
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Basic Concepts

18-213/18-613:
Introduction to Computer Systems
12th Lecture, October 6th, 2021

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding this Error
¢ What causes this error? Why does it matter?

$./mm-corrupt
*** Error in `./mm-corrupt': free(): invalid next size (fast):
0x0000000000ffe010 ***
======= Backtrace: =========
/lib/x86_64-linux-gnu/libc.so.6(+0x777f5)[0x7f043efe67f5]

/lib/x86_64-linux-gnu/libc.so.6(+0x8038a)[0x7f043efef38a]
/lib/x86_64-linux-gnu/libc.so.6(cfree+0x4c)[0x7f043eff358c]
./mm-corrupt[0x400795]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0)[0x7f043ef8f840]
./mm-corrupt[0x400629]
======= Memory map: ========
...

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Basic concepts
¢ Implicit free lists

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation

¢ Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at run time.
§ for data structures whose size

is only known at runtime

¢ Dynamic memory allocators
manage an area of process
VM known as the heap.

Application

Dynamic Memory Allocator

Heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Run-time heap
(created by malloc)

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation

¢ Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

¢ Types of allocators
§ Explicit allocator: application allocates and frees space

§ E.g., malloc and free in C
§ Implicit allocator: application allocates, but does not free space

§ E.g., new and garbage collection in Java

¢ Will discuss simple explicit memory allocation today

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

§ Successful:
§ Returns a pointer to a memory block of at least size bytes

aligned to a 16-byte boundary (on x86-64)
§ If size == 0, returns NULL

§ Unsuccessful: returns NULL (0) and sets errno to ENOMEM

void free(void *p)
§ Returns the block pointed at by p to pool of available memory
§ p must come from a previous call to malloc, calloc, or realloc

Other functions
§ calloc: Version of malloc that initializes allocated block to zero.
§ realloc: Changes the size of a previously allocated block.
§ sbrk: Used internally by allocators to grow or shrink the heap

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(long n) {
long i, *p;

/* Allocate a block of n longs */
p = (long *) malloc(n * sizeof(long));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;
/* Do something with p */
. . .
/* Return allocated block to the heap */
free(p);

}

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sample Implementation
¢ Code

§ File mm-reference.c
§ Manages fixed size heap
§ Functions mm_malloc, mm_free

¢ Features
§ Based on words of 8-bytes each
§ Pointers returned by malloc are double-word aligned

§ Double word = 2 words
§ Compile and run tests with command interpreter

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Visualization Conventions
¢ Show 8-byte words as squares
¢ Allocations are double-word aligned.

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocation Example
(Conceptual)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

p4 = malloc(2*SIZ)

#define SIZ sizeof(size_t)

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constraints
¢ Applications

§ Can issue arbitrary sequence of malloc and free requests
§ free request must be to a malloc’d block

¢ Explicit Allocators
§ Can’t control number or size of allocated blocks
§ Must respond immediately to malloc requests

§ i.e., can’t reorder or buffer requests
§ Must allocate blocks from free memory

§ i.e., can only place allocated blocks in free memory
§ Must align blocks so they satisfy all alignment requirements

§ 16-byte (x86-64) alignment on 64-bit systems
§ Can manipulate and modify only free memory
§ Can’t move the allocated blocks once they are malloc’d

§ i.e., compaction is not allowed. Why not?

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Throughput
¢ Given some sequence of malloc and free requests:

§ R0, R1, ..., Rk, ... , Rn-1

¢ Goals: maximize throughput and peak memory utilization
§ These goals are often conflicting

¢ Throughput:
§ Number of completed requests per unit time
§ Example:

§ 5,000 malloc calls and 5,000 free calls in 10 seconds
§ Throughput is 1,000 operations/second

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Minimize Overhead
¢ Given some sequence of malloc and free requests:

§ R0, R1, ..., Rk, ... , Rn-1

¢ Def: Aggregate payload Pk
§ malloc(p) results in a block with a payload of p bytes
§ After request Rk has completed, the aggregate payload Pk is the sum of

currently allocated payloads

¢ Def: Current heap size Hk
§ Assume Hk is monotonically nondecreasing

§ i.e., heap only grows when allocator uses sbrk

¢ Def: Overhead after k+1 requests

§ Fraction of heap space NOT used for program data
§ Ok = Hk / (maxi≤k Pi) – 1.0

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Example

¢ Benchmark
syn-array-short
§ Trace provided with

malloc lab
§ Allocate & free 10 blocks
§ a = allocate
§ f = free
§ Bias toward allocate at

beginning & free at end
§ Blocks numbered 0–9
§ Allocated: Sum of all

allocated amounts
§ Peak: Max so far of

Allocated

Step Command Delta Allocated Peak
1 a 0 9904 9904 9904 9904
2 a 1 50084 50084 59988 59988
3 a 2 20 20 60008 60008
4 a 3 16784 16784 76792 76792
5 f 3 -16784 60008 76792
6 a 4 840 840 60848 76792
7 a 5 3244 3244 64092 76792
8 f 0 -9904 54188 76792
9 a 6 2012 2012 56200 76792
10 f 2 -20 56180 76792
11 a 7 33856 33856 90036 90036
12 f 1 -50084 39952 90036
13 a 8 136 136 40088 90036
14 f 7 -33856 6232 90036
15 f 6 -2012 4220 90036
16 a 9 20 20 4240 90036
17 f 4 -840 3400 90036
18 f 8 -136 3264 90036
19 f 5 -3244 20 90036
20 f 9 -20 0 90036

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Visualization

§ Data line shows total allocated data (Pi)
§ Data Fit line shows peak of total (maxi≤k Pi)
§ Normalized in X & Y

Step Command Delta Allocated Peak
1 a 0 9904 9904 9904 9904
2 a 1 50084 50084 59988 59988
3 a 2 20 20 60008 60008
4 a 3 16784 16784 76792 76792
5 f 3 -16784 60008 76792
6 a 4 840 840 60848 76792
7 a 5 3244 3244 64092 76792
8 f 0 -9904 54188 76792
9 a 6 2012 2012 56200 76792
10 f 2 -20 56180 76792
11 a 7 33856 33856 90036 90036
12 f 1 -50084 39952 90036
13 a 8 136 136 40088 90036
14 f 7 -33856 6232 90036
15 f 6 -2012 4220 90036
16 a 9 20 20 4240 90036
17 f 4 -840 3400 90036
18 f 8 -136 3264 90036
19 f 5 -3244 20 90036
20 f 9 -20 0 90036

0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

No
rm

al
ize

d
M

em
or

y
Us

ed
Normalized Operation Number

Data Data Fit

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Full Benchmark Behavior

¢ Given sequence of mallocs & frees (40,000 blocks)
§ Starts with all mallocs, and shifts toward all frees

¢ Manage space for all allocated blocks
¢ Metrics

§ Data: Pi

§ Data fit: maxi≤k Pi

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

or
y

Us
ed

 /
Pe

ak
 D

at
a

Operation / Operation Count

Data Fit

Data

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fragmentation
¢ Poor memory utilization caused by fragmentation

§ internal fragmentation
§ external fragmentation

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internal Fragmentation
¢ For a given block, internal fragmentation occurs if payload is

smaller than block size

¢ Caused by
§ Overhead of maintaining heap data structures
§ Padding for alignment purposes
§ Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

¢ Depends only on the pattern of previous requests
§ Thus, easy to measure

Payload Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internal Fragmentation Effect

¢ Perfect Fit: Only requires space for allocated data, data
structures, and unused space due to alignment
constraints
§ For this benchmark, 1.5% overhead
§ Cannot achieve in practice

§ Especially since cannot move allocated blocks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

or
y

Us
ed

 /
Pe

ak
 D

at
a

Operation / Operation Count

Perfect Fit

Data Fit

Data

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

External Fragmentation
¢ Occurs when there is enough aggregate heap memory,

but no single free block is large enough

¢ Amount of external fragmentation
depends on the pattern of future requests
§ Thus, difficult to measure

p4 = malloc(7*SIZ) Yikes! (what would happen now?)

#define SIZ sizeof(size_t)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

External Fragmentation Effect

¢ Best Fit: One allocation strategy
§ (To be discussed later)
§ Total overhead = 8.3% on this benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

or
y

Us
ed

 /
Pe

ak
 D

at
a

Operation / Operation Count

Best Fit

Perfect Fit

Data Fit

Data

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation Issues
¢ How do we know how much memory to free given just a

pointer?

¢ How do we keep track of the free blocks?

