Carnegie Mellon

T —

PR
el s sine

<« AN it s

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Network Programming: Part Il

18-213/18-613: Introduction to Computer Systems
215t Lecture, November 14, 2024

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Today

m The Sockets Interface CSAPP 11.4

m Web Servers CSAPP 11.5.1-11.5.3
m The Tiny Web Server CSAPP 11.6

m Serving Dynamic Content CSAPP 11.5.4

m Proxy Servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Review: Sockets

m What is a socket?

= To the kernel, a socket is an endpoint of communication

" To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix 1/O devices, including networks, are
modeled as files

m Clients and servers communicate with each other by
reading from and writing to socket descriptors

- [
< »

clientfd serverfd

m The main distinction between regular file 1/0 and socket
1/0 is how the application “opens” the socket descriptors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Review: Anatomy of a Connection

m A connection is uniquely identified by the socket
addresses of its endpoints (socket pair)

" (cliaddr:cliport, servaddr:servport)

Client socket address Server socket address
128.2.194.242:51213 :80

/ \

-
< »

Connection socket pair

Server
(port 80)

(128.2.194.242:51213, :80)
Client host address Server host address
128.2.194.242
51213 is an ephemeral port 80 is a well-known port
allocated by the kernel associated with Web servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Review: Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
128.2.194.242:80

(i.e., the Web server)
Client

Web server
(port 80)

Kernel

) 4

Echo server
(port 7)

Service request for
128.2.194.242:7

) (i.e., the echo server)
Client

Web server
(port 80)

) 4

Kernel

Echo server
(port 7)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

2. Start client 1. Start server

Client Server Review:
Echo
Server
+ Client
Structure

open listenfd

open_clientfd

Connectign l Await connection
request request from client
"i7 """"" K"’ accept <
4 v v 3. Exchange\
| terminal read ‘ ket d le
Client / | socket write | Socket read data
Server l l
Session socket read]
.) < socket write
\\» terminal write 4//

¥

close = |---H4-—------ socket read

5. Drop client

4. Disconnect client

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

open clientfd <

Start client

Client

/ | getaddrinfo |

!

socket

lonnectio

connect

request

(:i accept

Start server
Server

N
| getaddrinfo |

!

socket

I

bind

'

listen

!

A

v

Client /
Server
Session

rio_writen

v

\ 4

'

rio_readlineb

rio_;eadlineb

'

rio writen

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

close

>rio_;eadlineb

v

close

Sockets

Interface

open listenfd

Await connection
request from
next client

Carnegie Mellon

Carnegie Mellon

Review: Generic Socket Address

m Generic socket address:
= For address arguments to connect, bind, and accept

struct sockaddr {
uintlé t sa family; /* Protocol family */
char sa data[l4]; /* Address data. */
};
sa_family “~ ~ _/

Family Specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Review: Socket Address Structures

m Internet (IPv4) specific socket address:

" Mustcast (struct sockaddr in *)to(struct sockaddr ¥*)
for functions that take socket address arguments.

struct sockaddr in {

uintl6é t sin family; /* Protocol family (always AF_ INET) */
uintlé t sin port; /* Port num in network byte order */
struct in addr sin_addr; /* IP addr in network byte order */

unsigned char sin zero[8]; /* Pad to sizeof(struct sockaddr) */

sin_port sin_addr

AF INET o(o0o(0|O0|O0O|O0O]O0]|O

sa_family -

Family Specific

sin family

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Review: getaddrinfo

m getaddrinfo converts string representations of hostnames,
host addresses, ports, service names to socket address structures

addrinfo structs

SA list result

Socket address structs

ai_canonname.

ai_addr

ai_next

NULL
ai_addr

ali next

NULL
ai_addr
NULL

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Sockets
Interface

open listenfd

A

Start client Start server
Client Server
/ getaddrinfo getaddrinfo
! SA list SAlist |
| socket | | socket |
open clientfd < mdleael
listen
Connectipn l
request
\\\ connect 't:y ----- (;T’ accept

Cﬁent/ > rlo_wrlten >
Server l
Session

rio_;eadlineb

'

rio_readlineb <

rio writen

Await connection
request from
next client

close = |-----TCT______

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

v

rio_;eadlineb

close

12

Sockets Interface: socket

m Clients and servers use the socket function to create a
socket descriptor:

int socket(int domain, int type, int protocol)

m Example:

int clientfd = socket (AF_INET, SOCK STREAM, O0);

