Carnegie Mellon

AN R L TS e

o AN iiting v

14-513

g e g
i - s ol B Yar e ' 5 —2-‘3

Carnegie Mellon

Synchronization: Advanced

18-213/18-613: Introduction to Computer Systems
24t Lecture, November 26th, 2024

Carnegie Mellon

Review: Semaphores

m Semaphore: non-negative global integer synchronization variable

m Manipulated by P and V operations:
= P(s): [while (s == 0) wait(); s--;]
= Dutch for “Proberen” (test)
= V(s): [s++;]
= Dutch for “Verhogen” (increment)

m OS kernel guarantees that operations between brackets [] are
executed indivisibly/atomically

= Only one P or V operation at a time can modify s.
= Whenwhile loop in P terminates, only that P can decrement s

m Semaphore invariant: s 20

Carnegie Mellon

Review: Using Semaphores to
Protect Shared Resources via Mutual Exclusion

m Basicidea:

= Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables)

= Surround each access to the shared variable(s) with P(mutex) and
V(mutex) operations

mutex = 1

P (mutex)
cnt++
V (mutex)

Carnegie Mellon

Review: Using Lock for Mutual Exclusion

m Basicidea:

= Mutex is special case of semaphore that only has value 0 (locked) or 1
(unlocked)

= lock(m): [while (m == 0); m=0;]

= Unlock(m): [m=1]

m ~2x faster than using semaphore for this purpose
= And, more clearly indicates programmer’s intention

mutex = 1 mutex = 1
lock (mutex) VS. P (mutex)
cnt++ cnt++
unlock (mutex) V (mutex)

Carnegie Mellon

Note about Examples

m Lecture examples will use semaphores for both counting
and mutual exclusion
= Code is much shorter than using pthread_mutex

Carnegie Mellon

Review: Using Semaphores to
Coordinate Access to Shared Resources

m Basic idea: Thread uses a semaphore operation to notify
another thread that some condition has become true
= Use counting semaphores to keep track of resource state.
= Use binary semaphores to notify other threads.

m The Producer-Consumer Problem

consumer
thread

producer
thread

Shared buffer

= Mediating interactions between processes that generate information
and that then make use of that information
= Single entry buffer implemented with two binary semaphores

= One to control access by producer(s)
= One to control access by consumer(s)
= N-entry buffer implemented with semaphores + circular buffer ,

Carnegie Mellon

Today

m Using semaphores to schedule shared resources CSAPP 12.5.4
= Readers-writers problem

m Other concurrency issues CSAPP 12.7
" Races
= Deadlocks
" Thread safety
" |nteractions between threads and signal handling

Carnegie Mellon

Readers-Writers Problem

Read/ /

Write < > Read-only
Access

Access

L@ \c,

m Problem statement:
" Reader threads only read the object

= Writer threads modify the object (read/write access)
= Writers must have exclusive access to the object

= Unlimited number of readers can access the object concurrently

m Occurs frequently in real systems, e.g.,
® Online airline reservation system
= Multithreaded caching Web proxy

Readers/Writers Examples

f

©

oJolo @\

Variants of Readers-Writers

m First readers-writers problem (favors readers)

= No reader should be kept waiting unless a writer has already been
granted permission to use the object.

= A reader that arrives after a waiting writer gets priority over the
writer.

m Second readers-writers problem (favors writers)

" Once a writer is ready to write, it performs its write as soon as
possible

= A reader that arrives after a writer must wait, even if the writer is
also waiting.

m Starvation (where a thread waits indefinitely) is possible
in both cases.

1

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers:

Writers:

int readecnt; /*
sem t mutex, w; /*

void reader (void)
{
while (1) {
P (&mutex) ;
readcnt++;
if (readcnt
P(&w);
V (&mutex) ;

P (&mutex) ;

readcnt--;

if (readcnt
V(&w) ;

V (&mutex) ;

Initially 0 */
Both initially 1 */

1) /* First in */

/* Reading happens here */

0) /* Last out */

void writer (void)

{
while (1) {
P(&w) ;

/* Writing here */
V(&w) ;

}
}

rwl.c

A reader that arrives
after a waiting writer
gets priority over the writer

12

Carnegie Mellon

Readers/Writers Examples

(W) /‘

(W)

@

w=1
\ readcnt=0

/0

>

©

®/

w=0
readcnt =2

\‘ readent o‘
S

& \0

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers:

