18-213/18-613, Fall 2024
Data Lab: Manipulating Bits

Assigned: Thursday, August 29, 2024
Due: Tuesday, September 10, 2024, 11:59 pm Eastern Time
Last possible hand in: Friday, September 13, 2024, 11:59 pm Eastern Time

For the fastest response, please use a private post to Piazza. Before asking a question, though, please read this
handout in its entirety, and also look at the FAQ page. This lab involves a combination of many tools, each of
which has its own quirks. The FAQ covers many of these.

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of common patterns,
integers, and floating-point numbers. You’ll do this by solving a series of programming “puzzles.” Many of
these puzzles are quite artificial, but you’ll find yourself thinking much more about bits in working your way
through them.

2 Logistics

e This is an individual project. All handins are electronic using the Autolab service.
e You should do all of your work in an Andrew directory, using the Shark machines.

o Before you begin, please take the time to review the course policy on academic integrity
athttp://www.cs.cmu.edu/~18213/academicintegrity.html.

3 Logging in to Autolab

All 213/613 labs are being offered this term through a Web service developed by CMU students and faculty
called Autolab, located at https://autolab.andrew.cmu.edu.

You must be enrolled to receive an Autolab account. If you added the class late, you might not be included in
Autolab’s list of valid students. In this case, you won’t see the 18213-f21 course listed on your Autolab home
page. If this happens, contact the staff and ask for an account.

If you are still on the waitlist for the course, then download a copy of the file datalab-handout. tar from
the course schedule web page. You can get working on the lab and then get an Autolab account once you are
enrolled.


http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/18213-f24/www/academicintegrity.html
https://autolab.andrew.cmu.edu

4 Handout Instructions

The only file you will be modifying and handing in is bits.c. The bits. c file contains a skeleton for each
of the 11 programming puzzles. Your assignment is to complete each function following a strict set of coding
rules: You may use only straightline code for the integer puzzles (i.e., no loops, function calls, or conditionals)
and a limited number of C arithmetic and logical operators. Specifically, you are only allowed to use the
following eight operators:

I~ & A | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits (ranging from hex 0x00 to 0xFF). For the integer puzzles, you may use casting, but only between data
types int and long (in either direction.) See the comments in bits.c for detailed rules and a discussion of
the coding rules for each function.

You can assume the following:

Values of data type int are 32 bits.

Values of data type long are 64 bits.

Signed data types use a two’s complement representation.

Right shifts of signed data are performed arithmetically.

When shifting a w-bit value, the shift amount should be between 0 and w — 1.

Predicate operators, including the unary operator ! and the binary operators ==, !=, <, >, <=, and >=,
return values of type int, regardless of the argument types.

5 The Puzzles

This section describes the puzzles that you will be solving in bits.c.

5.1 Bit Manipulations

Table 1 describes a set of functions that manipulate and test sets of bits. The “Rating” field gives the difficulty
rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number of operators
you are allowed to use to implement each function. See the comments in bits.c for more details on the
desired behavior of the functions. You may also refer to the test functions in tests.c. These are used as
reference functions to express the correct behavior of your functions, although they don’t satisfy the coding
rules for your functions. All arguments and return values for the functions are of type long.

5.2 Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’s complement representation of integers. All
arguments and return values are of type long. Refer to the comments in bits. c and the reference versions in
tests.c for more information.



Name Description Rating | Max Ops

bitXor(x,y) Return x”y using only ~ and & 1 14

allOoddBits(x) Return 1 if all odd-numbered bits in word 2 14
xsetto 1

conditional(x,y,z) | Compute x?y: z 3 16

allAsciiDigits(x) | Return 1 if each byte b in x satisfies 4 26

0x30 < b < 0x39 (ASCII codes for char-
acters 0’ t0’9’)

bitParity(x) Returns 1 if x contains an odd number of 4 20
0’s, return O otherwise

Table 1: Bit-Level Manipulation Functions.

Name Description Rating | Max Ops

isTmax (x) Returns 1 if x is the maximum, two’s com- 1 10
plement number, and 0 otherwise

negate(x) Return —x 2 5

isLessOrEqual (x,y) | Return 1 if x <y, O otherwise 3 24

Table 2: Arithmetic Functions

You can use the provided program ishow to see the decimal and hexadecimal representations of numbers.
First, compile the code as follows:

linux> make

Then use it to examine hex and decimal values typed on the command line:

linux> ./ishow 0x8000000000000000
Hex = 0x8000000000000000L,Signed = -9223372036854775808L,Unsigned = 9223372036854775808L

linux> ./ishow -123456789
Hex = Oxfffffffff8a432eblL,Signed = -123456789L,Unsigned = 18446744073586094827L

5.3 Floating-Point Operations

For this part of the assignment, you will implement some common single-precision floating-point operations.
In this section, the coding restrictions are relaxed:

e You are allowed to use standard control structures, such as if statements and while loops. However,
you should NOT use any nested loops, as they may cause the autograder to time out.

e You may use both int and unsigned data types, including arbitrary unsigned and integer constants.
¢ You may use all integer operators, as well as logical operators such as == and &&.
e You may NOT use any unions, structs, or arrays.

