
Carnegie Mellon

1

14-513 18-613

Carnegie Mellon

2

Synchronization: Advanced

18-213/18-613: Introduction to Computer Systems
24th Lecture, November 26th, 2024

Carnegie Mellon

3

Review: Semaphores
 Semaphore: non-negative global integer synchronization variable

 Manipulated by P and V operations:
▪ P(s): [while (s == 0) wait(); s--;]

▪ Dutch for “Proberen” (test)

▪ V(s): [s++;]

▪ Dutch for “Verhogen” (increment)

 OS kernel guarantees that operations between brackets [] are
executed indivisibly/atomically

▪ Only one P or V operation at a time can modify s.

▪ When while loop in P terminates, only that P can decrement s

 Semaphore invariant: s ≥ 0

Carnegie Mellon

4

Review: Using Semaphores to
Protect Shared Resources via Mutual Exclusion

 Basic idea:
▪ Associate a unique semaphore mutex, initially 1, with each shared

variable (or related set of shared variables)

▪ Surround each access to the shared variable(s) with P(mutex) and

 V(mutex) operations

mutex = 1

 P(mutex)

 cnt++

 V(mutex)

Carnegie Mellon

5

Review: Using Lock for Mutual Exclusion

 Basic idea:
▪ Mutex is special case of semaphore that only has value 0 (locked) or 1

(unlocked)

▪ Lock(m): [while (m == 0); m=0;]

▪ Unlock(m): [m=1]

 ~2x faster than using semaphore for this purpose
▪ And, more clearly indicates programmer’s intention

mutex = 1

 lock(mutex)

 cnt++

 unlock(mutex)

mutex = 1

 P(mutex)

 cnt++

 V(mutex)

vs.

Carnegie Mellon

6

Note about Examples

 Lecture examples will use semaphores for both counting
and mutual exclusion
▪ Code is much shorter than using pthread_mutex

Carnegie Mellon

7

Review: Using Semaphores to
Coordinate Access to Shared Resources

 Basic idea: Thread uses a semaphore operation to notify
another thread that some condition has become true
▪ Use counting semaphores to keep track of resource state.

▪ Use binary semaphores to notify other threads.

 The Producer-Consumer Problem

▪ Mediating interactions between processes that generate information
and that then make use of that information

▪ Single entry buffer implemented with two binary semaphores

▪ One to control access by producer(s)

▪ One to control access by consumer(s)

▪ N-entry buffer implemented with semaphores + circular buffer

producer
thread

Shared buffer
consumer

thread

Carnegie Mellon

8

Today

 Using semaphores to schedule shared resources CSAPP 12.5.4
▪ Readers-writers problem

 Other concurrency issues CSAPP 12.7
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling

Carnegie Mellon

9

Readers-Writers Problem

 Problem statement:
▪ Reader threads only read the object

▪ Writer threads modify the object (read/write access)

▪ Writers must have exclusive access to the object

▪ Unlimited number of readers can access the object concurrently

 Occurs frequently in real systems, e.g.,
▪ Online airline reservation system

▪ Multithreaded caching Web proxy

W1

W3

W2

R1

R3

R2

Read/
Write
Access

Read-only
Access

Carnegie Mellon

10

Readers/Writers Examples

W1

W3

W2

R1

R3

R2

W1

W3

W2

R1

R3

R2

Carnegie Mellon

11

Variants of Readers-Writers

 First readers-writers problem (favors readers)
▪ No reader should be kept waiting unless a writer has already been

granted permission to use the object.

▪ A reader that arrives after a waiting writer gets priority over the
writer.

 Second readers-writers problem (favors writers)
▪ Once a writer is ready to write, it performs its write as soon as

possible

▪ A reader that arrives after a writer must wait, even if the writer is
also waiting.

 Starvation (where a thread waits indefinitely) is possible
in both cases.