¢ What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

¢ How do we pick a block to use for allocation -- many
might fit?

¢ How do we reuse a block that has been freed?

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Knowing How Much to Free
¢ Standard method

§ Keep the length (in bytes) of a block in the word preceding the
block.
§ Including the header
§ This word is often called the header field or header

§ Requires an extra word for every allocated block

p0 = malloc(4*SIZ)
p0

free(p0)

block size Payload
(aligned)

48

Padding
(for alignment)

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks
¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Basic concepts
¢ Implicit free lists

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Method 1: Implicit Free List
¢ For each block we need both size and allocation status

§ Could store this information in two words: wasteful!

¢ Standard trick
§ When blocks are aligned, some low-order address bits are always 0
§ Instead of storing an always-0 bit, use it as an allocated/free flag
§ When reading the Size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: total block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

16/0 32/1 32/164/0

End
Block

8/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in words/allocated bit”
Headers are at non-aligned positions
è Payloads are aligned

Unused

heap_start heap_end

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Data Structures
¢ Block declaration

¢ Getting payload from block pointer

¢ Getting header from payload

typedef uint64_t word_t;

typedef struct block
{

word_t header;
unsigned char payload[0];

} block_t;

header payload

return (void *) (block->payload);

return (block_t *) ((unsigned char *) bp
- offsetof(block_t, payload));

// Zero length array

// bp points to a payload

// block_t *block

C function offsetof(struct, member) returns offset of member within struct

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Header access
¢ Getting allocated bit from header

¢ Getting size from header

¢ Initializing header

return header & 0x1;

Size a

return header & ~0xfL;

block->header = size | alloc;

// block_t *block

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Traversing list

¢ Find next block

static block_t *find_next(block_t *block)
{

return (block_t *) ((unsigned char *) block
+ get_size(block));

}

header payload header payloadunused

block size

16/0 32/1 32/164/0

End
Block

8/1

Unused

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Finding a Free Block
¢ First fit:

§ Search list from beginning, choose first free block that fits:
§ Finding space for asize bytes (including header):

static block_t *find_fit(size_t asize)
{

block_t *block;
for (block = heap_start; block != heap_end;

block = find_next(block)) {
{

if (!(get_alloc(block))
&& (asize <= get_size(block)))

return block;
}
return NULL; // No fit found

}

16/0 32/1 32/164/0 8/1

heap_start heap_end

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Finding a Free Block
¢ First fit:

§ Search list from beginning, choose first free block that fits:
§ Can take linear time in total number of blocks (allocated and free)
§ In practice it can cause “splinters” at beginning of list

¢ Next fit:
§ Like first fit, but search list starting where previous search finished
§ Should often be faster than first fit: avoids re-scanning unhelpful blocks
§ Some research suggests that fragmentation is worse

¢ Best fit:
§ Search the list, choose the best free block: fits, with fewest bytes left over
§ Keeps fragments small—usually improves memory utilization
§ Will typically run slower than first fit
§ Still a greedy algorithm. No guarantee of optimality

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Comparing Strategies

¢ Total Overheads (for this benchmark)
§ Perfect Fit: 1.6%
§ Best Fit: 8.3%
§ First Fit: 11.9%
§ Next Fit: 21.6%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

or
y

Us
ed

 /
Pe

ak
 D

at
a

Operation / Operation Count

Next Fit

First Fit

Best Fit

Perfect Fit

Data Fit

Data

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Allocating in Free Block
¢ Allocating in a free block: splitting

§ Since allocated space might be smaller than free space, we might want
to split the block

32 32 1648

32 1632

p

1632

split_block(p, 32)

8

8

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Splitting Free Block

64

p

split_block(p, 32)

// Warning: This code is incomplete

static void split_block(block_t *block, size_t asize){
size_t block_size = get_size(block);

if ((block_size - asize) >= min_block_size) {
write_header(block, asize, true);
block_t *block_next = find_next(block);
write_header(block_next, block_size - asize, false);

}

1632 3216

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Freeing a Block
¢ Simplest implementation:

§ Need only clear the “allocated” flag
§ But can lead to “false fragmentation”

32 16 163232

free(p) p

32 32 1632 16

malloc(5*SIZ) Yikes! There is enough contiguous
free space, but the allocator
won’t be able to find it

8

8

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Coalescing
¢ Join (coalesce) with next/previous blocks, if they are free

§ Coalescing with next block

32 1632 16

free(p) p

32 32 16

32

48 16

logically
gone

8

1

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Coalescing
¢ Join (coalesce) with next block, if it is free

§ Coalescing with next block

§ How do we coalesce with previous block?
§ How do we know where it starts?
§ How can we determine whether its allocated?

