Carnegie Mellon

T ——

5213
sesaeit dainsine

<« AN g i taniai

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Design and Debugging

18-213/613: Introduction to Computer Systems
15t Lecture, October 22, 2024

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Bugs: You are in good company!

It has been just so in all of my
inventions. The first step is an
intuition, and comes with a burst,
then difficulties arise—this thing
gives out and [it is] then that
"Bugs"—as such little faults and
difficulties are called—show
themselves and months of intense
watching, study and labor are
requisite before commercial success
or failure is certainly reached.

-- Thomas Edison

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bugs: You are in good company!

9/4

D& Oakom >w / {/.},7‘,9 9.037 37 015

/000 ‘ :w = aoolaw\ 4 9.037 §YC 795 cavuh
13w, (032 HMP -me éﬁ%ﬁ‘%’éﬁ:—ﬂ) 76157250559

03y PRO > 2. 130yq26YyiS

= Cans b 21306705 .
r‘:\‘ S G- =~ 033 /auu _pr;wl ST_.)J M '
{m < - o 4t -

q b VL’- {
1/9°¢ _)J,'&r”fcul Co;ine T:o.ech(S;v\g c.‘\cgk)
: sowte Llult s Adde: Test

Reloy®70 @une| F
Uho'ﬁ\).\ n (2 \qU\ .

1S4y

HE5e Guampd shadsd. °‘f. l"“1 L““} {"““1- RADM Grace Hopper, PhD
1o cLadd § g .

Source: https://education.nationalgeographic.org/resource/worlds-first-computer-bug/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

High Level View

(Expected)
Output

Input Program

.%(c | Output
Input Program eE

With Bug Wrong answer,

No response,

Program Stepl —— | Step

T

Step3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

What is debugging?

x
R I Output
Program eg.,
Given as

1 E ’ C h}
Input Wlth Bug + rror, Cras

Wrong answer,
No response,

o«
Produce the
Ste pZ Location, source of

Defect and
A potential fix!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Debugging

m Art and science of fixing bugs in seftware engineering
systems

m Where is the bug?
m When does it occur? What triggers it?

m How can we repair it?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Defects, Propagation, & Failures

Input ¢
Defect
varil
Step 1
Input ¢ ————p» .
P vare Fault Propagation
vars3
varil varl
Step 1 Step2 X

Input v ———— varza ———» var2X | Fault

o
var3 M var3

Failure
vari varl vari
Input ¢ % var2 &ijh var2 X % var2 X
var3 H var3 var3
vari vari varl

Input ¢ % varz % varz X M varz X —» Output X
var3 H var3 var3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition https://www.debuggingbook.org/html/Intro_Debugging.html 8

Caveat: Curse of Debugging

Testing can only show the presence of errors — not their
absence. (Dijkstra 1972)

m Not every defect causes a visible/observable failure!

m Fortunately, most failures can be traced back to the
defect that causes it!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Debugging is hard, make no mistake!

m Program “states” are large

m Executions can have multiple steps

m Defects/errors could be subtle

m Defects/errors only triggered for some edge inputs!

m Other factors: concurrency, randomization, distributed
state, ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

How do you make progress if its hard?

m Scientific hypothesis testing

= Meta: Problem solving strategies to generate hypothesis/leads
® Tools to prune search space and collect data

m “Rubberducking”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Scientific Process for Hypothesis Testing

Problem Report

Code Hypothesis
Example traces

If Evidence Concurs

Prediction Fix or
Refine Hypothesis!
Else
. k al i

Experlment Seek alternative
Collect more runs
Check expt for error

Observation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Meta : Art of Problem Solving

Can you restate the problem in your

own words? | Understand

«Can you think of a picture or a

diagram that might help you

understand the problem?

*Is there enough information to enable

you to find a solution?
Guess and check
Consider special cases

Make a Plan Solve a simpler problem BY G. POLYA

Divide and conquer

Grit/Persevere © Execute the Plan

Look back on your work Did you solve all edge cases/
Was there a better fix?

Was there a quicker bug finding?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Meta: Good practices

m “Visualize” the problem/Whiteboard/Ipad

m Keep alog!

= Explain the problem to someone else.

Even more important is that you are explaining the
problem to yourself

“Sometimes it takes no more than a few sentences, followed
by an embarrassed "Never mind. | see what's wrong. Sorry to
bother you.” [Kernighan 1999]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Occam’s Razor

“The simplest explanation is often the best one.”