Carnegie Mellon

12

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

A reader that arrives

after a waiting writer
gets priority over the writer

Carnegie Mellon

13

Readers/Writers Examples

W1

W3

W2

R1

R3

R2

W1

W3

W2

R1

R3

R2

w = 0
readcnt = 0

W1

W3

W2

R1

R3

R2

w = 1
readcnt = 0

w = 0
readcnt = 2

Carnegie Mellon

14

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

Carnegie Mellon

15

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1

readcnt == 1
w == 0

Carnegie Mellon

16

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1

readcnt == 2
w == 0

R2

Carnegie Mellon

17

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1

readcnt == 2
w == 0

R2

W1

Carnegie Mellon

18

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

R1

readcnt == 1
w == 0

R2

W1

Carnegie Mellon

19

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

R1

readcnt == 2
w == 0

R2

W1

R3

Carnegie Mellon

20

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 1
w == 0

R2

W1

R3

Carnegie Mellon

21

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 0
w == 1

W1

R3

Carnegie Mellon

22

Other Versions of Readers-Writers

 Shortcoming of first solution
▪ Continuous stream of readers will block writers indefinitely

 Second version
▪ Once writer comes along, blocks access to later readers

▪ Series of writes could block all reads

 FIFO implementation
▪ See rwqueue code in code directory

▪ Service requests in order received

▪ Threads kept in FIFO

▪ Each has semaphore that enables its access to critical section

Carnegie Mellon

23

Solution to Second Readers-Writers Problem
int readcnt, writecnt; // Initially 0

sem_t rmutex, wmutex, r, w; // Initially 1

void reader(void)

{

 while (1) {

 P(&r);

 P(&rmutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&rmutex);

 V(&r)

 /* Reading happens here */

 P(&rmutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&rmutex);

 }

} A reader that arrives after a writer must
wait, even if the writer is also waiting

void writer(void)

{

 while (1) {

 P(&wmutex);

 writecnt++;

 if (writecnt == 1)

 P(&r);

 V(&wmutex);

 P(&w);

 /* Writing here */

 V(&w);

 P(&wmutex);

 writecnt--;

 if (writecnt == 0);

 V(&r);

 V(&wmutex);

 }

}

Carnegie Mellon

24

Managing Readers/Writers with FIFO

 Idea
▪ Read & Write requests are inserted into FIFO

▪ Requests handled as remove from FIFO

▪ Read allowed to proceed if currently idle or processing read

▪ Write allowed to proceed only when idle

▪ Requests inform controller when they have completed

 Fairness
▪ Guarantee every request is eventually handled

R WRWWRRRWR

Time

Requests

Allowed
Concurrency

Carnegie Mellon

25

Readers Writers FIFO Implementation

 Full code in rwqueue.{h,c}

/* Queue data structure */

typedef struct {

 sem_t mutex; // Mutual exclusion

 int reading_count; // Number of active readers

 int writing_count; // Number of active writers

 // FIFO queue implemented as linked list with tail

 rw_token_t *head;

 rw_token_t *tail;

} rw_queue_t;

/* Represents individual thread's position in queue */

typedef struct TOK {

 bool is_reader;

 sem_t enable; // Enables access

 struct TOK *next; // Allows chaining as linked list

} rw_token_t;

Carnegie Mellon

26

Readers Writers FIFO Use

 In rwqueue-test.c
/* Get write access to data and write */

void iwriter(int *buf, int v)

{

 rw_token_t tok;

 rw_queue_request_write(&q, &tok);

 /* Critical section */

 *buf = v;

 /* End of Critical Section */

 rw_queue_release(&q);

}
/* Get read access to data and read */

int ireader(int *buf)

{

 rw_token_t tok;

 rw_queue_request_read(&q, &tok);

 /* Critical section */

 int v = *buf;

 /* End of Critical section */

 rw_queue_release(&q);

 return v;

}

Enqueue write request.
Blocked until its your turn.

(One writer per turn)

R WWRRRWR

Enqueue read request.
Blocked until its your turn.

(Multiple readers OK in same turn)

Carnegie Mellon

27

Library Reader/Writer Lock

 Data type pthread_rwlock_t

 Operations
▪ Acquire read lock

Pthread_rwlock_rdlock(pthread_rw_lock_t *rwlock)

▪ Acquire write lock

Pthread_rwlock_wrlock(pthread_rw_lock_t *rwlock)

▪ Release (either) lock

Pthread_rwlock_unlock(pthread_rw_lock_t *rwlock)

 Observation
▪ Library must be used correctly!