Writers:

int readecnt; /*
sem t mutex, w; /*

void reader (void)
{
while (1) {
P (&mutex) ;
readcnt++;
if (readcnt ==
P(&w) ;
V (&mutex) ;

P (&mutex) ;

readcnt--;

if (readcnt ==
V(&w) ;

V (&mutex) ;

Initially 0 */
Both initially 1 */

1) /* First in */

/* Reading happens here */

0) /* Last out */

void writer (void)

{
while (1) {
P(&w) ;

/* Writing here */
V(&w) ;

}
}

Arrivals: R1 R2 W1 R3

rwl.c

14

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers:

Writers:

int readcnt;
sem t mutex, w;

{
while (1) {
P (&mutex) ;
readcnt++;
if (readcnt
P(&w);
V (&mutex) ;

/* Initially 0 */
/* Both initially 1 */

void reader (void)

1) /* First in */

R1 %’* Reading happens here */

P (&mutex) ;

readcnt--;

if (readcnt
V(&w) ;

V (&mutex) ;

0) /* Last out */

void writer (void)

{
while (1) {

P(&w) ;
/* Writing here */

V(&w) ;
}
}

rwl.c

Arrivals: R1 R2 W1 R3

readcnt ==
W ==

15

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:
int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {
while (1) {
void reader (void) P(&w) ;
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;
R2 %f (readcnt == 1) /* First in */ }
P(&w) ; }
V (&mutex) ;

rwl.c

R1 %’* Reading happens here */
Arrivals: R1 R2 W1 R3

P (&mutex) ;

readcnt--;

if (readent == 0) /* Last out */ readcnt ==
V(&w) ; W ==

V (&mutex) ;

} 16

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:
int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {
while (1) {
void reader (void) P(&w) ; E W1
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;
if (readcnt == 1) /* First in */ }
P(&w); }
V (&mutex) ;
R2 rwl.c
R1 * Reading happens here */
Arrivals: R1 R2 W1 R3
P (&mutex) ;
readcnt--;
if (readent == 0) /* Last out */ readcnt ==
V(&w) ; W ==
V (&mutex) ;
}
} 17

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers:

Writers:

int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */

void reader (void)
{
while (1) {
P (&mutex) ;
readcnt++;
if (readent == 1) /* First in */
P(&w) ;
V (&mutex) ;

_ 4* Reading happens here */

P (&mutex) ;

readcnt--;

if (readcnt == 0) /* Last out */
V(&w) ;

V (&mutex) ;

1 >

void writer (void)

{
while (1) {
< W1

P(&w) ;
/* Writing here */

V(&w) ;
}
}

rwl.c

Arrivals: R1 R2 W1 R3

readcnt ==
W ==

18

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:
int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {
while (1) {
void reader (void) P(&w) ; é W1
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;
R3 %f (readcnt == 1) /* First in */ }
P(&w) ; }
V (&mutex) ;
rwl.c
/* Reading happens here */
R2 9 Arrivals: R1 R2 W1 R3

P (&mutex) ;

readcnt--;

if (readent == 0) /* Last out */ readcnt ==

V(&w) ; W ==
V (&mutex) ;

RL ==>

}

19

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers:

Writers:

int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */

void reader (void)
{
while (1) {
P (&mutex) ;
readcnt++;
if (readent == 1) /* First in */
P(&w) ;

V (&mutex) ;

R3 —>

/* Reading happens here */

P (&mutex) ;

readcnt--;

if (readcnt == 0) /* Last out */
V(&w) ;

R2 4{ (&mutex) ;
}
}

void writer (void)

{
while (1) {
P(&w) ; e W1
/* Writing here */
V(&w) ;
}
}

Arrivals: R1 R2 W1 R3

readcnt ==
W ==

rwl.c

20

Carnegie Mellon

Solution to First Readers-Writers Problem

Readers: Writers:
int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {
while (1) {
void reader (void) P(&w) ; E W1
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;
if (readent == 1) /* First in */ }
P(&w) ; }
V (&mutex) ;

rwl.c
/* Reading happens here */

Arrivals: R1 R2 W1 R3
P (&mutex) ;
readcnt--;
if (readent == 0) /* Last out */ readcnt ==