¢ You may NOT use any floating point data types, operations, or constants. Instead, any floating-point
operand will be passed to the function with type unsigned, and any returned floating-point value will



be of type unsigned. Your code should perform the bit manipulations that implement the specified
floating point operations.

Table 3 describes a set of functions that operate on the bit-level representations of single-precision, floating-
point numbers. Refer to the comments in bits. c and the reference versions in tests. c for more information.

Name Description Rating | Max Ops
floatIsLess(f, g) | Compute f < g 3 30
floatScaleld2(f) | Compute 0.5 * f 4 30

Table 3: Floating-Point Functions.

The included program fshow helps you understand the structure of floating point numbers. When you ran
make to compile ishow, it should also have compiled £show. You can use fshow to see how a bit pattern
represents a floating-point number, using either a decimal or hex representation of the pattern:

linux> ./fshow 2080374784

Floating point value 2.658455992e+36
Bit Representation 0x7c000000, sign = 0, exponent = £8, fraction = 000000
Normalized. 1.0000000000 X 24(121)

linux> ./fshow 0x15213
Floating point value 1.212781782e-40

Bit Representation 0x00015213, sign = 0, exponent
Denormalized. +0.0103172064 X 2A(-126)

0x00, fraction = 0x015213

You can also give £show floating-point values, and it will decipher their bit structure.

linux> ./fshow 15.213

Floating point value 15.2130003
Bit Representation 0x41736873, sign = 0, exponent = 0x82, fraction = 0x736873
Normalized. +1.9016250372 X 22(3)

6 Evaluation

Your score will be computed out of a maximum of 63 points based on the following distribution:

37 Correctness of code.

26 Performance of code, based on number of operators used in each function.

Correctness points. The 13 puzzles you must solve have been given a difficulty rating between 1 and 4 as
described above, which sum to a score of 27. You will receive full correctness points for a puzzle if it passes
all coding rules and passes the BDD checker (discussed below), and no credit otherwise.

Performance points. Our main concern at this point in the course is that you can get the right answer. However,
while some of the puzzles can be solved by brute force, it is possible to develop more efficient solutions. Thus,
you will receive 2 performance points for each correct function that satisfies the operator limits described
above. However, keep in mind that you can still receive correctness points even if the operator limit is
exceeded.



7 Autograding your work

We have included some handy autograding tools in the handout directory — btest, dlc, and BDD checker
— to help you check the correctness of your work. We have also included driver.pl, which is the exact
program used to grade your work on Autolab.

7.1 Dbtest

The btest program checks the correctness of the functions in bits. c by calling them many times with many
different argument values. To build and use it, type the following two commands:

linux> make
linux> ./btest

Notice that you must rebuild btest each time you modify your bits.c file.

You’ll find it very helpful to use btest to work through the functions one at a time, testing each one as you
g0. You can use the -£ flag to instruct btest to test only a single function:

linux> ./btest -f copyLSB

This will call the copyLSB function many times with many different input values. You can feed btest specific
function arguments using the option flags -1, -2, -3 for the first three function arguments respectively:

linux> ./btest -f copyLSB -1 OxFF

This will call copyLSB exactly once, using the specified arguments. Use this feature if you want to debug
your solution by inserting printf statements; otherwise, you’ll get too much output.

Warning: the btest program does not exhaustively test correctness! You also need to run bddcheck as
described below.

7.2 dlc

The d1c program is a modified version of an ANSI C compiler from the MIT CILK group that you can use to
check for compliance with the coding rules for each puzzle. The program will print an error if it detects a
problem, such as an illegal operator, too many operators, or non-straightline code in the integer puzzles.

Running with the -e switch causes d1c to print counts of the number of operators used by each function:

linux> ./dlc -e bits.c

7.3 BDD Checker

The btest program simply tests your functions for a number of different cases. For most functions, the
number of possible argument combinations far exceeds what could be tested exhaustively. To provide complete
coverage, we have created a formal verification program, called cbit, that exhaustively tests your functions
for all possible combinations of arguments. It does this by using a data structure known as Binary Decision
Diagrams (BDDs).



You do not invoke cbit directly. Instead, there is a series of Perl scripts that set up and evaluate the calls to it.
To check all of your functions and get a compact tabular summary of the results, execute:

linux> ./bddcheck/check.pl -g

7.4 driver.pl

This is a driver program that uses dlc and the BDD checker to compute the correctness and performance
points for your solution. This is the same program that Autolab uses when it autogrades your handin. To
check all of your functions, execute:

linux> ./driver.pl

7.5 Formatting

This lab will not be style graded. The score you receive on Autolab will be your final score. Since bits.c is
the only file uploaded, Autolab will not enforce formatting rules for this lab.