▪ Up to programmer to decide what requires read access and
what requires write access

Carnegie Mellon

28

Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling

Carnegie Mellon

29

Recall: One Worry: Races

 A race occurs when correctness of the program depends on one
thread reaching point x before another thread reaches point y

/* a threaded program with a race */

int main(int argc, char** argv) {

 pthread_t tid[N];

 int i;

 for (i = 0; i < N; i++)

 Pthread_create(&tid[i], NULL, thread, &i);

 for (i = 0; i < N; i++)

 Pthread_join(tid[i], NULL);

 return 0;

}

/* thread routine */

void *thread(void *vargp) {

 int myid = *((int *)vargp);

 printf("Hello from thread %d\n", myid);

 return NULL;

}

race.c

Carnegie Mellon

30

Race Elimination
 Don’t share state

▪ E.g., use malloc to generate separate copy of argument for each
thread

 Use synchronization primitives to control access to shared
state
▪ Different shared state can use different primitives

Carnegie Mellon

31

Today

 Using semaphores to schedule shared resources
▪ Producer-consumer problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling

Carnegie Mellon

32

Another Worry: Deadlock

 Def: A process is deadlocked iff it is waiting for a condition
that will never be true.

 Typical Scenario
▪ Processes 1 and 2 needs two resources (A and B) to proceed

▪ Process 1 acquires A, waits for B

▪ Process 2 acquires B, waits for A

▪ Both will wait forever!

 More fully (and beyond the scope of this course), a deadlock
has four requirements
▪ Mutual exclusion

▪ Circular waiting

▪ Hold and wait

▪ No pre-emption

Carnegie Mellon

33

Deadlocking With Semaphores
int main(int argc, char** argv)

{

 pthread_t tid[2];

 Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */

 Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */

 Pthread_create(&tid[0], NULL, count, (void*) 0);

 Pthread_create(&tid[1], NULL, count, (void*) 1);

 Pthread_join(tid[0], NULL);

 Pthread_join(tid[1], NULL);

 printf("cnt=%d\n", cnt);

 return 0;

}

void *count(void *vargp)

{

 int i;

 int id = (int) vargp;

 for (i = 0; i < NITERS; i++) {

 P(&mutex[id]); P(&mutex[1-id]);

 cnt++;

 V(&mutex[id]); V(&mutex[1-id]);

 }

 return NULL;

}

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s1);

P(s0);

cnt++;

V(s1);

V(s0);

Carnegie Mellon

34

Deadlock Visualized in Progress Graph

Locking introduces the
potential for deadlock:
waiting for a condition that
will never be true

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for

either s0 or s1 to become

nonzero

Other trajectories luck out and
skirt the deadlock region

Unfortunate fact: deadlock is
often nondeterministic (race)

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s1)

P(s0)

V(s0) Forbidden region
for s0

Forbidden region
for s1

Deadlock
state

Deadlock
region

s0=s1=1

Carnegie Mellon

35

Avoiding Deadlock
int main(int argc, char** argv)

{

 pthread_t tid[2];

 Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */

 Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */

 Pthread_create(&tid[0], NULL, count, (void*) 0);

 Pthread_create(&tid[1], NULL, count, (void*) 1);

 Pthread_join(tid[0], NULL);

 Pthread_join(tid[1], NULL);

 printf("cnt=%d\n", cnt);

 return 0;

}

void *count(void *vargp)

{

 int i;

 int id = (int) vargp;

 for (i = 0; i < NITERS; i++) {

 P(&mutex[0]); P(&mutex[1]);

 cnt++;

 V(&mutex[id]); V(&mutex[1-id]);

 }

 return NULL;

}

Acquire shared resources in same order

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s0);

P(s1);

cnt++;

V(s1);

V(s0);

Carnegie Mellon

36

Avoided Deadlock in Progress Graph

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s0)

P(s1)

V(s0)
Forbidden region
for s0

Forbidden region
for s1

s0=s1=1

No way for trajectory to get
stuck

Processes acquire locks in
same order

Order in which locks released
is immaterial

Carnegie Mellon

37

Demonstration

 See program deadlock.c

 100 threads, each acquiring same two locks

 Risky mode
▪ Even numbered threads request locks in opposite order of odd-

numbered ones

 Safe mode
▪ All threads acquire locks in same order

Carnegie Mellon

38

Livelock Visualized in Progress Graph

Livelock is similar to a
deadlock, except the threads
change state, but remain in a
deadlock trajectory.