V(&w) ; —_—
R3 %(&mutex) ; W ==

}
}

21

Carnegie Mellon

Other Versions of Readers-Writers

m Shortcoming of first solution
= Continuous stream of readers will block writers indefinitely

m Second version
= Once writer comes along, blocks access to later readers
= Series of writes could block all reads

m FIFO implementation
= See rwqueue code in code directory
= Service requests in order received

" Threads kept in FIFO
= Each has semaphore that enables its access to critical section

22

Solution to Second Readers-Writers Problem

{

int readcnt, writecnt;
sem t rmutex, wmutex, r, w; // Initially 1
void reader (void)

// Initially O

while (1) {

P(&r) ;

P (&rmutex) ;

readcnt++;

if (readcnt ==
P(&w) ;

V(&rmutex) ;

V(&r)

l) /* First in */

/* Reading happens here */

P (&rmutex) ;

readcnt--;

if (readcnt ==
V(&w) ;

V(&rmutex) ;

0) /* Last out */

void writer (void)
{
while (1) {
P (&wmutex) ;
writecnt++;
if (writecnt == 1)
P(&r) ;
V (&wmutex) ;

P(&w) ;
/* Writing here */
V(&w) ;

P (&wmutex) ;

writecnt--;

if (writecnt ==
V(&r) ;

V (&wmutex) ;

0);

}

A reader that arrives after a writer must
wait, even if the writer is also waiting

23

Carnegie Mellon

Managing Readers/Writers with FIFO

Time >

Requests | R| R|W|R|R|R|W|W|R|W

Allowed |e—le—le ><—><—>|<—>(—)|
Concurrency

m Ildea
= Read & Write requests are inserted into FIFO
= Requests handled as remove from FIFO
= Read allowed to proceed if currently idle or processing read
= Write allowed to proceed only when idle
= Requests inform controller when they have completed

m Fairness

" Guarantee every request is eventually handled

24

Readers Writers FIFO Implementation

m Full code in rwqueue.{h,c}

/* Queue data structure */
typedef struct {

sem t mutex; // Mutual exclusion
int reading count; // Number of active readers
int writing count; // Number of active writers

// FIFO queue implemented as linked list with tail
rw_token t *head;
rw_token t *tail;

} rw_queue t;

/* Represents individual thread's position in queue */
typedef struct TOK ({

bool is reader;

sem t enable; // Enables access

struct TOK *next; // Allows chaining as linked list
} rw_token t;

25

Readers Writers FIFOUse [®|®[™|®[®[*]"["

D b b3 ><—6Ne—ﬂ
m Inrwqueue-test.c

/* Get write access to data and write */
void iwriter (int *buf, int v)

{

rw_token t tok; Enqueue write request.
rw_queue_request write (&q, &tok); &= Blocked until its your turn.

el = .
fbuiritf;‘?al section */ (One writer per turn)

/* End of Critical Section */
rw_queue_ release (&q) ;

/* Get read access to data and read */
int ireader (int *buf)
{
Enqueue read request. rw_token t tok;
Blocked until its your turn. === rw_queue request read(&q, &tok);

) ° * d - - *
(Multiple readers OK in same turn) / Critical section */
int v = *buf;

/* End of Critical section */
rw_queue_release (&q) ;
return v;

26

Carnegie Mellon

Library Reader/Writer Lock

m Datatypepthread rwlock t

m Operations
= Acquire read lock
Pthread rwlock rdlock(pthread rw lock t *rwlock)
= Acquire write lock
Pthread rwlock wrlock (pthread rw lock t *rwlock)
= Release (either) lock
Pthread rwlock unlock(pthread rw lock t *rwlock)

m Observation
= Library must be used correctly!

= Up to programmer to decide what requires read access and
what requires write access

27

Carnegie Mellon

Today

m Using semaphores to schedule shared resources

® Readers-writers problem

m Other concurrency issues
" Races
= Deadlocks
" Thread safety
" |nteractions between threads and signal handling

28

Carnegie Mellon

Recall: One Worry: Races

m A race occurs when correctness of the program depends on one
thread reaching point x before another thread reaches pointy

/* a threaded program with a race */
int main(int argc, char** argv) ({
pthread t tid[N];
int i;
for (i = 0; i < N; i++)
Pthread create(&tid[i], NULL, thread, &i);
for (i = 0; i < N; i++)
Pthread join(tid[i], NULL);
return O;

