
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Basic Concepts

18-213/18-613: Introduction to Computer Systems
13th Lecture, October 8th, 2024

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding this Error

 What causes this error? Why does it matter?

$./mm-corrupt

*** Error in `./mm-corrupt': free(): invalid next size (fast):

0x0000000000ffe010 ***

======= Backtrace: =========

/lib/x86_64-linux-gnu/libc.so.6(+0x777f5)[0x7f043efe67f5]

/lib/x86_64-linux-gnu/libc.so.6(+0x8038a)[0x7f043efef38a]

/lib/x86_64-linux-gnu/libc.so.6(cfree+0x4c)[0x7f043eff358c]

./mm-corrupt[0x400795]

/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0)[0x7f043ef8f840]

./mm-corrupt[0x400629]

======= Memory map: ========

...

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Basic concepts CSAPP 9.9.1 - 9.9.5

 Implicit free lists CSAPP 9.9.6 - 9.9.12

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation

 Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at run time.
▪ for data structures whose size

is only known at runtime

 Dynamic memory allocators
manage an area of process
VM known as the heap.

Application

Dynamic Memory Allocator

Heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Run-time heap
(created by malloc)

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation

 Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

 Types of allocators
▪ Explicit allocator: application allocates and frees space

▪ E.g., malloc and free in C

▪ Implicit allocator: application allocates, but does not free space

▪ E.g., new and garbage collection in Java

 Will discuss simple explicit memory allocation today

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

▪ Successful:

▪ Returns a pointer to a memory block of at least size bytes
aligned to a 16-byte boundary (on x86-64)

▪ If size == 0, returns NULL

▪ Unsuccessful: returns NULL (0) and sets errno to ENOMEM

void free(void *p)

▪ Returns the block pointed at by p to pool of available memory

▪ p must come from a previous call to malloc, calloc, or realloc

Other functions

▪ calloc: Version of malloc that initializes allocated block to zero.

▪ realloc: Changes the size of a previously allocated block.

▪ sbrk: Used internally by allocators to grow or shrink the heap

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Example
#include <stdio.h>

#include <stdlib.h>

void foo(long n) {

long i, *p;

/* Allocate a block of n longs */

 p = (long *) malloc(n * sizeof(long));

 if (p == NULL) {

perror("malloc");

exit(0);

}

/* Initialize allocated block */

for (i=0; i<n; i++)

p[i] = i;

/* Do something with p */

. . .

/* Return allocated block to the heap */

 free(p);

}

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sample Implementation

 Code
▪ File mm-reference.c

▪ Manages fixed size heap

▪ Functions mm_malloc, mm_free

 Features
▪ Based on words of 8-bytes each

▪ Pointers returned by malloc are double-word aligned

▪ Double word = 2 words

▪ Compile and run tests with command interpreter

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Visualization Conventions

 Show 8-byte words as squares

 Allocations are double-word aligned.

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocation Example
(Conceptual)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

p4 = malloc(2*SIZ)

#define SIZ sizeof(size_t)

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constraints

 Applications
▪ Can issue arbitrary sequence of malloc and free requests

▪ free request must be to a malloc’d block

 Explicit Allocators
▪ Can’t control number or size of allocated blocks

▪ Must respond immediately to malloc requests

▪ i.e., can’t reorder or buffer requests

▪ Must allocate blocks from free memory

▪ i.e., can only place allocated blocks in free memory

▪ Must align blocks so they satisfy all alignment requirements

▪ 16-byte (x86-64) alignment on 64-bit systems

▪ Can manipulate and modify only free memory

▪ Can’t move the allocated blocks once they are malloc’d

▪ i.e., compaction/defragmention is not allowed. Why not?