/ \

Indicates that we are using Indicates that the socket
32-bit IPV4 addresses will be the end point of a
reliable (TCP) connection

Protocol specific! Best practice is to use getaddrinfoto
generate the parameters automatically, so that code is
protocol independent.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon
Start server

Client Server SOCkEtS
(. .)
getaddrinfo getaddrinfo I nte r a Ce
| SA list SAlist |
socket socket
clientfd listenfd | » open_listenfd
open clientfd < I bind I
listen
Connectjon l /
request
L connect « [~ --7-- (;:* accept <
v v
Cﬁent/ » rio writen »rio readlinebi«
Server l l .]
Session Await connection
rio_readlineb < rio_writen requestﬂ0n1
next client
v v
close = [|----- EQE ————— »rio readlineb
\ 4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Sockets Interface: bind

m Aserver uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

int bind(int sockfd, SA *addr, socklen t addrlen);

Our convention: typedef struct sockaddr SA;

m Process can read bytes that arrive on the connection whose
endpoint is addr by reading from descriptor sockfd

m Similarly, writes to sockfd are transferred along
connection whose endpoint is addr

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Sockets
Interface

>open_listenfd

Client Server
(. .)
getaddrinfo getaddrinfo
I saitist SAlist |
socket socket
clientfd listenfd |
open clientfd < bind
listenfd <->SA |
Connection /
request
\ connect [~ "TTToooo- P accept <
v v
Cﬁent/ » rio writen »rio readlinebi«
Server l l
Session rio_readlineb < rio_writen

Await connection

request from
next client

close = |-----TCT______

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

v

rio readlineb

close

16

Carnegie Mellon

Sockets Interface: 1isten

m Kernel assumes that descriptor from socket function is an
active socket that will be on the client end

m A server calls the 1isten function to tell the kernel that
a descriptor will be used by a server rather than a client:

int listen(int sockfd, int backloqg) ;

m Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

m backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests (128-ish by default)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Client Server Sockets

\
(getaddrinfo getaddrinfo I nte rfa ce
I SAlist SA list !
socket socket
clientfd listenfd | > open_listenfd
open clientfd < bind
listenfd <->SA |
listen
i : .
Connection | listening listenfd
request
connect [~~~ -----
\
v +
Client / » rio writen »rio readlinebi«
Server l l . .
Session Await connection
rio_readlineb [« rio_writen requestﬂ0n1
next client
v v
close W F----- EOF____. »rio readlineb
\ 4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Sockets Interface: accept

m Servers wait for connection requests from clients by
calling accept:

int accept(int listenfd, SA *addr, int *addrlen)

m Waits for connection request to arrive on the connection
bound to 1istenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

m Returns a connected descriptor connfd that can be used
to communicate with the client via Unix /O routines.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Client

getaddrinfo
I SAlist SA

socket

open clientfd <

clientfd liste

Server

getaddrinfo

ist l

socket

nfd |

bind

listenfd <->SA |

J

Carnegie Mellon

Sockets
Interface

> open listenfd

Await connection

request from
next client

listen
; - o
Connection | listening listenfd
request
----------- > accept <
\

. | rio writen »rio readlineb|,
Client / g = — &
Server l l
Session rio_readlineb < rio_writen

\ 4 \ 4
close = |----- EQE ————— »rio readlineb

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

close

20

Carnegie Mellon

Sockets Interface: connect

m A client establishes a connection with a server by calling
connect:

int connect(int clientfd, SA *addr, socklen t addrlen);

m Attempts to establish a connection with server at socket
address addr
= |f successful, then clientfdis now ready for reading and writing.
= Resulting connection is characterized by socket pair
(x:y, addr.sin addr:addr.sin port)
= xisclient address

= y is ephemeral port that uniquely identifies client process on
client host

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

connect/accept lllustrated

listenfd
1. Server blocks in accept,
Client Server waiting for connection request
clientfd on listening descriptor
listenfd
Connection 1istenfd
request . > 2. Client makes connection request by
Client i T Server calling and blocking in connect
clientfd
listenfd
3. Server returns connfd from
Client L) »I Server accept. Client returns from connect.
clientfd connfd Connection is now established between

clientfd and connfd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Connected vs. Listening Descriptors

m Listening descriptor
= End point for client connection requests
= Created once and exists for lifetime of the server

m Connected descriptor
= End point of the connection between client and server

= A new descriptor is created each time the server accepts a
connection request from a client

= Exists only as long as it takes to service client

m Why the distinction?

