
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design and Debugging

18-213/613: Introduction to Computer Systems
15th Lecture, October 22, 2024

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bugs: You are in good company!

It has been just so in all of my
inventions. The first step is an
intuition, and comes with a burst,
then difficulties arise—this thing
gives out and [it is] then that
"Bugs"—as such little faults and
difficulties are called—show
themselves and months of intense
watching, study and labor are
requisite before commercial success
or failure is certainly reached.

 -- Thomas Edison

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bugs: You are in good company!

Source: https://education.nationalgeographic.org/resource/worlds-first-computer-bug/

RADM Grace Hopper, PhD

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

High Level View

ProgramInput
(Expected)
Output

Program
With Bug

Input
! Output
e.g.,
Error, Crash,
Wrong answer,
No response,

Program Step1 Step2 Step3

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What is debugging?

Program
With Bug

! Output
e.g.,
Error, Crash,
Wrong answer,
No response,

Step2

+ Given as
Input

Produce the
Location, source of
Defect and
A potential fix!

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging

 Art and science of fixing bugs in software engineering
systems

 Where is the bug?

 When does it occur? What triggers it?

 How can we repair it?

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defects, Propagation, & Failures

Defect

Failure

Fault Propagation

https://www.debuggingbook.org/html/Intro_Debugging.html

Fault

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Caveat: Curse of Debugging

Testing can only show the presence of errors – not their
absence. (Dijkstra 1972)

 Not every defect causes a visible/observable failure!

 Fortunately, most failures can be traced back to the
defect that causes it!

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging is hard, make no mistake!

 Program “states” are large

 Executions can have multiple steps

 Defects/errors could be subtle

 Defects/errors only triggered for some edge inputs!

 Other factors: concurrency, randomization, distributed
state, …

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How do you make progress if its hard?

 Scientific hypothesis testing
▪ Meta: Problem solving strategies to generate hypothesis/leads

▪ Tools to prune search space and collect data

 “Rubberducking”

 ..

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Process for Hypothesis Testing

Problem Report
Code
Example traces

Hypothesis

Prediction

Experiment

Observation

If Evidence Concurs

 Fix or
 Refine Hypothesis!

Else
 Seek alternative
 Collect more runs
 Check expt for error

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Meta : Art of Problem Solving

Understand

Make a Plan

Execute the Plan

Look back on your work

Can you restate the problem in your

own words?

•Can you think of a picture or a

diagram that might help you

understand the problem?

•Is there enough information to enable

you to find a solution?

Guess and check

Consider special cases

Solve a simpler problem

Divide and conquer

…

Grit/Persevere ☺

Did you solve all edge cases/

Was there a better fix?

Was there a quicker bug finding?

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Meta: Good practices

 “Visualize” the problem/Whiteboard/Ipad

 Keep a log!

 Explain the problem to someone else.

Even more important is that you are explaining the
problem to yourself

“Sometimes it takes no more than a few sentences, followed
by an embarrassed "Never mind. I see what's wrong. Sorry to
bother you.” [Kernighan 1999]

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Occam’s Razor

“The simplest explanation is often the best one.”

Before diving in too deeply, take a step back, take a breadth:

 What are the symptoms?

 Under what circumstance(s) do they occur?
▪ Is the situation completely within the design envelop?

 What code is responsible for this/these circumstance(s)?
▪ Look there first.

 Look for more distant explanations only after verifying that the
invariants are met and that that the bug isn’t local to the code
exhibiting it or the most likely places for things to have become
tainted.

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Walkthrough: Code with a Bug

int fib(int n)

{

 int f, f0 = 1, f1 = 1;

 while (n > 1) {

 n = n - 1;

 f = f0 + f1;

 f0 = f1;

 f1 = f;

 }

 return f;

}

int main(..) {

..

 for (i = 9; i > 0; i--)

 printf(“fib(%d)=%d\n”,

 i, fib(i));

$ gcc -o fib fib.c

fib(9)=55

fib(8)=34

...

fib(2)=2

fib(1)=134513905

A defect has caused a failure.

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
17

Hypothesis1

Prediction

Experiment

Observation

Hypothesis2

Prediction

Experiment

Observation

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Tools

 Observing program state can require a variety of tools
▪ Debugger (e.g., gdb)

▪ What state is in local / global variables (if known)

▪ What path through the program was taken

▪ Valgrind

▪ Does execution depend on uninitialized variables

▪ Are memory accesses ever out-of-bounds

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fix and Confirm

 Confirm that the fix resolves the failure

 If you fix multiple perceived defects, which fix was for the
failure?
▪ Be systematic

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Learn

 Common failures and insights
▪ Why did the code fail?

▪ What are my common defects?