1632 16

free(p) p

64 16

64

48 16

logically
gone

8

8

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Bidirectional Coalescing
¢ Boundary tags [Knuth73]

§ Replicate size/allocated word at “bottom” (end) of free blocks
§ Allows us to traverse the “list” backwards, but requires extra space
§ Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

32 32 32 32 48 3248 32

Header

8 8

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check out:

Canvas > Day 12 – Malloc Basics

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation with Footers

¢ Locating footer of current block
const size_t dsize = 2*sizeof(word_t);

static word_t *header_to_footer(block_t *block)
{

size_t asize = get_size(block);
return (word_t *) (block->payload + asize - dsize);

}

header payload header payloadunused footer

asize
dsize

asize

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation with Footers

¢ Locating footer of previous block

static word_t *find_prev_footer(block_t *block)
{

return &(block->header) - 1;
}

header payload header payloadunused footer

1 word

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Splitting Free Block: Full Version

64

p

split_block(p, 32)

static void split_block(block_t *block, size_t asize){
size_t block_size = get_size(block);

if ((block_size - asize) >= min_block_size) {
write_header(block, asize, true);
write_footer(block, asize, true);
block_t *block_next = find_next(block);
write_header(block_next, block_size - asize, false);
write_footer(block_next, block_size - asize, false);

}

32 32 1632 3264 16

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing (Case 2)

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap Structure

¢ Dummy footer before first header
§ Marked as allocated
§ Prevents accidental coalescing when freeing first block

¢ Dummy header after last footer
§ Prevents accidental coalescing when freeing final block

Start
of

heap
16/0 32/1 32/164/0

Dummy
Header

8/1

Dummy
Footer

8/1

heap_start heap_end

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Top-Level Malloc Code
const size_t dsize = 2*sizeof(word_t);

void *mm_malloc(size_t size)
{

size_t asize = round_up(size + dsize, dsize);

block_t *block = find_fit(asize);

if (block == NULL)
return NULL;

size_t block_size = get_size(block);
write_header(block, block_size, true);
write_footer(block, block_size, true);

split_block(block, asize);

return header_to_payload(block);
}

round_up(n, m)
=

m *((n+m-1)/m)

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Top-Level Free Code
void mm_free(void *bp)
{

block_t *block = payload_to_header(bp);
size_t size = get_size(block);

write_header(block, size, false);
write_footer(block, size, false);

coalesce_block(block);
}

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disadvantages of Boundary Tags
¢ Internal fragmentation

¢ Can it be optimized?
§ Which blocks need the footer tag?
§ What does that mean?

Size

Payload and
padding

a

Size a

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

¢ Boundary tag needed only for free blocks
¢ When sizes are multiples of 16, have 4 spare bits

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 ?0

m1 ?0
n 01

m2 11

n+m1 ?0

n+m1 ?0
m2 01

No Boundary Tag for Allocated Blocks
(Case 3)

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 4)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Key Allocator Policies
¢ Placement policy:

§ First-fit, next-fit, best-fit, etc.
§ Trades off lower throughput for less fragmentation
§ Interesting observation: segregated free lists (next lecture)

approximate a best fit placement policy without having to search
entire free list

¢ Splitting policy:
§ When do we go ahead and split free blocks?
§ How much internal fragmentation are we willing to tolerate?

¢ Coalescing policy:
§ Immediate coalescing: coalesce each time free is called
§ Deferred coalescing: try to improve performance of free by deferring

coalescing until needed.

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Lists: Summary
¢ Implementation: very simple
¢ Allocate cost:

§ linear time worst case

¢ Free cost:
§ constant time worst case
§ even with coalescing

¢ Memory Overhead
§ will depend on placement policy
§ First-fit, next-fit or best-fit

¢ Not used in practice for malloc/free because of linear-
time allocation
§ used in many special purpose applications

¢ However, the concepts of splitting and boundary tag
coalescing are general to all allocators