= Allows for concurrent servers that can communicate over many
client connections simultaneously

= E.g., Each time we receive a new request, we fork a child to
handle the request

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Client Server Sockets

\
(getaddrinfo getaddrinfo I nte rfa ce
Il salist SAlist |
socket socket
clientfd listenfd | > open_listenfd
open clientfd < bind
listenfd <->SA |
listen
: . o
Connection l listening listenfd
request
\ connect [~ "TTToooo- P accept <
connected (to SA) clientfd connected|connfd
) .| rio writen »rio readlineb|,
Client / g - — >
Server . .
. l l Await connection
Session rio_readlineb < rio_writen requestﬂ0n1
next client
v v
close = [|----- EQE ————— »rio readlineb
\ 4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Client Server Sockets

N
(getaddrinfo getaddrinfo I nte rfa Ce
What happens l SA list l
if socket or socket socket
ils?
connect fails? Clientfd l , open_listenfd
open clientfd <]
Try again with l
next on SA list listen
(return -1 if Connection l /
all SAs fail) request
L connect [~ ""TToooo- P accept <
connected (to SA) clientfd
Client / » rio writen »rio readlinebi«
Server l l . _
Sessi Await connection
ion . . 5 . .
rio_readlineb [« rio_writen request from
next client
v v
close = |----- EOF ____ »rio readlineb

close

25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Client Server
(. .)
getaddrinfo getaddrinfo What happens
l SA list l if socketor
bind fails?
socket socket
listenfd ! \ open_listenfd
open clientfd < bind . .
- Try again with
listenfd <->SA | next on SA list
listen (return -1 if
Connection l / all SAs fail)
request
\ connect [~""TTTTooooo- > accept <
v v
Client / » rio writen »rio readlinebi«
Server l l .)
Session Await connection
rio_readlineb [« rio_writen request from
next client
v v
close W F----- EOF____. »rio readlineb
\ 4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Testing Servers Using telnet

m The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
® Qur simple echo server
= Web servers
= Mail servers

m Usage:
" linux> telnet <host> <portnumber>

" Creates a connection with a server running on <host>and
listening on port <portnumber>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Testing the Echo Server With telnet

whaleshark> ./echoserveri 18213

Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280)
server received 11 bytes

server received 8 bytes

makoshark> telnet whaleshark.ics.cs.cmu.edu 18213
Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '*]'.

Hi there!

Hi there!

Howdy!

Howdy!

*]

telnet> quit

Connection closed.

makoshark>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Today

The Sockets Interface
Web Servers

M
M

m The Tiny Web Server

m Serving Dynamic Content
M

Proxy Servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Web Server Basics

m Clients and servers communicate HTTP request

using the HyperText Transfer V‘_’eb y Web
Protocol (HTTP) client server
(browser) /-

" Client and server establish TCP

, HTTP response
connection

' (content)

= (Client requests content
= Server responds with requested

content HTTP Web content
= Client and server close connection

(eventually) TCP Streams

m Current version is HTTP/1.1

= RFC 2616, June, 1999. IP Datagrams

= HTTP/2 is so different that it might
as well be a new protocol.

http://www.w3.0org/Protocols/rfc2616/rfc2616.html

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Web Content

m Web servers return content to clients

= content: a sequence of bytes with an associated MIME (Multipurpose
Internet Mail Extensions) type

= Content is identified by its URL (Uniform Resource Locator)

m Example MIME types

" text/html HTML document

" text/plain Unformatted text

" image/gif Binary image encoded in GIF format
"= image/png Binary image encoded in PNG format
" image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Static and Dynamic Content

m Static content: content stored in files and retrieved in response to
an HTTP request

= Examples: HTML files, images, audio clips, Javascript programs
= Request identifies which content file

m Dynamic content: content produced on-the-fly in response to
an HTTP request

= Example: content produced by a program executed by the server on behalf
of the client

= Request identifies file containing executable code

m Any URL can refer to either static or dynamic content

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

URLs and how clients and servers use them

m Unique name for a file: URL (Universal Resource Locator)
m Example URL: http://www.cmu.edu:80/index.html

m Clients use prefix (http://www.cmu.edu: 80) to infer:
= What kind (protocol) of server to contact (HTTP)
= Where the server is (www.cmu . edu)
= What port it is listening on (80)
m Servers use suffix (/ index.html) to:
= Determine if request is for static or dynamic content.
= No hard and fast rules for this
= One convention: executables reside in cgi-bin directory
" Find file on file system
= |nitial “/” in suffix denotes home directory for requested content.