Before diving in too deeply, take a step back, take a breadth:
m What are the symptoms?

m Under what circumstance(s) do they occur?
" |s the situation completely within the design envelop?

m What code is responsible for this/these circumstance(s)?

= Look there first.

m Look for more distant explanations only after verifying that the
invariants are met and that that the bug isn’t local to the code
exhibiting it or the most likely places for things to have become
tainted.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Walkthrough: Code with a Bug

int fib(int n) $ gcc -o fib fib.c
{ £fib (9) =55
int £, f0 =1, £f1 = 1; fib (8) =34

while (n > 1) {

n=n-1;

£ib (2) =2

f = £0 + £1; _
£0 = f£1: fib(1)=134513905
fl = £;

}

return £;

}
A defect has caused a failure.
int main(..) {

for (i = 9; i > 0; i--)

printf (“£ib (%d)=%d\n",
i, £ib(i));

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Hypothesisl Hypothesis2
Prediction Prediction
Experiment Experiment
Observation Observation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4 77

Carnegie Mellon

Debugging Tools

m Observing program state can require a variety of tools
= Debugger (e.g., gdb)
= What state is in local / global variables (if known)
= What path through the program was taken

= Valgrind
= Does execution depend on uninitialized variables
= Are memory accesses ever out-of-bounds

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Fix and Confirm

m Confirm that the fix resolves the failure

m If you fix multiple perceived defects, which fix was for the
failure?
" Be systematic

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Learn

m Common failures and insights
= Why did the code fail?
= What are my common defects?

m Assertions and invariants

= Add checks for expected behavior
= Extend checks to detect the fixed failure

m Testing

= Every successful set of conditions is added to the test suite

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Common bugs (not comprehensive)

Common ways in which code is likely to have bugs,
either already or in the future

Use of uninitialized variables
Unused values

Unreachable code
Duplicated code

Bloated functions/methods
Memory leaks

Interface misuse

Null pointers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Outline

m Caches (review of previous lecture)
= Using blocking to improve temporal locality

m Debugging
= Defects and Failures
= Scientific Debugging
= Tools

m Design
= Managing complexity
= Communication
= Naming
= Comments

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Design

m A good design needs to achieve many things:
= Performance
= Availability
= Modifiability, portability
= Scalability
= Security
= Testability
= Usability
= Cost to build, cost to operate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Design

m A good design needs to achieve many things:
= Performance
= Availability
= Modifiability, portability
= Scalability
= Security
= Testability
= Usability
= Cost to build, cost to operate

But above all else: it must be readable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Design

Good Design does:
Complexity Management &
Communication

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Complexity Management

Many techniques have been developed to help manage
complexity:

Separation of concerns
Modularity

Reusability
Extensibility
Abstraction
Information Hiding

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Complexity Management: Step 0

m Make a plan!
m Break down the complex problem into simpler chunks

m Visualize or whiteboard the system “architecture” and key
“functions” before writing any code!

m Write example test cases/traces even before coding!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Managing Complexity
m Given the many ways to manage complexity

= Design code to be testable
= Try to reuse testable chunks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Complexity Example

m Split a cache access into three+ testable components
= State all of the steps that a cache access requires

= Which steps depend on the operation being a load or a store?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Complexity Example

m Split a cache access into three+ testable components
= State all of the steps that a cache access requires
Convert address into tag, set index, block offset
Look up the set using the set index
Check if the tag matches any line in the set
If so, hit
If not a match, miss, then
Find the LRU block
Evict the LRU block
Read in the new line from memory
Update LRU
Update dirty if the access was a store

= Which steps depend on the operation being a load or a store?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Designs need to be testable

m Testable design
= Testing versus Contracts™
" These are complementary techniques

m Testing and Contracts are
= Acts of design more than verification
= Acts of documentation: executable documentation!