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Throughput

 Given some sequence of malloc and free requests:

▪ R0, R1, ..., Rk, ... , Rn-1

 Goals: maximize throughput and peak memory utilization
▪ These goals are often conflicting

 Throughput:
▪ Number of completed requests per unit time

▪ Example:

▪ 5,000 malloc calls and 5,000 free calls in 10 seconds

▪ Throughput is 1,000 operations/second

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Minimize Overhead

 Given some sequence of malloc and free requests:
▪ R0, R1, ..., Rk, ... , Rn-1

 Def: Aggregate payload Pk
▪ malloc(p) results in a block with a payload of p bytes

▪ After request Rk has completed, the aggregate payload Pk is the sum of
currently allocated payloads

 Def: Current heap size Hk

▪ Assume Hk is monotonically nondecreasing

▪ i.e., heap only grows when allocator uses sbrk

 Def: Overhead after k+1 requests

▪ Fraction of heap space NOT used for program data

▪ Ok = Hk / (maxi≤k Pi) – 1.0

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Example

 Benchmark

 syn-array-short
▪ Trace provided with

malloc lab

▪ Allocate & free 10 blocks

▪ a = allocate

▪ f = free

▪ Bias toward allocate at
beginning & free at end

▪ Blocks numbered 0–9

▪ Allocated: Sum of all
allocated amounts

▪ Peak: Max so far of
Allocated

Step Command Delta Allocated Peak
1 a 0 9904 9904 9904 9904
2 a 1 50084 50084 59988 59988
3 a 2 20 20 60008 60008
4 a 3 16784 16784 76792 76792

5 f 3 -16784 60008 76792
6 a 4 840 840 60848 76792
7 a 5 3244 3244 64092 76792
8 f 0 -9904 54188 76792
9 a 6 2012 2012 56200 76792

10 f 2 -20 56180 76792

11 a 7 33856 33856 90036 90036

12 f 1 -50084 39952 90036
13 a 8 136 136 40088 90036
14 f 7 -33856 6232 90036

15 f 6 -2012 4220 90036
16 a 9 20 20 4240 90036

17 f 4 -840 3400 90036
18 f 8 -136 3264 90036
19 f 5 -3244 20 90036
20 f 9 -20 0 90036

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Visualization

▪ Data line shows total allocated data (Pi)

▪ Data Fit line shows peak of total (maxi≤k Pi)

▪ Normalized in X & Y

Step Command Delta Allocated Peak

1 a 0 9904 9904 9904 9904

2 a 1 50084 50084 59988 59988

3 a 2 20 20 60008 60008

4 a 3 16784 16784 76792 76792

5 f 3 -16784 60008 76792

6 a 4 840 840 60848 76792

7 a 5 3244 3244 64092 76792

8 f 0 -9904 54188 76792

9 a 6 2012 2012 56200 76792

10 f 2 -20 56180 76792

11 a 7 33856 33856 90036 90036

12 f 1 -50084 39952 90036

13 a 8 136 136 40088 90036

14 f 7 -33856 6232 90036

15 f 6 -2012 4220 90036

16 a 9 20 20 4240 90036

17 f 4 -840 3400 90036

18 f 8 -136 3264 90036

19 f 5 -3244 20 90036

20 f 9 -20 0 90036

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 M
e

m
o

ry
 U

se
d

Normalized Operation Number

Data Data Fit

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Full Benchmark Behavior

 Given sequence of mallocs & frees (40,000 blocks)
▪ Starts with all mallocs, and shifts toward all frees

 Manage space for all allocated blocks

 Metrics
▪ Data: Pi

▪ Data fit: maxi≤k Pi

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Data Fit

Data

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fragmentation

 Poor memory utilization caused by fragmentation
▪ internal fragmentation

▪ external fragmentation

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is
smaller than block size

 Caused by

▪ Overhead of maintaining heap data structures

▪ Padding for alignment purposes

▪ Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

 Depends only on the pattern of previous requests

▪ Thus, easy to measure

Payload
Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internal Fragmentation Effect

 Perfect Fit: Only requires space for allocated data, data
structures, and unused space due to alignment
constraints
▪ For this benchmark, 1.5% overhead

▪ Cannot achieve in practice

▪ Especially since cannot move allocated blocks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Perfect Fit

Data Fit

Data

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

External Fragmentation

 Occurs when there is enough aggregate heap memory,
but no single free block is large enough

 Amount of external fragmentation
depends on the pattern of future requests
▪ Thus, difficult to measure

p4 = malloc(7*SIZ) Yikes! (what would happen now?)