= Minimal suffix is “/”, which server expands to configured default
filename (usually, index.html)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

HTTP Requests

m HTTP request is a request line,
followed by zero or more request headers

m Request line: <method> <uri> <version>

" <method> isone of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

= <uri>is typically URL for proxies, URL suffix for servers
= A URL is a type of URI (Uniform Resource Identifier)
= See http://www.ietf.org/rfc/rfc2396.txt
" <version>is HTTP version of request (HTTP/1.0 or HTTP/1.1)

m Request headers: <header name>: <header data>

" Provide additional information to the server (e.g., brand name of browser)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

http://www.ietf.org/rfc/rfc2396.txt

HTTP Responses

m HTTP response is a response line followed by zero or more
response headers, possibly followed by content, with blank line
(“\r\n") separating headers from content.

m Response line:

<version> <status code> <status msg>
= <version> is HTTP version of the response
= <status code> is numeric status
= <status msg> is corresponding English text

= 200 OK Request was handled without error

= 301 Moved Provide alternate URL

= 404 Not found Server couldn’t find the file

m Response headers: <header name>: <header data>
" Provide additional information about response
" Content-Type: MIME type of content in response body
"= Content-Length: Length of contentin response body

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Many more HTTP response codes

Request-URI Too Long

Not Acceptable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Example HTTP Transaction

whaleshark> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '“]'.

GET / HTTP/1.1 Client:
Host: www.cmu.edu Client:

Client:
HTTP/1.1 301 Moved Permanently Server:
Date: Wed, 05 Nov 2014 17:05:11 GMT Server:
Server: Apache/1.3.42 (Unix) Server:
Location: http://www.cmu.edu/index.shtml Server:
Transfer-Encoding: chunked Server:
Content-Type: text/html; charset=... Server:

Server:
15c Server:
<HTML><HEAD> Server:
</BODY></HTML> Server:
0 Server:
Connection closed by foreign host. Server:

request line

required HTTP/1.1 header
blank line terminates headers
response line

followed by 5 response headers
this is an Apache server

page has moved here

response body will be chunked
expect HTML in response body
empty line terminates headers
first line in response body
start of HTML content

end of HTML content
last line in response body
closes connection

m HTTP standard requires that each text line end with “*\r\n”

m Blank line (“\r\n”) terminates request and response headers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

37

Example HTTP Transaction, Take 2

whaleshark> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.42.52... Telnet prints 3 lines to terminal
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '“]'.

GET /index.shtml HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header
Client: blank line terminates headers

HTTP/1.1 200 OK Server: response line

Date: Wed, 05 Nov 2014 17:37:26 GMT Server: followed by 4 response headers

Server: Apache/1.3.42 (Unix)
Transfer-Encoding: chunked
Content-Type: text/html; charset=...
Server: empty line terminates headers

1000 Server: begin response body

<html ..> Server: first line of HTML content
</html>

0 Server: end response body

Connection closed by foreign host. Server: close connection

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Example HTTP(S) Transaction, Take 3

whaleshark> openssl s _client www.cs.cmu.edu:443
CONNECTED (00000005)

Certificate chain

Server certificate

MIIGD]JjCCBPagAwIBAgIRAMiF7LBPDoySilnNoU+mp+gwDQYJKoZIhvcNAQELBQAwW
djELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk1JIJMRIWEAYDVQQHEw1Bbm4gQXJib3Ix
EJjAQBgNVBAOTCUludGVybmVOMjERMAS8GA1UECxXMISW5Db21 tb24xHzAdBgNVBAMT
wkWkvDVBBCWKXrShVxQONsj6J

subject=/C=US/postalCode=15213/ST=PA/L=Pittsburgh/street=5000 Forbes
Ave/O=Carnegie Mellon University/OU=School of Computer
Science/CN=www.cs.cmu.edu issuer=/C=US/ST=MI/L=Ann
Arbor/O=Internet2/0U=InCommon/CN=InCommon RSA Server CA

SSL handshake has read 6274 bytes and written 483 bytes

>GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Tue, 12 Nov 2019 04:22:15 GMT

Server: Apache/2.4.10 (Ubuntu)

