V(s0);
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Deadlock Visualized in Progress Graph

Locking introduces  the
potential for deadlock: 
waiting for a condition that 
will never be true

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for 

either s0 or s1 to become 

nonzero

Other trajectories luck out and 
skirt the deadlock region

Unfortunate fact: deadlock is 
often nondeterministic (race)

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s1)

P(s0)

V(s0) Forbidden region
for s0

Forbidden region
for s1

Deadlock
state

Deadlock
region

s0=s1=1
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Avoiding Deadlock
int main(int argc, char** argv) 

{

    pthread_t tid[2];

    Sem_init(&mutex[0], 0, 1);  /* mutex[0] = 1 */

    Sem_init(&mutex[1], 0, 1);  /* mutex[1] = 1 */

    Pthread_create(&tid[0], NULL, count, (void*) 0);

    Pthread_create(&tid[1], NULL, count, (void*) 1);

    Pthread_join(tid[0], NULL);

    Pthread_join(tid[1], NULL);

    printf("cnt=%d\n", cnt);

    return 0;

}

void *count(void *vargp) 

{

    int i;

    int id = (int) vargp;

    for (i = 0; i < NITERS; i++) {

        P(&mutex[0]); P(&mutex[1]);

 cnt++;

 V(&mutex[id]); V(&mutex[1-id]);

    }

    return NULL;

}

Acquire shared resources in same order

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s0);

P(s1);

cnt++;

V(s1);

V(s0);
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Avoided Deadlock in Progress Graph

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s0)

P(s1)

V(s0)
Forbidden region
for s0

Forbidden region
for s1

s0=s1=1

No way for trajectory to get 
stuck

Processes acquire locks in 
same order

Order in which locks released 
is immaterial
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Demonstration

 See program deadlock.c

 100 threads, each acquiring same two locks

 Risky mode
▪ Even numbered threads request locks in opposite order of odd-

numbered ones

 Safe mode
▪ All threads acquire locks in same order
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Livelock Visualized in Progress Graph

Livelock is similar to a 
deadlock, except the threads 
change state, but remain in a 
deadlock trajectory.

Thread 0

Thread 1

Forbidden region
for s0

Forbidden region
for s1

Livelock
state

Livelock
region
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Deadlock, Livelock, Starvation

 Deadlock
▪ One or more threads is waiting on a condition that will never be true

 Livelock
▪ One or more threads is changing state, but will never leave a 

deadlock / livelock trajectory

 Starvation
▪ One or more threads is temporarily unable to make progress



Carnegie Mellon

40

Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling
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Crucial concept: Thread Safety

 Functions called from a thread  must be thread-safe

 Def:  A function is thread-safe iff it will always produce 
correct results when called repeatedly from multiple 
concurrent threads. 

 Classes of thread-unsafe functions:
▪ Class 1: Functions that do not protect shared variables

▪ Class 2: Functions that keep state across multiple invocations

▪ Class 3: Functions that return a pointer to a static variable

▪ Class 4: Functions that call thread-unsafe functions
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Thread-Unsafe Functions (Class 1)

 Failing to protect shared variables
▪ Fix: Use P and V semaphore operations (or mutex)

▪ Example: goodcnt.c

▪ Issue: Synchronization operations will slow down code
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Thread-Unsafe Functions (Class 2)

 Relying on persistent state across multiple function invocations
▪ Example: Random number generator that relies on static state 

static unsigned int next = 1; 

/* rand: return pseudo-random integer on 0..32767 */ 

int rand(void) 

{ 

    next = next*1103515245 + 12345; 

    return (unsigned int)(next/65536) % 32768; 

} 

 

/* srand: set seed for rand() */ 

void srand(unsigned int seed) 

{ 

    next = seed; 

} 



Carnegie Mellon

44

Thread-Safe Random Number Generator

 Pass state as part of argument
▪ and, thereby, eliminate static state 

 Consequence: programmer using rand_r must maintain seed

/* rand_r - return pseudo-random integer on 0..32767 */ 

 

int rand_r(int *nextp) 

{ 

    *nextp = *nextp*1103515245 + 12345; 

    return (unsigned int)(*nextp/65536) % 32768; 

} 
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Thread-Unsafe Functions (Class 3)

 Returning a pointer to a static 
variable

 Fix 1.  Rewrite function so
caller passes address of 
variable to store result
▪ Requires changes in caller and 

callee

 Fix 2. Lock-and-copy
▪ Requires simple changes in caller 

(and none in callee)

▪ However, caller must free memory.

char *lc_itoa(int x, char *dest)

{

    P(&mutex);

    strcpy(dest, itoa(x));

    V(&mutex);

    return dest;

}

/* Convert integer to string */

char *itoa(int x)

{

    static char buf[11];

    sprintf(buf, "%d", x);

    return buf;

}
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Thread-Unsafe Functions (Class 4)

 Calling thread-unsafe functions
▪ Calling one thread-unsafe function makes the entire function that calls it 

thread-unsafe

▪ Fix: Modify the function so it calls only thread-safe functions ☺
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Reentrant Functions 

 Def: A function is reentrant iff it accesses no shared 
variables when called by multiple threads. 
▪ Important subset of thread-safe functions

▪ Require no synchronization operations

▪ Only way to make a Class 2 function thread-safe is to make it 
reentrant (e.g., rand_r )

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions
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Thread-Safe Library Functions

 All functions in the Standard C Library (at the back of your 
K&R text) are thread-safe
▪ Examples: malloc, free, printf, scanf

 Most Unix system calls are thread-safe, with a few 
exceptions:

Thread-unsafe function Class Reentrant version

asctime   3 asctime_r

ctime    3 ctime_r

gethostbyaddr   3 gethostbyaddr_r

gethostbyname   3 gethostbyname_r

inet_ntoa   3 (none)

localtime   3 localtime_r

rand    2 rand_r
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Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling
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Review: Signal Handling

 Action
▪ Signal can occur at any point in program execution

▪ Unless signal is blocked

▪ Signal handler runs within same thread

▪ Must run to completion and then return to regular program execution

Icurr
Inext

Handler

Receive
signal
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Threads / Signals Interactions

 Many library functions use lock-and-copy for thread safety
▪ Because they have hidden state

▪ malloc

▪ Free lists

▪ fprintf, printf, puts

▪ So that outputs from multiple threads don’t interleave

▪ sprintf

▪ Not officially asynch-signal-safe, but seems to be OK

 OK for handler that doesn’t use these library functions

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()
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Bad Thread / Signal Interactions

 What if:

▪ Signal received while library function holds lock

▪ Handler calls same (or related) library function

 Deadlock!
▪ Signal handler cannot proceed until it gets lock

▪ Main program cannot proceed until handler completes

 Key Point
▪ Threads employ symmetric concurrency

▪ Signal handling is asymmetric

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()

fprintf.lock()
fprintf.unlock()
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Threads Summary

 Threads provide another mechanism for writing concurrent 
programs

 Threads are growing in popularity
▪ Somewhat cheaper than processes

▪ Easy to share data between threads

 However, the ease of sharing has a cost:
▪ Easy to introduce subtle synchronization errors

▪ Tread carefully with threads!

 For more info:
▪ D. Butenhof, “Programming with Posix Threads”, Addison-Wesley, 1997
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