}

/* thread routine */

void *thread (void *vargp) {
int myid = *((int *)vargp):
printf ("Hello from thread %d\n", myid) ;
return NULL;

race.cC
29

Carnegie Mellon

Race Elimination

m Don’t share state

= E.g., use malloc to generate separate copy of argument for each
thread

m Use synchronization primitives to control access to shared
state

= Different shared state can use different primitives

30

Carnegie Mellon

Today

m Using semaphores to schedule shared resources

" Producer-consumer problem

m Other concurrency issues
" Races
= Deadlocks
" Thread safety
" |nteractions between threads and signal handling

31

Carnegie Mellon

Another Worry: Deadlock

m Def: A process is deadlocked iff it is waiting for a condition
that will never be true.

m Typical Scenario
" Processes 1 and 2 needs two resources (A and B) to proceed
" Process 1 acquires A, waits for B
® Process 2 acquires B, waits for A
= Both will wait forever!

m More fully (and beyond the scope of this course), a deadlock
has four requirements
= Mutual exclusion
® Circular waiting
= Hold and wait

= No pre-emption

32

Deadlocking With Semaphores

int main(int argc, char** argv)

{

pthread t tid[2];

Sem init(&mutex[0], O, 1); /* mutex[0] = 1 */
Sem init(&mutex[1], O, 1); /* mutex[l] =1 */
Pthread create(&tid[0], NULL, count, (wvoid*) 0);
Pthread create(&tid[1l], NULL, count, (wvoid*) 1);
Pthread join(tid[0], NULL);

Pthread join(tid[1l], NULL);

printf ("cnt=%d\n", cnt);

return 0O;

}

void *count (void *vargp)

{ _ _ Tid[O0]: Tid[1]:
int 1; p : P :
int id = (int) vargp; (so) ; (s1)
for (i = 0; i < NITERS; i++) { P(s;) P(sy)

P(&mutex[id]); P (&mutex[1l-id]) ; cnt++; cnt++;
cnt++; V(sgy) ; V(s,)’
V(&mutex[id]); V(&mutex[1l-id]) ; V(s,)’ V(s,) ;
}
return NULL;
} 33

Carnegie Mellon

Deadlock Visualized in Progress Graph

Thread 1
- Deadlock
V(s) Forbidden region state
fors,
V(s,)
P(s,) ® - -
Deadlock Forbidden region
_ region fors 1
P(s,)
! l I Thread 0
P(sy) P(s,) V(s,) Vs,

SO=51=1

Locking introduces the
potential for deadlock:
waiting for a condition that
will never be true

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for

either SgorS; to become
nonzero

Other trajectories luck out and
skirt the deadlock region

Unfortunate fact: deadlock is
often nondeterministic (race)

34

AVOid i ng Dead |0Ck Acquire shared resources in same order

int main(int argc, char** argv)

{

pthread t tid[2];

Sem init(&mutex[0], O, 1); /* mutex[0] =1 */
Sem init(&mutex[1], O, 1); /* mutex[l] =1 */
Pthread create(&tid[0], NULL, count, (wvoid*) 0);
Pthread create(&tid[1], NULL, count, (wvoid*) 1);
Pthread join(tid[0], NULL);

Pthread join(tid[1], NULL);

printf ("cnt=%d\n", cnt);

return O;

}

void *count (void *vargp)

L . ; Tid[0]: Tid[1]:
int i; . :
int id = (int) wvargp; P(so) ; P(sg) s
for (i = 0; i < NITERS; i++) { P(s;); P(s;);

P(&mutex[0]); P(&mutex[1]); cnt++; cnt++;
cnt++; V(So); V(Sl);
V(&mutex[id]); V(&mutex[1l-id]); V(s,) V(s,) ;

}
return NULL;

Carnegie Mellon

Avoided Deadlock in Progress Graph

Thread 1 No way for trajectory to get
stuck
- Processes acquire locks in
Forbidden region same order
V(o) fors,
_ Order in which locks released
is immaterial
V(s,)
P(s,) Forbidden region
- fors,
P(s)

| | I I Thread O
P(s)) P(s,) V(s,) V(s,)
SO=S].=1

36

Carnegie Mellon

Demonstration

m See program deadlock.c

m 100 threads, each acquiring same two locks
m Risky mode

= Even numbered threads request locks in opposite order of odd-
numbered ones

m Safe mode

= All threads acquire locks in same order

37

Carnegie Mellon

Livelock Visualized in Progress Graph

Thread 1

Livelock is similar to a

deadlock, except the threads
change state, but remainin a
Livelock deadlock trajectory.
Forbidden region state
fors,