Set-Cookie: SHIBLOCATION=scsweb; path=/; domain=.cs.cmu.edu
HTMI. Content Continues Below

http://www.cs.cmu.edu:443/

Carnegie Mellon

Today

The Sockets Interface
Web Servers

M
M

m The Tiny Web Server

m Serving Dynamic Content
M

Proxy Servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Tiny Web Server

m Tiny Web server described in text
= Tiny is a sequential Web server

= Serves static and dynamic content to real browsers
= text files, HTML files, GIF, PNG, and JPEG images

= 239 lines of commented C code
" Not as complete or robust as a real Web server

= You can break it with poorly-formed HTTP requests (e.g.,
terminate lines with “\n” instead of “\r\n”)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Tiny Operation

m Accept connection from client
m Read request from client (via connected socket)
m Split into <method> <uri> <version>

" |f method not GET, then return error

m If URI contains “cgi-bin” then serve dynamic content
= (Would do wrong thing if had file “abegi-bingo.html”)
" Fork process to execute program

m Otherwise serve static content
= Copy file to output

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Tiny Serving Static Content

void serve static(int fd, char *filename, int filesize)
{

int srcfd;

char *srcp, filetype[MAXLINE], buf[MAXBUF];

/* Send response headers to client */

get filetype(filename, filetype);

sprintf (buf, "HTTP/1.0 200 OK\r\n");

sprintf (buf, "%$sServer: Tiny Web Server\r\n", buf);
sprintf (buf, "%sConnection: close\r\n", buf);

sprintf (buf, "%$sContent-length: %d\r\n", buf, filesize);
sprintf (buf, "%$sContent-type: %s\r\n\r\n", buf, filetype)
Rio writen (fd, buf, strlen(buf));

/* Send response body to client */
srcfd = Open(filename, O RDONLY, O0);
srcp = Mmap (0, filesize, PROT READ, MAP PRIVATE, srcfd, 0);
Close(srcfd) ;
Rio writen(fd, srcp, filesize);
Munmap (srcp, filesize);
} tiny.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Today

The Sockets Interface
Web Servers

H

H

m The Tiny Web Server

m Serving Dynamic Content
H

Proxy Servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Serving Dynamic Content

m Client sends request to server GET /cgi-bin/env.pl HTTP/1.1

m If request URI contains the Client > server
string “/cgi-bin”, the Tiny
server assumes that the
request is for dynamic content

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Serving Dynamic Content (cont)

m The server creates a child

S

process and runs the erver

program identified by the

URI in that process vfork/exec
env.pl

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Serving Dynamic Content (cont)

m The child runs and generates Client Jo-—— Server
the dynamic content k

A

Content
m The server captures the

content of the child and
forwards it without
modification to the client

env.pl

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Issues in Serving Dynamic Content

m How does the client pass program Request
arguments to the server?

\ 4

Client |Content | Server
m How does the server pass these '

arguments to the child?

. Content Create
m How does the server pass other info

relevant to the request to the child?

m How does the server capture the
content produced by the child?

m These issues are addressed by the
Common Gateway Interface (CGl)
specification.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

m Because the children are written according to the CGI
spec, they are often called CGI programs.

m However, CGI really defines a simple standard for
transferring information between the client (browser),
the server, and the child process.

m CGl is the original standard for generating dynamic
content. Has been largely replaced by other, faster
techniques:

= E.g., fastCGl, Apache modules, Java servlets, Rails controllers
= Avoid having to create process on the fly (expensive and slow).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

The add.com Experience

host port CGI program
arguments

IS ST— a
8 00 J |_"|whaleshark.ics.cs.ch.Ed X W / k2
o’ L

v y <

&€ > C A | [whaleshark.ics.cs.cmu.edu:15213/cgi-bin/adder?15213818213 @ 77 © xHCH

Welcome to add.com: THE Internet addition portal.
The answer 1s: 15213 + 18213 = 33426

Thanks for visiting!

Output page

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Serving Dynamic Content With GET

m Question: How does the client pass arguments to the server?

m Answer: The arguments are appended to the URI

m Can be encoded directly in a URL typed to a browser or a URL
in an HTML link
" http://add.com/cgi-bin/adder?15213&18213
= adder is the CGl program on the server that will do the addition.
= argument list starts with “?”
= arguments separated by “&”
" spaces represented by “+” or “%$20”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Serving Dynamic Content With GET

m URL suffix:
" cgi-bin/adder?15213&18213

m Result displayed on browser:

Welcome to add.com: THE Internet
addition portal.