 Assertions and invariants
▪ Add checks for expected behavior

▪ Extend checks to detect the fixed failure

 Testing
▪ Every successful set of conditions is added to the test suite

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common bugs (not comprehensive)

 Use of uninitialized variables

 Unused values

 Unreachable code

 Duplicated code

 Bloated functions/methods

 Memory leaks

 Interface misuse

 Null pointers

Common ways in which code is likely to have bugs,
either already or in the future

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Caches (review of previous lecture)
▪ Using blocking to improve temporal locality

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design
▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design

 A good design needs to achieve many things:
▪ Performance

▪ Availability

▪ Modifiability, portability

▪ Scalability

▪ Security

▪ Testability

▪ Usability

▪ Cost to build, cost to operate

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design

 A good design needs to achieve many things:
▪ Performance

▪ Availability

▪ Modifiability, portability

▪ Scalability

▪ Security

▪ Testability

▪ Usability

▪ Cost to build, cost to operate

But above all else: it must be readable

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design

Good Design does:

 Complexity Management &

 Communication

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Management

Many techniques have been developed to help manage
complexity:

 Separation of concerns

 Modularity

 Reusability

 Extensibility

 Abstraction

 Information Hiding

 ...

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Management: Step 0

 Make a plan!

 Break down the complex problem into simpler chunks

 Visualize or whiteboard the system “architecture” and key
“functions” before writing any code!

 Write example test cases/traces even before coding!

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Managing Complexity

 Given the many ways to manage complexity
▪ Design code to be testable

▪ Try to reuse testable chunks

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Example

 Split a cache access into three+ testable components
▪ State all of the steps that a cache access requires

 Convert address into tag, set index, block offset

 Look up the set using the set index

 Check if the tag matches any line in the set

 If so, hit

 If not a match, miss, then

 Find the LRU block

 Evict the LRU block

 Read in the new line from memory

 Update LRU

 Update dirty if the access was a store

▪ Which steps depend on the operation being a load or a store?

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Example

 Split a cache access into three+ testable components
▪ State all of the steps that a cache access requires

 Convert address into tag, set index, block offset

 Look up the set using the set index

 Check if the tag matches any line in the set

 If so, hit

 If not a match, miss, then

 Find the LRU block

 Evict the LRU block

 Read in the new line from memory

 Update LRU

 Update dirty if the access was a store

▪ Which steps depend on the operation being a load or a store?

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Designs need to be testable

 Testable design
▪ Testing versus Contracts*

▪ These are complementary techniques

 Testing and Contracts are
▪ Acts of design more than verification

▪ Acts of documentation: executable documentation!

* A contract specifies in a precise and checkable way interfaces for software
 components: preconditions, postconditions, and object invariants.

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Example

 For your cache simulator, you can write your own traces
▪ Write a trace to test for a cache hit

 L 50, 1
 L 50, 1

▪ Write a trace to test dirty bytes in cache

 S 100, 1

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testable design is modular

 Modular code has: separation of concerns, encapsulation,
abstraction
▪ Leads to: reusability, extensibility, readability, testability

 Separation of concerns
▪ Create helper functions so each function does “one thing”

▪ Functions should neither do too much nor too little

▪ Avoid duplicated code

 Encapsulation, abstraction, and respecting the interface
▪ Each module is responsible for its own internals

▪ No outside code “intrudes” on the inner workings of another module

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trust the Compiler!

 Use plenty of temporary variables

 Use plenty of functions

 Let compiler do the math

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Communication

When writing code, the author is communicating with:

 The machine

 Other developers of the system

 Code reviewers

 Their future self

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Communication

There are many techniques that have been developed
around code communication:

 Tests

 Naming

 Comments

 Commit Messages

 Code Review

 Design Patterns

 ...

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoid deliberately meaningless names:

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming is understanding

“If you don’t know what a thing should be
called, you cannot know what it is.

If you don’t know what it is, you cannot sit
down and write the code.”
 - Sam Gardiner

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Better naming practices

1. Start with meaning and intention

2. Use words with precise meanings (avoid “data”, “info”,
“perform”)

3. Prefer fewer words in names

4. Avoid abbreviations in names

5. Use code review to improve names

6. Read the code out loud to check that it sounds okay

7. Actually rename things

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming guidelines – Use dictionary words

 Only use dictionary words and abbreviations that appear
in a dictionary.
▪ For example: FileCpy -> FileCopy

▪ Avoid vague abbreviations such as acc, mod, auth, etc..

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoid using single-letter names

 Single letters are unsearchable
▪ Give no hints as to the variable’s usage

 Exceptions are loop counters
▪ Especially if you know why i, j, etc were originally used

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limit name character length

“Good naming limits individual name length, and reduces
the need for specialized vocabulary” – Philip Relf

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limit name word count

 Keep names to a four word maximum

 Limit names to the number of words that people can read
at a glance.

 Which of each pair do you prefer?
a1) arraysOfSetsOfLinesOfBlocks

a2) cache

b1) evictedData

b2) evictedDataBytes

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Describe Meaning

 Use descriptive names.