Liv@ Forbidden region

region fOl‘ S,

[i | I I Thread 0

38

Carnegie Mellon

Deadlock, Livelock, Starvation

m Deadlock

= One or more threads is waiting on a condition that will never be true

m Livelock

®= One or more threads is changing state, but will never leave a
deadlock / livelock trajectory

m Starvation

® One or more threads is temporarily unable to make progress

39

Carnegie Mellon

Today

m Using semaphores to schedule shared resources

® Readers-writers problem

m Other concurrency issues
" Races
= Deadlocks
" Thread safety
" |nteractions between threads and signal handling

40

Carnegie Mellon

Crucial concept: Thread Safety

m Functions called from a thread must be thread-safe

m Def: A function is thread-safe iff it will always produce
correct results when called repeatedly from multiple
concurrent threads.

m Classes of thread-unsafe functions:
= Class 1: Functions that do not protect shared variables
= Class 2: Functions that keep state across multiple invocations
= Class 3: Functions that return a pointer to a static variable
= (Class 4: Functions that call thread-unsafe functions

4

Carnegie Mellon

Thread-Unsafe Functions (Class 1)

m Failing to protect shared variables

= Fix: Use P and V semaphore operations (or mutex)
= Example: goodecnt.c

= |ssue: Synchronization operations will slow down code

42

Carnegie Mellon

Thread-Unsafe Functions (Class 2)

m Relying on persistent state across multiple function invocations

= Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
{

next = next*1103515245 + 12345;

return (unsigned int) (next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed)

{

next = seed;

}

43

Carnegie Mellon

Thread-Safe Random Number Generator

m Pass state as part of argument
= and, thereby, eliminate static state

/* rand r - return pseudo-random integer on 0..32767 */

int rand r(int *nextp)
{
*nextp = *nextp*1103515245 + 12345;
return (unsigned int) (*nextp/65536) % 32768;

X

m Consequence: programmer using rand r must maintain seed

44

Carnegie Mellon

Thread-Unsafe Functions (Class 3)

/* Convert integer to string */
char *itoa(int x)

m Returning a pointer to a static | {

. bl static char buf[ll];
variapie sprintf (buf, "%d", x);
return buf;

m Fix 1. Rewrite function so
caller passes address of

. har *lc itoa(int x, char *dest
variable to store result ‘{’ 62 W) eRIE (S 3y CLEER W)
= Requires changes in caller and P (&mutex) ;
callee strcpy (dest, itoa(x));
V (&mutex) ;
return dest;
}

m Fix 2. Lock-and-copy

= Requires simple changes in caller
(and none in callee)

= However, caller must free memory.
45

Carnegie Mellon

Thread-Unsafe Functions (Class 4)

m Calling thread-unsafe functions

= Calling one thread-unsafe function makes the entire function that calls it
thread-unsafe

= Fix: Modify the function so it calls only thread-safe functions ©

46

Carnegie Mellon

Reentrant Functions

m Def: A function is reentrant iff it accesses no shared
variables when called by multiple threads.
" |Important subset of thread-safe functions
= Require no synchronization operations

= Only way to make a Class 2 function thread-safe is to make it
reentrant (e.g., rand r)

All functions

Thread-safe
functions

Thread-unsafe
functions

Reentrant
functions

47

Carnegie Mellon

Thread-Safe Library Functions

m All functions in the Standard C Library (at the back of your
K&R text) are thread-safe

= Examples:malloc, free, printf, scanf

m Most Unix system calls are thread-safe, with a few

exceptions:
Thread-unsafe function Class Reentrant version
asctime 3 asctime r
ctime 3 ctime r
gethostbyaddr 3 gethostbyaddr r
gethostbyname 3 gethostbyname r
inet ntoa 3 (none)
localtime 3 localtime r
rand 2 rand r

48

Carnegie Mellon

Today

m Using semaphores to schedule shared resources

® Readers-writers problem

m Other concurrency issues
® Races
= Deadlocks

= |nteractions between threads and signal handling

49

Carnegie Mellon

Review: Signal Handling

l Receive
signal
ICUI’I’ g

> Handler

#

m Action
= Signal can occur at any point in program execution
= Unless signal is blocked
= Signal handler runs within same thread
= Must run to completion and then return to regular program execution