Thread 0

Thread 1

Forbidden region
for s0

Forbidden region
for s1

Livelock
state

Livelock
region

Carnegie Mellon

39

Deadlock, Livelock, Starvation

 Deadlock
▪ One or more threads is waiting on a condition that will never be true

 Livelock
▪ One or more threads is changing state, but will never leave a

deadlock / livelock trajectory

 Starvation
▪ One or more threads is temporarily unable to make progress

Carnegie Mellon

40

Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling

Carnegie Mellon

41

Crucial concept: Thread Safety

 Functions called from a thread must be thread-safe

 Def: A function is thread-safe iff it will always produce
correct results when called repeatedly from multiple
concurrent threads.

 Classes of thread-unsafe functions:
▪ Class 1: Functions that do not protect shared variables

▪ Class 2: Functions that keep state across multiple invocations

▪ Class 3: Functions that return a pointer to a static variable

▪ Class 4: Functions that call thread-unsafe functions

Carnegie Mellon

42

Thread-Unsafe Functions (Class 1)

 Failing to protect shared variables
▪ Fix: Use P and V semaphore operations (or mutex)

▪ Example: goodcnt.c

▪ Issue: Synchronization operations will slow down code

Carnegie Mellon

43

Thread-Unsafe Functions (Class 2)

 Relying on persistent state across multiple function invocations
▪ Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void)

{

 next = next*1103515245 + 12345;

 return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed)

{

 next = seed;

}

Carnegie Mellon

44

Thread-Safe Random Number Generator

 Pass state as part of argument
▪ and, thereby, eliminate static state

 Consequence: programmer using rand_r must maintain seed

/* rand_r - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)

{

 *nextp = *nextp*1103515245 + 12345;

 return (unsigned int)(*nextp/65536) % 32768;

}

Carnegie Mellon

45

Thread-Unsafe Functions (Class 3)

 Returning a pointer to a static
variable

 Fix 1. Rewrite function so
caller passes address of
variable to store result
▪ Requires changes in caller and

callee

 Fix 2. Lock-and-copy
▪ Requires simple changes in caller

(and none in callee)

▪ However, caller must free memory.

char *lc_itoa(int x, char *dest)

{

 P(&mutex);

 strcpy(dest, itoa(x));

 V(&mutex);

 return dest;

}

/* Convert integer to string */

char *itoa(int x)

{

 static char buf[11];

 sprintf(buf, "%d", x);

 return buf;

}

Carnegie Mellon

46

Thread-Unsafe Functions (Class 4)

 Calling thread-unsafe functions
▪ Calling one thread-unsafe function makes the entire function that calls it

thread-unsafe

▪ Fix: Modify the function so it calls only thread-safe functions ☺

Carnegie Mellon

47

Reentrant Functions

 Def: A function is reentrant iff it accesses no shared
variables when called by multiple threads.
▪ Important subset of thread-safe functions

▪ Require no synchronization operations

▪ Only way to make a Class 2 function thread-safe is to make it
reentrant (e.g., rand_r)

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions

Carnegie Mellon

48

Thread-Safe Library Functions

 All functions in the Standard C Library (at the back of your
K&R text) are thread-safe
▪ Examples: malloc, free, printf, scanf

 Most Unix system calls are thread-safe, with a few
exceptions:

Thread-unsafe function Class Reentrant version

asctime 3 asctime_r

ctime 3 ctime_r

gethostbyaddr 3 gethostbyaddr_r

gethostbyname 3 gethostbyname_r

inet_ntoa 3 (none)

localtime 3 localtime_r

rand 2 rand_r

Carnegie Mellon

49

Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling

Carnegie Mellon

50

Review: Signal Handling

 Action
▪ Signal can occur at any point in program execution

▪ Unless signal is blocked

▪ Signal handler runs within same thread

▪ Must run to completion and then return to regular program execution

Icurr
Inext

Handler

Receive
signal

Carnegie Mellon

51

Threads / Signals Interactions

 Many library functions use lock-and-copy for thread safety
▪ Because they have hidden state