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Serving Dynamic Content With GET

m Question: How does the server pass these arguments to
the child?
m Answer: In environment variable QUERY_STRING

= Asingle string containing everything after the “?”
" Foradd: QUERY STRING=“15213&18213"

/* Extract the two arguments */

if ((buf = getenv("QUERY STRING")) != NULL) {
p = strchr(buf, '&’); // return ptr to lst occur. of ‘&’
* - ! 1.
P— \0/

strcpy (argl, buf);
strcpy (arg2, p+l);
nl = atoi(argl) ;
n2 = atoi(arg?);
} adder.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Serving Dynamic Content with GET

m Question: How does the server capture the content produced by the child?

m Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

void serve dynamic(int fd, char *filename, char *cgiargs)

{
char buf [MAXLINE], *emptylist[] = { NULL };

/* Return first part of HTTP response */
sprintf (buf, "HTTP/1.0 200 OK\r\n");

Rio writen(fd, buf, strlen(buf));

sprintf (buf, "Server: Tiny Web Server\r\n");
Rio writen(fd, buf, strlen(buf));

if (Fork() == 0) { /* Child */
/* Real server would set all CGI vars here */
setenv ("QUERY STRING", cgiargs, 1);
Dup2 (£fd, STDOUT FILENO) ; /* Redirect stdout to client */
Execve (filename, emptylist, environ); /* Run CGI program */

}

Wait (NULL); /* Parent waits for and reaps child */

} tiny.c

Serving Dynamic Content with GET

m Notice that only the CGI child process knows the content
type and length, so it must generate those headers.

/* Make the response body */
sprintf (content, "Welcome to add.com: ") ;
sprintf (content, "$sTHE Internet addition portal.\r\n<p>", content);
sprintf (content, "%$sThe answer is: %d + %d = %d\r\n<p>",
content, nl, n2, nl + n2);
sprintf (content, "%$sThanks for visiting!\r\n", content);

/* Generate the HTTP response */

printf ("Content-length: %d\r\n", (int)strlen(content));
printf ("Content-type: text/html\r\n\r\n");

printf ("%s", content);

fflush (stdout) ;

exit (0) ; adder.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Serving Dynamic Content With GET

bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '*]'.

HTTP/1.0 200 OK
Server: Tiny Web Server HTTP response generated
by the server

Connection: close
Content-length: 117
Content-type: text/html

HTTP response generated
Welcome to add.com: THE Internet addition portal. by the CGI program
<p>The answer is: 15213 + 18213 = 33426
<p>Thanks for wvisiting!

Connection closed by foreign host.
bash:makoshark>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Today

The Sockets Interface
Web Servers

M
M

m The Tiny Web Server

m Serving Dynamic Content
M

Proxy Servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Proxies

m A proxyis an intermediary between a client and an origin server
" To the client, the proxy acts like a server
= To the server, the proxy acts like a client

1. Client request 2. Proxy request

> . .
Origin
Server

4. Proxy response 3. Server response

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Why Proxies?

Carnegie Mellon

m Can perform useful functions as requests and responses pass by

= Examples: Caching, logging, anonymization, filtering, transcoding

Request foo.html

Request foo.html

foo.html

Request foy

foo.html

Fast inexpensive local network

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Slower more expensive
global network

59

Carnegie Mellon

For More Information

m W. Richard Stevens et. al. “Unix Network Programming:
The Sockets Networking API”, Volume 1, Third Edition,
Prentice Hall, 2003

= THE network programming bible.

m Michael Kerrisk, “The Linux Programming Interface”, No
Starch Press, 2010

® THE Linux programming bible.

m Complete versions of all code in this lecture is available
from the 18-213 schedule page.
= https://www.cs.cmu.edu/~18213/schedule.html
= csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c, tiny.c, adder.c
" You can use any of this code in your assignments.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Additional slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Web History

m 1989:

" Tim Berners-Lee (CERN) writes internal proposal to develop a
distributed hypertext system
= Connects “a web of notes with links”

= Intended to help CERN physicists in large projects share and
manage information

m 1990:
" Tim BL writes a graphical browser for Next machines

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Web History (cont)

m 1992
= NCSA server released
= 26 WWW servers worldwide
m 1993
= Marc Andreessen releases first version of NCSA Mosaic browser
"= Mosaic version released for (Windows, Mac, Unix)
= Web (port 80) traffic at 1% of NSFNET backbone traffic
= QOver 200 WWW servers worldwide
m 1994

" Andreessen and colleagues leave NCSA to form “Mosaic
Communications Corp” (predecessor to Netscape)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