* A contract specifies in a precise and checkable way interfaces for software
components: preconditions, postconditions, and object invariants.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Testing Example

m For your cache simulator, you can write your own traces

= \Write a trace to test for a cache hit

L 50,1
L 50,1

= Write a trace to test dirty bytes in cache
S$100, 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Testable design is modular

m Modular code has: separation of concerns, encapsulation,
abstraction
= |Leads to: reusability, extensibility, readability, testability

m Separation of concerns
= Create helper functions so each function does “one thing”
® Functions should neither do too much nor too little
= Avoid duplicated code

m Encapsulation, abstraction, and respecting the interface
= Each module is responsible for its own internals
" No outside code “intrudes” on the inner workings of another module

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Trust the Compiler!

m Use plenty of temporary variables
m Use plenty of functions
m Let compiler do the math

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Communication

When writing code, the author is communicating with:
m The machine

m Other developers of the system
m Code reviewers
m Their future self

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Communication

There are many techniques that have been developed
around code communication:

Tests

Naming
Comments
Commit Messages
Code Review
Design Patterns

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Naming

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mello

Avoid deliberately meaningless names:

Pull requests Issues Marketplace Explore

Repositories Showing 8,937,025 available code results ® S
| Code +

alexef/gobject-introspection
Commits B

tests/scanner/foo.h
Issues #ifndef _ FOO_OBJECT_H__

#define _ FOO_OBJECT_H__

Packages

#include <glib-object.h>
Marketplace

#include <giofgio.h> /* GAsyncReadyCallback */

#include "utility.h"

80.-.008606¢@6

Topics
Wiki #define FOO_SUCCESS_INT @x1135
WWIKIS
U #define FOO_DEFIME_SHOULD_BE_EXPOSED "should be exposed”
5ers
@ C Showing the top three matches Last indexed on Jun 25, 2018
Languages
PHP 26,699 388 alexef/gobject-introspection
' tests/scanner/foo.c
JavaScript 8,042 989
¢ #include "girepository.h”
Python 7,892 881
HTML 43228224 /* A hidden type not exposed publicly, similar to GUPNP's XML wrapper
' ' object *
C++ 4,093,394 typedef struct _FooHidden FooHidden;
Ruby 4,021,592
int foo_init_argv (int argc, char **argv);
Java 2891173
T 2 612 262 @ C Showing the top four matches Last indexed on Jun 25, 2018
ext Ale,
XML 2,599 845
Bryant an: 44

Carnegie Mellon

Naming is understanding

“If you don’t know what a thing should be
called, you cannot know what it is.

If you don’t know what it is, you cannot sit

down and write the code.”
- Sam Gardiner

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Better naming practices

Start with meaning and intention

Use words with precise meanings (avoid “data”, “info”,
“perform”)

Prefer fewer words in names

Avoid abbreviations in names

Use code review to improve names

Read the code out loud to check that it sounds okay

N o U AW

Actually rename things

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Naming guidelines — Use dictionary words

m Only use dictionary words and abbreviations that appear
in a dictionary.
= For example: FileCpy -> FileCopy
= Avoid vague abbreviations such as acc, mod, auth, etc..

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Avoid using single-letter names

m Single letters are unsearchable
= Give no hints as to the variable’s usage

m Exceptions are loop counters
= Especially if you know why i, j, etc were originally used

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Limit name character length

“Good naming limits individual name length, and reduces
the need for specialized vocabulary” — Philip Relf

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Limit name word count

m Keep names to a four word maximum

m Limit names to the number of words that people can read
at a glance.

m Which of each pair do you prefer?
al) arraysOfSetsOflLinesOfBlocks

a’2) cache

bl) evictedData

b2) evictedDataBytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Describe Meaning

m Use descriptive names.

m Avoid names with no meaning: a, foo, blah, tmp, etc

m There are reasonable exceptions:
void swap (int* a, int* b) {

int tmp = *a;
*a — *b;
*b = tmp;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Use a large vocabulary

m Be more specific when possible:
= Person -> Employee

m What is size in this binaryTree?
struct binaryTree {
int size;
height
numChildren

subTreeNumNodes
keyLength

b

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Use problem domain terms

m Use the correct term in the problem domain’s language.
" Hint: as a student, consider the terms in the assignment

m In cachelab, consider the following:

line

element

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Use opposites precisely

m Consistently use opposites in standard pairs
= first/end -> first/last

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Comments

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Don’t Comments

= Don’t say what the code does
= because the code already says that

= Don’t explain awkward logic
= improve the code to make it clear

= Don’t add too many comments

= jt’s messy, and they get out of date

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Awkward Code

m Imagine someone (TA, employer, etc) has to read your
code
" Would you rather rewrite or comment the following?