As with Lab 0, we provide the clang-format tool for you to help format your code. To invoke it, run make
format. You can modify the .clang-format file to reflect your preferred code style. More information is
available in the style guideline at http://www.cs.cmu.edu/~18213/codeStyle.html.

8 Handin Instructions
To receive credit, you will need to upload your bits. c file using one of the following options:

1. Run make submit from the Shark machine command line.

2. Upload your file directly to the Autolab website.

Each time you handin your code, the server will run the driver program on your handin file and produce a
grade report (it also posts the result on the scoreboard).

8.1 Handin Notes:

e At any point in time, your most recently uploaded file is your official handin. You may handin as often
as you like, with no penalty.

o Each time you handin, you should check your score to confirm that your handin was properly autograded.
You can click on your score in Autolab to see the autograder output.

¢ You must remove any extraneous print statements from your bits. c file before handing in.


http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/18213-f24/www/codeStyle.html

9 Formatting of C code for Datalab

The d1c program requires special care in how you write your code:

e Don’t include the <stdio.h> header file in your bits.c file, as it confuses d1c and results in some
non-intuitive error messages. You will still be able to use printf in your bits. c file for debugging
without including the <stdio.h> header, although gcc will print a warning that you can ignore.

e The dlc program enforces a stricter form of declarations than is the case for C++ or Java or even than
is enforced by gcc. All declarations must appear before any statement that is not a declaration.
— NOT OK: Mixing declarations and statements

long foo(long x) {
long a = x;

a *= 3; /* This statement is not a declaration */
long b = a; /* ERROR: Declaration not allowed here */
return b;

}
— OK: Forward-declaring all variables

long foo(long x) {
long a, b;
a = Xx;
a *= 3;
b = a;
return b;

}

— OK: Writing a sequence of declarations at the start of a function

long foo(long x) {
long a = x;
long a3 = a * 3;
long b = a;
return b;

The BDD checker introduces other considerations in the formatting of your C code.

e Test your code with btest before using the BDD checker. The BDD checker does not provide very
good error messages when given malformed code.

e The BDD checker cannot handle functions that call other functions, including printf. You should use
btest to evaluate code with debugging printf statements. Be sure to remove any of these debugging
statements before handing in your code.

e What to do when bddcheck/check.pl reports a syntax error:

— The syntax errors reported by bddcheck/check.pl are indexed from the first line of the function,
not the file! This can be confusing.

— The BDD checker scripts are a bit picky about the formatting of your functions. They expect the
function to open with a line of one of the following forms:



long fun (...)
unsigned fun (...)

They also expect the function to end with its closing brace on a separate line, with no whitespace
before it.

— Some of the scripts also don’t understand comments very well. So if you comment out part of
your code, make sure the first line of each function is explicitly commented out with //, instead
of relying on block comments with /* and */.

10 Adyvice

e Start early.
e See http://www.cs.cmu.edu/~18213/faq.html for answers to frequently-asked questions.

e You can work on this assignment using one of the class shark machines

linux> ssh -X andrewid@shark.ics.cs.cmu.edu

or one of the Andrew Linux servers

linux> ssh -X andrewid@unix.andrew.cmu.edu

o Test and debug your functions one at a time. Here is the sequence we recommend:
Step 1. Test and debug one function at a time using btest. To start, use the -1 argument in conjunction
with -£ to call one function with one specific set of input argument(s):

linux> ./btest -f copyLSB -1 7

Feel free to use printf statements to display the values of intermediate variables. However, be
careful to remove them after you have debugged the function.

Step 2. Use btest -f to check the correctness of your function against a large number of different
input values:

linux> ./btest -f copyLSB

If btest detects an error, it will print out the specific input argument(s) that failed. Go back to
Step 1, and debug your function using those arguments

Step 3. Use dlc to check that you’ve conformed to the coding rules:
linux> ./dlc bits.c

Step 4. After your function passes all of the tests in btest, use the BDD checker to perform the
definitive correctness test:

linux> ./bddcheck/check.pl -f copyLSB

Step 5. Repeat Steps 1-4 for each function. At any point in time, you can compute the total number of
correctness and performance points you’ve earned by running the driver program:

linux> ./driver.pl


http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/18213-f24/www/faq.html

If you have any questions about this lab, first reread this entire handout and check the FAQ. They contain lots
of details that may require multiple readings to fully appreciate. If you still have lab questions, or you have
questions about the Autolab system or the course in general, please contact the staff via Piazza. We respond

days and evenings and are very good about getting back to you fast. Remember: We’re here to help. Good
luck!



	Introduction
	Logistics
	Logging in to Autolab
	Handout Instructions
	The Puzzles
	Bit Manipulations
	Two's Complement Arithmetic
	Floating-Point Operations

	Evaluation
	Autograding your work
	btest
	dlc
	BDD Checker
	driver.pl
	Formatting

	Handin Instructions
	Handin Notes:

	Formatting of C code for Datalab
	Advice