HTTP Versions

m Major differences between HTTP/1.1 and HTTP/1.0

= HTTP/1.0 uses a new connection for each transaction

HTTP/1.1 also supports persistent connections
= multiple transactions over the same connection
» Connection: Keep-Alive

HTTP/1.1 requires HOST header

= Host: www.cmu.edu

= Makes it possible to host multiple websites at single Internet host

HTTP/1.1 supports chunked encoding
» Transfer-Encoding: chunked

HTTP/1.1 adds additional support for caching

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Sockets Helper: open clientfd

m Establish a connection with a server

int open clientfd(char *hostname, char *port) ({
int clientfd;
struct addrinfo hints, *listp, *p;

/* Get a list of potential server addresses */

memset (&hints, 0, sizeof (struct addrinfo));

hints.ai socktype = SOCK STREAM; /* Open a connection */

hints.ai flags = AI NUMERICSERV; /* ..using numeric port arg. */
hints.ai flags |= AI ADDRCONFIG; /* Recommended for connections */
Getaddrinfo (hostname, port, &hints, &listp);

csapp.c

AI ADDRCONFIG - uses your system’s address type.
You have at least one IPV4 iface? IPV4. At least one IPV6? IPVG.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Sockets Helper: open clientfd (cont)

/* Walk the list for one that we can successfully connect to */
for (p = listp; p; p = p—>ai_next) {
/* Create a socket descriptor */
if ((clientfd = socket(p->ai family, p->ai_socktype,
p->ai_protocol)) < 0)
continue; /* Socket failed, try the next */

/* Connect to the server */

if (connect(clientfd, p->ai addr, p->ai_addrlen) != -1)
break; /* Success */

Close(clientfd); /* Connect failed, try another */

}

/* Clean up */

Freeaddrinfo (listp) ;

if (!'p) /* All connects failed */
return -1;

else /* The last connect succeeded */
return clientfd;

} csapp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Carnegie Mellon

Sockets Helper: open listenfd

m Create a listening descriptor that can be used to accept
connection requests from clients.

int open listenfd(char *port)

{
struct addrinfo hints, *listp, *p;
int listenfd, optval=l;

/* Get a list of potential server addresses */
memset (&hints, 0, sizeof(struct addrinfo));

hints.ai socktype = SOCK STREAM; /* Accept connect. */
hints.ai flags = AI PASSIVE | AI ADDRCONFIG; /* ..on any IP addr */
hints.ai flags |= AI_ NUMERICSERV; /* ..using port no. */

Getaddrinfo (NULL, port, &hints, &listp);

csapp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Carnegie Mellon

Sockets Helper: open listenfd (cont)

/* Walk the list for one that we can bind to */
for (p = listp; p; p = p—>ai_next) {
/* Create a socket descriptor */
if ((listenfd = socket(p->ai family, p->ai_socktype,
p->ai_protocol)) < 0)
continue; /* Socket failed, try the next */

/* Eliminates "Address already in use" error from bind */
Setsockopt (listenfd, SOL SOCKET, SO REUSEADDR,
(const void *) &optval , sizeof (int)) ;

/* Bind the descriptor to the address */

if (bind(listenfd, p->ai_addr, p->ai addrlen) == 0)
break; /* Success */

Close(listenfd); /* Bind failed, try the next */

} csapp.c

Note: a production-grade server would make listening sockets for
all the addresses returned by getaddrin+fo.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Carnegie Mellon

Sockets Helper: open listenfd (cont)

/* Clean up */

Freeaddrinfo (listp) ;

if ('p) /* No address worked */
return -1;

/* Make it a listening socket ready to accept conn. requests */
if (listen(listenfd, LISTENQ) < 0) {

Close(listenfd) ;

return -1;

}

return listenfd;

} csapp.c

m Key point: open clientfd and open listenfdare
both independent of any particular version of IP.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

GET Request to Apache Server
From Firefox Browser

URI is just the suffix, not the entire URL

GET |/~bryant/test.html |HTTP/1.1

Host: www.cs.cmu.edu

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US;
rv:1.9.2.11) Gecko/20101012 Firefox/3.6.11

Accept:

text/html,application/xhtml+xml,6 application/xml;g=0.9,*/*;q=0.8
Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;g=0.7,*;g=0.7

Keep-Alive: 115

Connection: keep-alive

CRLF (\r\n)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

GET Response From Apache Server

HTTP/1.1 200 OK

Date: Fri, 29 Oct 2010 19:48:32 GMT
Server: Apache/2.2.14 (Unix) mod ssl/2.2.14 OpenSSL/0.9.7m
mod pubcookie/3.3.2b PHP/5.3.1
Accept-Ranges: bytes