(*(void **) ((*(void **) (bp)) + DSIZE)) = (*(void **) (bp + DSIZE));

= How about?
bp->prev->next = bp->next;

= Both lines update program state in the same way.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Do Comments

m Answer the question: why the code exists

m When should | use this code?
m When shouldn’t | use it?

m What are the alternatives to this code?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Why does this exist?

m Explain why a magic number is what it is.

// Each address is 64-bit, which is 16 + 1 hex characters
const int MAX ADDRESS LENGTH = 17;

m When should this code be used? Is there an alternative?

unsigned power?2 (unsigned base, unsigned expo) {
unsigned 1i;

unsigned result = 1;
for (1=0; i<expo;i++) {
result+=result;

}

return result;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

How to write good comments

1. Write short comments of what the code will do.

1. Single line comments
2. Example: Write four one-line comments for quick sort

// Initialize locals
// Pick a pivot wvalue
// Reorder array around the pivot

// Recurse

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

How to write good comments

1. Write short comments of what the code will do.
1. Single line comments
2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code
1. If the code or comments are awkward or complex
2. Join / Split comments as needed

4. Maintain code and comments

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

Commit Messages

m Committing code to a source repository is a vital part of
development
® Protects against system failures and typos:
= cat foo.c versus cat > foo.c
" The commit messages are your record of your work
= Communicating to your future self
= Describe in one line what you did
“Parses command line arguments”
“fix bug in unique tests, race condition not solved”
“seg list finished, performance is ...”

m Use branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Summary

m Programs have defects
= Be systematic about finding them

m Programs are more complex than humans can manage
= Write code to be manageable

m Programming is not solitary, even if you are
communicating with a grader or a future self

= Be understandable in your communication

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

Acknowledgements

m https://www.debuggingbook.org/

m Some debugging content derived from:
= http://www.whyprogramsfail.com/slides.php

m Some code examples for design are based on:
= “The Art of Readable Code”. Boswell and Foucher. 2011.

m Lecture originally written by
= Michael Hilton and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

http://www.whyprogramsfail.com/slides.php

	Slide 1
	Slide 2: Design and Debugging 18-213/613: Introduction to Computer Systems 15th Lecture, October 22, 2024
	Slide 3: Bugs: You are in good company!
	Slide 4: Bugs: You are in good company!
	Slide 5: High Level View
	Slide 6: What is debugging?
	Slide 7: Debugging
	Slide 8: Defects, Propagation, & Failures
	Slide 9: Caveat: Curse of Debugging
	Slide 10: Debugging is hard, make no mistake!
	Slide 11: How do you make progress if its hard?
	Slide 12: Scientific Process for Hypothesis Testing
	Slide 13: Meta : Art of Problem Solving
	Slide 14: Meta: Good practices
	Slide 15: Occam’s Razor
	Slide 16: Walkthrough: Code with a Bug
	Slide 17
	Slide 20: Debugging Tools
	Slide 22: Fix and Confirm
	Slide 23: Learn
	Slide 25: Common bugs (not comprehensive)
	Slide 26: Outline
	Slide 27: Design
	Slide 28: Design
	Slide 29: Design
	Slide 32: Complexity Management
	Slide 33: Complexity Management: Step 0
	Slide 34: Managing Complexity
	Slide 35: Complexity Example
	Slide 36: Complexity Example
	Slide 37: Designs need to be testable
	Slide 38: Testing Example
	Slide 39: Testable design is modular
	Slide 40: Trust the Compiler!
	Slide 41: Communication
	Slide 42: Communication
	Slide 43
	Slide 44: Avoid deliberately meaningless names:
	Slide 45: Naming is understanding
	Slide 46: Better naming practices
	Slide 47: Naming guidelines – Use dictionary words
	Slide 48: Avoid using single-letter names
	Slide 49: Limit name character length
	Slide 50: Limit name word count
	Slide 51: Describe Meaning
	Slide 52: Use a large vocabulary
	Slide 53: Use problem domain terms
	Slide 54: Use opposites precisely
	Slide 55
	Slide 56: Don’t Comments
	Slide 57: Awkward Code
	Slide 58: Do Comments
	Slide 59: Why does this exist?
	Slide 60: How to write good comments
	Slide 61: How to write good comments
	Slide 62: Commit Messages
	Slide 63: Summary
	Slide 64: Acknowledgements