 Avoid names with no meaning: a, foo, blah, tmp, etc

 There are reasonable exceptions:
void swap(int* a, int* b) {

 int tmp = *a;

 *a = *b;

 *b = tmp;

}

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use a large vocabulary

 Be more specific when possible:
▪ Person -> Employee

 What is size in this binaryTree?

struct binaryTree {

 int size;

 …

};
height

numChildren

subTreeNumNodes

keyLength

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use problem domain terms

 Use the correct term in the problem domain’s language.
▪ Hint: as a student, consider the terms in the assignment

 In cachelab, consider the following:

line

element

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use opposites precisely

 Consistently use opposites in standard pairs
▪ first/end -> first/last

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Comments

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Don’t Comments

▪ Don’t say what the code does
▪ because the code already says that

▪ Don’t explain awkward logic
▪ improve the code to make it clear

▪ Don’t add too many comments
▪ it’s messy, and they get out of date

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Awkward Code

 Imagine someone (TA, employer, etc) has to read your
code
▪ Would you rather rewrite or comment the following?

▪ How about?

▪ Both lines update program state in the same way.

(*(void **)((*(void **)(bp)) + DSIZE)) = (*(void **)(bp + DSIZE));

bp->prev->next = bp->next;

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Do Comments

 Answer the question: why the code exists

 When should I use this code?

 When shouldn’t I use it?

 What are the alternatives to this code?

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why does this exist?

 Explain why a magic number is what it is.

 When should this code be used? Is there an alternative?

// Each address is 64-bit, which is 16 + 1 hex characters

const int MAX_ADDRESS_LENGTH = 17;

unsigned power2(unsigned base, unsigned expo){

 unsigned i;

 unsigned result = 1;

 for(i=0;i<expo;i++){

 result+=result;

 }

 return result;

}

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How to write good comments

1. Write short comments of what the code will do.
1. Single line comments

2. Example: Write four one-line comments for quick sort

// Initialize locals

// Pick a pivot value

// Reorder array around the pivot

// Recurse

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How to write good comments

1. Write short comments of what the code will do.
1. Single line comments

2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code
1. If the code or comments are awkward or complex

2. Join / Split comments as needed

4. Maintain code and comments

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Commit Messages

 Committing code to a source repository is a vital part of
development
▪ Protects against system failures and typos:

▪ cat foo.c versus cat > foo.c

▪ The commit messages are your record of your work

▪ Communicating to your future self

▪ Describe in one line what you did

“Parses command line arguments”

“fix bug in unique tests, race condition not solved”

“seg list finished, performance is …”

 Use branches

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Programs have defects
▪ Be systematic about finding them

 Programs are more complex than humans can manage
▪ Write code to be manageable

 Programming is not solitary, even if you are
communicating with a grader or a future self
▪ Be understandable in your communication

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Acknowledgements

 https://www.debuggingbook.org/

 Some debugging content derived from:
▪ http://www.whyprogramsfail.com/slides.php

 Some code examples for design are based on:
▪ “The Art of Readable Code”. Boswell and Foucher. 2011.

 Lecture originally written by
▪ Michael Hilton and Brian Railing

http://www.whyprogramsfail.com/slides.php

	Slide 1
	Slide 2: Design and Debugging 18-213/613: Introduction to Computer Systems 15th Lecture, October 22, 2024
	Slide 3: Bugs: You are in good company!
	Slide 4: Bugs: You are in good company!
	Slide 5: High Level View
	Slide 6: What is debugging?
	Slide 7: Debugging
	Slide 8: Defects, Propagation, & Failures
	Slide 9: Caveat: Curse of Debugging
	Slide 10: Debugging is hard, make no mistake!
	Slide 11: How do you make progress if its hard?
	Slide 12: Scientific Process for Hypothesis Testing
	Slide 13: Meta : Art of Problem Solving
	Slide 14: Meta: Good practices
	Slide 15: Occam’s Razor
	Slide 16: Walkthrough: Code with a Bug
	Slide 17
	Slide 20: Debugging Tools
	Slide 22: Fix and Confirm
	Slide 23: Learn
	Slide 25: Common bugs (not comprehensive)
	Slide 26: Outline
	Slide 27: Design
	Slide 28: Design
	Slide 29: Design
	Slide 32: Complexity Management
	Slide 33: Complexity Management: Step 0
	Slide 34: Managing Complexity
	Slide 35: Complexity Example
	Slide 36: Complexity Example
	Slide 37: Designs need to be testable
	Slide 38: Testing Example
	Slide 39: Testable design is modular
	Slide 40: Trust the Compiler!
	Slide 41: Communication
	Slide 42: Communication
	Slide 43
	Slide 44: Avoid deliberately meaningless names:
	Slide 45: Naming is understanding
	Slide 46: Better naming practices
	Slide 47: Naming guidelines – Use dictionary words
	Slide 48: Avoid using single-letter names
	Slide 49: Limit name character length
	Slide 50: Limit name word count
	Slide 51: Describe Meaning
	Slide 52: Use a large vocabulary
	Slide 53: Use problem domain terms
	Slide 54: Use opposites precisely
	Slide 55
	Slide 56: Don’t Comments
	Slide 57: Awkward Code
	Slide 58: Do Comments
	Slide 59: Why does this exist?
	Slide 60: How to write good comments
	Slide 61: How to write good comments
	Slide 62: Commit Messages
	Slide 63: Summary
	Slide 64: Acknowledgements