#define SIZ sizeof(size_t)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

External Fragmentation Effect

 Best Fit: One allocation strategy
▪ (To be discussed later)

▪ Total overhead = 8.3% on this benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Best Fit

Perfect Fit

Data Fit

Data

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation Issues

 How do we know how much memory to free given just a
pointer?

 How do we keep track of the free blocks?

 What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

 How do we pick a block to use for allocation -- many
might fit?

 How do we reuse a block that has been freed?

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Knowing How Much to Free
 Standard method

▪ Keep the length (in bytes) of a block in the word preceding the
block.

▪ Including the header

▪ This word is often called the header field or header

▪ Requires an extra word for every allocated block

p0 = malloc(4*SIZ)

p0

free(p0)

block size Payload
(aligned)

48

Padding
(for alignment)

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Basic concepts

 Implicit free lists

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Method 1: Implicit Free List

 For each block we need both size and allocation status
▪ Could store this information in two words: wasteful!

 Standard trick
▪ When blocks are aligned, some low-order address bits are always 0

▪ Instead of storing an always-0 bit, use it as an allocated/free flag

▪ When reading the Size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: total block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

16/0 32/1 32/164/0

End
Block

8/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in words/allocated bit”
Headers are at non-aligned positions
➔ Payloads are aligned

Unused

heap_start heap_end

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Data Structures

 Block declaration

 Getting payload from block pointer

 Getting header from payload

typedef uint64_t word_t;

typedef struct block

{

 word_t header;

 unsigned char payload[0];

} block_t;

header payload

return (void *) (block->payload);

return (block_t *) ((unsigned char *) bp

 - offsetof(block_t, payload));

// Zero length array

// bp points to a payload

// block_t *block

C function offsetof(struct, member) returns offset of member within struct

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Header access

 Getting allocated bit from header

 Getting size from header

 Initializing header

return header & 0x1;

Size a

return header & ~0xfL;

block->header = size | alloc;

// block_t *block

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Traversing list

 Find next block

static block_t *find_next(block_t *block)

{

 return (block_t *) ((unsigned char *) block

 + get_size(block));

}

header payload header payloadunused

block size

16/0 32/1 32/164/0

End
Block

8/1

Unused

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Finding a Free Block
 First fit:

▪ Search list from beginning, choose first free block that fits:

▪ Finding space for asize bytes (including header):

static block_t *find_fit(size_t asize)

{

 block_t *block;

 for (block = heap_start; block != heap_end;

 block = find_next(block)) {

 {

 if (!(get_alloc(block))

 && (asize <= get_size(block)))

 return block;

 }

 return NULL; // No fit found

}

16/0 32/1 32/164/0 8/1

heap_start heap_end

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Finding a Free Block
 First fit:

▪ Search list from beginning, choose first free block that fits:

▪ Can take linear time in total number of blocks (allocated and free)

▪ In practice it can cause “splinters” at beginning of list

 Next fit:

▪ Like first fit, but search list starting where previous search finished

▪ Should often be faster than first fit: avoids re-scanning unhelpful blocks

▪ Some research suggests that fragmentation is worse

 Best fit:

▪ Search the list, choose the best free block: fits, with fewest bytes left over

▪ Keeps fragments small—usually improves memory utilization

▪ Will typically run slower than first fit

▪ Still a greedy algorithm. No guarantee of optimality

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Comparing Strategies

 Total Overheads (for this benchmark)
▪ Perfect Fit: 1.6%

▪ Best Fit: 8.3%

▪ First Fit: 11.9%

▪ Next Fit: 21.6%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Next Fit

First Fit

Best Fit

Perfect Fit

Data Fit

Data

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Allocating in Free Block

 Allocating in a free block: splitting
▪ Since allocated space might be smaller than free space, we might want

to split the block

32 32 1648

32 1632

p

1632

split_block(p, 32)