50

Carnegie Mellon

Threads / Signals Interactions

fprintf.lock() l Re'ceive
|eurr signal

> Handler

#

~—-a
~—-a
-
-
-
-
-

m Many library functions use lock-and-copy for thread safety
= Because they have hidden state
= malloc
= Free lists
= fprintf, printf, puts
= So that outputs from multiple threads don’t interleave
= sprintf
= Not officially asynch-signal-safe, but seems to be OK

m OK for handler that doesn’t use these library functions

51

Carnegie Mellon

Bad Thread / Signal Interactions

fprintf.lock() Receive
curr signal

» Handler
+ fprintf.lock()
v

-
~—-a
~—-a
-
-
-
-
-

m What if:

= Signal received while library function holds lock
= Handler calls same (or related) library function

m Deadlock!

= Signal handler cannot proceed until it gets lock
" Main program cannot proceed until handler completes

m Key Point

" Threads employ symmetric concurrency

= Signal handling is asymmetric
52

Carnegie Mellon

Threads Summary

m Threads provide another mechanism for writing concurrent
programs

m Threads are growing in popularity
= Somewhat cheaper than processes
= Easy to share data between threads

m However, the ease of sharing has a cost:

= Easy to introduce subtle synchronization errors
" Tread carefully with threads!

m For more info:
= D. Butenhof, “Programming with Posix Threads”, Addison-Wesley, 1997

53

	Slide 1
	Slide 2: Synchronization: Advanced 18-213/18-613: Introduction to Computer Systems 24th Lecture, November 26th, 2024
	Slide 3: Review: Semaphores
	Slide 4: Review: Using Semaphores to Protect Shared Resources via Mutual Exclusion
	Slide 5: Review: Using Lock for Mutual Exclusion
	Slide 6: Note about Examples
	Slide 7: Review: Using Semaphores to Coordinate Access to Shared Resources
	Slide 8: Today
	Slide 9: Readers-Writers Problem
	Slide 10: Readers/Writers Examples
	Slide 11: Variants of Readers-Writers
	Slide 12: Solution to First Readers-Writers Problem
	Slide 13: Readers/Writers Examples
	Slide 14: Solution to First Readers-Writers Problem
	Slide 15: Solution to First Readers-Writers Problem
	Slide 16: Solution to First Readers-Writers Problem
	Slide 17: Solution to First Readers-Writers Problem
	Slide 18: Solution to First Readers-Writers Problem
	Slide 19: Solution to First Readers-Writers Problem
	Slide 20: Solution to First Readers-Writers Problem
	Slide 21: Solution to First Readers-Writers Problem
	Slide 22: Other Versions of Readers-Writers
	Slide 23: Solution to Second Readers-Writers Problem
	Slide 24: Managing Readers/Writers with FIFO
	Slide 25: Readers Writers FIFO Implementation
	Slide 26: Readers Writers FIFO Use
	Slide 27: Library Reader/Writer Lock
	Slide 28: Today
	Slide 29: Recall: One Worry: Races
	Slide 30: Race Elimination
	Slide 31: Today
	Slide 32: Another Worry: Deadlock
	Slide 33: Deadlocking With Semaphores
	Slide 34: Deadlock Visualized in Progress Graph
	Slide 35: Avoiding Deadlock
	Slide 36: Avoided Deadlock in Progress Graph
	Slide 37: Demonstration
	Slide 38: Livelock Visualized in Progress Graph
	Slide 39: Deadlock, Livelock, Starvation
	Slide 40: Today
	Slide 41: Crucial concept: Thread Safety
	Slide 42: Thread-Unsafe Functions (Class 1)
	Slide 43: Thread-Unsafe Functions (Class 2)
	Slide 44: Thread-Safe Random Number Generator
	Slide 45: Thread-Unsafe Functions (Class 3)
	Slide 46: Thread-Unsafe Functions (Class 4)
	Slide 47: Reentrant Functions
	Slide 48: Thread-Safe Library Functions
	Slide 49: Today
	Slide 50: Review: Signal Handling
	Slide 51: Threads / Signals Interactions
	Slide 52: Bad Thread / Signal Interactions
	Slide 53: Threads Summary