Content-Length: 479

Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Content-Type: text/html

<html>

<head><title>Some Tests</title></head>

<body>
<hl>Some Tests</hl>
</body>
</html>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Data Transfer Mechanisms

m Standard

= Specify total length with content-length
= Requires that program buffer entire message

m Chunked

" Break into blocks
= Prefix each block with number of bytes (Hex coded)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Chunked Encoding Example

HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n
Server: Apache/1.3.41 (Unix)\n
Keep-Alive: timeout=15, max=100\n
Connection: Keep-Alive\n
Transfer-Encoding: chunked\n
Content-Type: text/html\n

\r\n
/ _ﬂij’ﬂ}i;n First Chunk: 0xd75 = 3445 bytes

.<link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet"
type="text/css">

</head>

<body id="calendar body">

<div id='calendar'><table width='100%' border='0' cellpadding='0"
cellspacing='1l' id='cal'>

</body>
</html>

5r5n
wasam| Second Chunk: 0 bytes (indicates last chunk)
—\T\n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

	Slide 1
	Slide 2: Network Programming: Part II 18-213/18-613: Introduction to Computer Systems 21st Lecture, November 14, 2024
	Slide 3: Today
	Slide 4: Review: Sockets
	Slide 5: Review: Anatomy of a Connection
	Slide 6: Review: Using Ports to Identify Services
	Slide 7: Review: Echo Server + Client Structure
	Slide 8: Sockets Interface
	Slide 9: Review: Generic Socket Address
	Slide 10: Review: Socket Address Structures
	Slide 11: Review: getaddrinfo
	Slide 12: Sockets Interface
	Slide 13: Sockets Interface: socket
	Slide 14: Sockets Interface
	Slide 15: Sockets Interface: bind
	Slide 16: Sockets Interface
	Slide 17: Sockets Interface: listen
	Slide 18: Sockets Interface
	Slide 19: Sockets Interface: accept
	Slide 20: Sockets Interface
	Slide 21: Sockets Interface: connect
	Slide 22: connect/accept Illustrated
	Slide 23: Connected vs. Listening Descriptors
	Slide 24: Sockets Interface
	Slide 25: Sockets Interface
	Slide 26
	Slide 27: Testing Servers Using telnet
	Slide 28: Testing the Echo Server With telnet
	Slide 29: Today
	Slide 30: Web Server Basics
	Slide 31: Web Content
	Slide 32: Static and Dynamic Content
	Slide 33: URLs and how clients and servers use them
	Slide 34: HTTP Requests
	Slide 35: HTTP Responses
	Slide 36: Many more HTTP response codes
	Slide 37: Example HTTP Transaction
	Slide 38: Example HTTP Transaction, Take 2
	Slide 39: Example HTTP(S) Transaction, Take 3
	Slide 40: Today
	Slide 41: Tiny Web Server
	Slide 42: Tiny Operation
	Slide 43: Tiny Serving Static Content
	Slide 44: Today
	Slide 45: Serving Dynamic Content
	Slide 46: Serving Dynamic Content (cont)
	Slide 47: Serving Dynamic Content (cont)
	Slide 48: Issues in Serving Dynamic Content
	Slide 49: CGI
	Slide 50: The add.com Experience
	Slide 51: Serving Dynamic Content With GET
	Slide 52: Serving Dynamic Content With GET
	Slide 53: Serving Dynamic Content With GET
	Slide 54: Serving Dynamic Content with GET
	Slide 55: Serving Dynamic Content with GET
	Slide 56: Serving Dynamic Content With GET
	Slide 57: Today
	Slide 58: Proxies
	Slide 59: Why Proxies?
	Slide 60: For More Information
	Slide 61: Additional slides
	Slide 62: Web History
	Slide 63: Web History (cont)
	Slide 64: HTTP Versions
	Slide 65: Sockets Helper: open_clientfd
	Slide 66: Sockets Helper: open_clientfd (cont)
	Slide 67: Sockets Helper: open_listenfd
	Slide 68: Sockets Helper: open_listenfd (cont)
	Slide 69: Sockets Helper: open_listenfd (cont)
	Slide 70: GET Request to Apache Server From Firefox Browser
	Slide 71: GET Response From Apache Server
	Slide 72: Data Transfer Mechanisms
	Slide 73: Chunked Encoding Example