8

8

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Splitting Free Block

64

p

split_block(p, 32)

// Warning: This code is incomplete

static void split_block(block_t *block, size_t asize){

 size_t block_size = get_size(block);

 if ((block_size - asize) >= min_block_size) {

 write_header(block, asize, true);

 block_t *block_next = find_next(block);

 write_header(block_next, block_size - asize, false);

}

1632 3216

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Freeing a Block

 Simplest implementation:
▪ Need only clear the “allocated” flag

▪ But can lead to “false fragmentation”

32 16 163232

free(p) p

32 32 1632 16

malloc(5*SIZ) Yikes!
There is enough contiguous

free space, but the allocator

won’t be able to find it

8

8

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Coalescing

 Join (coalesce) with next/previous blocks, if they are free
▪ Coalescing with next block

 32 1632 16

free(p) p

32 32 16

32

48 16

logically
gone

8

1

Previous block is allocated

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Coalescing

 Join (coalesce) with next/previous blocks, if they are free
▪ Coalescing with next block

▪ Need to coalesce with previous block. But how?

▪ How do we know where it starts?

▪ How can we determine whether its allocated?

1632 16

free(p) p

64 16

64

48 16

logically
gone

8

8

Previous block not allocated

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Bidirectional Coalescing
 Boundary tags [Knuth73]

▪ Replicate size/allocated word at “bottom” (end) of free blocks

▪ Allows us to traverse the “list” backwards, but requires extra space

▪ Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

32 32 32 32 48 3248 32

Header

8 8

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Canvas Quiz: Day 14 – Malloc Basics

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation with Footers

 Locating footer of current block
const size_t dsize = 2*sizeof(word_t);

static word_t *header_to_footer(block_t *block)

{

 size_t asize = get_size(block);

 return (word_t *) (block->payload + asize - dsize);

}

header payload header payloadunused footer

asize

dsize

asize

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation with Footers

 Locating footer of previous block

static word_t *find_prev_footer(block_t *block)

{

 return &(block->header) - 1;

}

header payload header payloadunused footer

1 word

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Splitting Free Block: Full Version

64

p

split_block(p, 32)

static void split_block(block_t *block, size_t asize){

 size_t block_size = get_size(block);

 if ((block_size - asize) >= min_block_size) {

 write_header(block, asize, true);

 write_footer(block, asize, true);

 block_t *block_next = find_next(block);

 write_header(block_next, block_size - asize, false);

 write_footer(block_next, block_size - asize, false);

}

32 32 1632 3264 16

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 1

Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing (Case 2)

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 1

m1 1

n+m2 0

n+m2 0

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap Structure

 Dummy footer before first header
▪ Marked as allocated

▪ Prevents accidental coalescing when freeing first block

 Dummy header after last footer
▪ Prevents accidental coalescing when freeing final block

Start
of

heap
16/0 32/1 32/164/0

Dummy
Header

8/1

Dummy
Footer

8/1

heap_start heap_end

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Top-Level Malloc Code
const size_t dsize = 2*sizeof(word_t);

void *mm_malloc(size_t size)

{

 size_t asize = round_up(size + dsize, dsize);

 block_t *block = find_fit(asize);

 if (block == NULL)

 return NULL;

 size_t block_size = get_size(block);

 write_header(block, block_size, true);

 write_footer(block, block_size, true);

 split_block(block, asize);

 return header_to_payload(block);

}

round_up(n, m)

=

m *((n+m-1)/m)

(Rounds n up to the
nearest multiple of m)

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Top-Level Free Code
void mm_free(void *bp)

{

 block_t *block = payload_to_header(bp);

 size_t size = get_size(block);

 write_header(block, size, false);

 write_footer(block, size, false);

 coalesce_block(block);

}

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disadvantages of Boundary Tags

 Internal fragmentation

 Can it be optimized?
▪ Which blocks need the footer tag?

▪ What does that mean?