▪ malloc

▪ Free lists

▪ fprintf, printf, puts

▪ So that outputs from multiple threads don’t interleave

▪ sprintf

▪ Not officially asynch-signal-safe, but seems to be OK

 OK for handler that doesn’t use these library functions

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()

Carnegie Mellon

52

Bad Thread / Signal Interactions

 What if:

▪ Signal received while library function holds lock

▪ Handler calls same (or related) library function

 Deadlock!
▪ Signal handler cannot proceed until it gets lock

▪ Main program cannot proceed until handler completes

 Key Point
▪ Threads employ symmetric concurrency

▪ Signal handling is asymmetric

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()

fprintf.lock()
fprintf.unlock()

Carnegie Mellon

53

Threads Summary

 Threads provide another mechanism for writing concurrent
programs

 Threads are growing in popularity
▪ Somewhat cheaper than processes

▪ Easy to share data between threads

 However, the ease of sharing has a cost:
▪ Easy to introduce subtle synchronization errors

▪ Tread carefully with threads!

 For more info:
▪ D. Butenhof, “Programming with Posix Threads”, Addison-Wesley, 1997

	Slide 1
	Slide 2: Synchronization: Advanced 18-213/18-613: Introduction to Computer Systems 24th Lecture, November 26th, 2024
	Slide 3: Review: Semaphores
	Slide 4: Review: Using Semaphores to Protect Shared Resources via Mutual Exclusion
	Slide 5: Review: Using Lock for Mutual Exclusion
	Slide 6: Note about Examples
	Slide 7: Review: Using Semaphores to Coordinate Access to Shared Resources
	Slide 8: Today
	Slide 9: Readers-Writers Problem
	Slide 10: Readers/Writers Examples
	Slide 11: Variants of Readers-Writers
	Slide 12: Solution to First Readers-Writers Problem
	Slide 13: Readers/Writers Examples
	Slide 14: Solution to First Readers-Writers Problem
	Slide 15: Solution to First Readers-Writers Problem
	Slide 16: Solution to First Readers-Writers Problem
	Slide 17: Solution to First Readers-Writers Problem
	Slide 18: Solution to First Readers-Writers Problem
	Slide 19: Solution to First Readers-Writers Problem
	Slide 20: Solution to First Readers-Writers Problem
	Slide 21: Solution to First Readers-Writers Problem
	Slide 22: Other Versions of Readers-Writers
	Slide 23: Solution to Second Readers-Writers Problem
	Slide 24: Managing Readers/Writers with FIFO
	Slide 25: Readers Writers FIFO Implementation
	Slide 26: Readers Writers FIFO Use
	Slide 27: Library Reader/Writer Lock
	Slide 28: Today
	Slide 29: Recall: One Worry: Races
	Slide 30: Race Elimination
	Slide 31: Today
	Slide 32: Another Worry: Deadlock
	Slide 33: Deadlocking With Semaphores
	Slide 34: Deadlock Visualized in Progress Graph
	Slide 35: Avoiding Deadlock
	Slide 36: Avoided Deadlock in Progress Graph
	Slide 37: Demonstration
	Slide 38: Livelock Visualized in Progress Graph
	Slide 39: Deadlock, Livelock, Starvation
	Slide 40: Today
	Slide 41: Crucial concept: Thread Safety
	Slide 42: Thread-Unsafe Functions (Class 1)
	Slide 43: Thread-Unsafe Functions (Class 2)
	Slide 44: Thread-Safe Random Number Generator
	Slide 45: Thread-Unsafe Functions (Class 3)
	Slide 46: Thread-Unsafe Functions (Class 4)
	Slide 47: Reentrant Functions
	Slide 48: Thread-Safe Library Functions
	Slide 49: Today
	Slide 50: Review: Signal Handling
	Slide 51: Threads / Signals Interactions
	Slide 52: Bad Thread / Signal Interactions
	Slide 53: Threads Summary