Size

Payload and
padding

a

Size a

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

 Boundary tag needed only for free blocks

 When sizes are multiples of 16, have 4 spare bits

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 ?0

m1 ?0

n 01

m2 11

n+m1 ?0

n+m1 ?0

m2 01

No Boundary Tag for Allocated Blocks
(Case 3)

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 4)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Key Allocator Policies
 Placement policy:

▪ First-fit, next-fit, best-fit, etc.

▪ Trades off lower throughput for less fragmentation

▪ Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

 Splitting policy:
▪ When do we go ahead and split free blocks?

▪ How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
▪ Immediate coalescing: coalesce each time free is called

▪ Deferred coalescing: try to improve performance of free by deferring
coalescing until needed.

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Lists: Summary
 Implementation: very simple

 Allocate cost:
▪ linear time worst case

 Free cost:
▪ constant time worst case

▪ even with coalescing

 Memory Overhead
▪ will depend on placement policy

▪ First-fit, next-fit or best-fit

 Not used in practice for malloc/free because of linear-
time allocation
▪ used in many special purpose applications

 However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Lecture: Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16

	Slide 1
	Slide 2: Dynamic Memory Allocation: Basic Concepts 18-213/18-613: Introduction to Computer Systems 13th Lecture, October 8th, 2024
	Slide 3: Understanding this Error
	Slide 4: Today
	Slide 5: Dynamic Memory Allocation
	Slide 6: Dynamic Memory Allocation
	Slide 7: The malloc Package
	Slide 8: malloc Example
	Slide 9: Sample Implementation
	Slide 10: Visualization Conventions
	Slide 11: Allocation Example (Conceptual)
	Slide 12: Constraints
	Slide 13: Performance Goal: Throughput
	Slide 14: Performance Goal: Minimize Overhead
	Slide 15: Benchmark Example
	Slide 16: Benchmark Visualization
	Slide 17: Full Benchmark Behavior
	Slide 18: Fragmentation
	Slide 19: Internal Fragmentation
	Slide 20: Internal Fragmentation Effect
	Slide 21: External Fragmentation
	Slide 22: External Fragmentation Effect
	Slide 23: Implementation Issues
	Slide 24: Knowing How Much to Free
	Slide 25: Keeping Track of Free Blocks
	Slide 26: Today
	Slide 27: Method 1: Implicit Free List
	Slide 28: Detailed Implicit Free List Example
	Slide 29: Implicit List: Data Structures
	Slide 30: Implicit List: Header access
	Slide 31: Implicit List: Traversing list
	Slide 32: Implicit List: Finding a Free Block
	Slide 33: Implicit List: Finding a Free Block
	Slide 34: Comparing Strategies
	Slide 35: Implicit List: Allocating in Free Block
	Slide 36: Implicit List: Splitting Free Block
	Slide 37: Implicit List: Freeing a Block
	Slide 38: Implicit List: Coalescing
	Slide 39: Implicit List: Coalescing
	Slide 40: Implicit List: Bidirectional Coalescing
	Slide 41: Quiz Time!
	Slide 42: Implementation with Footers
	Slide 43: Implementation with Footers
	Slide 44: Splitting Free Block: Full Version
	Slide 45: Constant Time Coalescing
	Slide 46: Constant Time Coalescing (Case 1)
	Slide 47: Constant Time Coalescing (Case 2)
	Slide 48: Constant Time Coalescing (Case 3)
	Slide 49: Constant Time Coalescing (Case 4)
	Slide 50: Heap Structure
	Slide 51: Top-Level Malloc Code
	Slide 52: Top-Level Free Code
	Slide 53: Disadvantages of Boundary Tags
	Slide 54: No Boundary Tag for Allocated Blocks
	Slide 55: No Boundary Tag for Allocated Blocks (Case 1)
	Slide 56: No Boundary Tag for Allocated Blocks (Case 2)
	Slide 57: No Boundary Tag for Allocated Blocks (Case 3)
	Slide 58: No Boundary Tag for Allocated Blocks (Case 4)
	Slide 59: Summary of Key Allocator Policies
	Slide 60: Implicit Lists: Summary
	Slide 61: Next Lecture: Keeping Track of Free Blocks

