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Keith Brian Gallagher

A hundred times every day, I remind myself that my inner and outer life depends
on the labors of other men, living and dead, and that I must exert myself in order
to give in the measure as I have received and am still receiving.

A. Einstein

1 Introduction

At the fifteenth International Conference on Software Engineering (ICSE), in 1993, Mark Weiser
received recognition for the best paper at the fifth ICSE. Weiser reported that “Program
Slicing”[94], the conference paper, and its journal incarnation of the same name(97], were cited
about 10 times a vear from 1984 to 1989 and about 20 times a vear in 1990 and 1991. Our
subsequent search of the “Science Citation Index” found 9 citations in 1992; 9 citations in 1993;
and 15 citations in 1994. This is clearly a lower bound. Our bibliography of 94 items (91,
excluding Weiser’s original work) has only 12 that do not cite it, 5 of which were published
prior to the original paper. The references included universities in 10 countries and 8 industrial
laboratories. Since so many researchers and practitioners have been citing this seminal work,
herein we attempt to collate, summarize and organize the edifice of results that have followed.

Program slicing is a decomposition technique that extracts from program statements rele-
vant to a particular computation. Informally, a slice provides the answer to the question “What
program statements potentially affect the computation of variable v at statement s?” An ob-
server viewing the execution of a program and its slice cannot determine which is which when
attention if focused on statement s. It is as if the observer has a window through which only
part of the program state can be seen as illustrated by the “clear window” in Figure 1.

The utility and power of program slicing comes from the ability to assist in tedious and
error prone tasks such as program debugging (1, 50, 54, 64, 65, 66, 88, 95], testing (3, 11,
17, 20, 31, 51, 54, 57, 87], parallelization [23, 96], integration [82, 43, 80, 81, 83], software
safety [33], understanding [24, 56, 69, 75], software maintenance [32, 58, 70, 74, 77, 78], and
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Figure 1: The Programmer’s View of a Slice

software metrics {62, 63, 72, 71]. Slicing does this by extracting an algorithm whose computation
may be scattered through out a program from intervening irrelevant statements. Consequently, it
should be easier for a programmer interested in a subset of the program’s behavior to understand
the slice.

1.1 A Brief History

This section provides a brief history of program slicing and introduces the principal terminology.
A slice is taken with respect to a slicing criterion <s, v >, which specifies a location (statement
s) and a variable (v). This can be easily extended to slicing with respect to a collection of
locations and a collection of variables at each location by taking the union of the individual
slices. However, to simplify the exposition, we present definitions for the single statement and
single variable case.

Program slices, as originally introduced by Weiser [93, 94, 97], are now called ezecutable
backward static slices. FEzecutable because the slice is required to be an executable program.
Backwards because of the direction edges are traversed when the slice is computed using a
dependence graph. And finally, static because they are computed as the solution to a static
analysis problem (i.e., without considering the programs input).

Weiser’s requirement that a slice be executable provided an empirical validation of the con-
cept. Although this seems reasonable, many applications of program slicing (e.g., debugging)
do not require executable slices. This issue is considered in Section 2.

Weiser originally used a control-flow graph as an intermediate representation for his slicing



algorithm. Ottenstein et al. [26, 73] later noted that backward slices could be efficiently com-
puted using the program dependence graph as an intermediate representation by traversing the
dependence edges backwards (from target to source). This observation was pursued vigorously
and rigorously by Horwitz, et al. [40, 41, 42, 43, 44, 46, 47, 48, 82, 83, 86], who introduced
the notion of forward slicing in [48]. Informally, a forward slice answers the question “What
statements are affected by the value of variable v at statement s?”

Finally, Korel and Laski introduced the notion of dynamic slicing [53, 55]: a slice com-
puted for a particular fixed input. The availability of run-time information makes dynamic
slices smaller than static slices, but limits there applicability to that particular input. As with
Weiser’s algorithm, Korel and Laski’s algorithm use a control-flow graph as an intermediate
representation. Agrawal and Horgan later presented a dynamic slicing algorithm that used the
program dependence graph as an intermediate representation [5, 6].

This chapter is organized into three major sections. Section 2 discusses static slicing as a
data flow problem and as a graph reachability problem; then discusses dynamic slicing as a data
flow problem and as a graph reachability problem: and closes with a collection of alternative
methods for computing slices. The third section looks at applications of the idea of program
slicing, without regard to any particular method of computing the slice.

2 Computing Slices
The following terminology is in this section to discuss the computation of slices.

Definition 1 Graph. A directed graph G is a set of nodes N and a set of edges E C N x N.
For edge (n,m) € E, m is an immediate successor of n and n is an immediate predecessor of
n. G contains two special nodes, Ninitiql, which has no predecessors, and 7 fine, Which has no
successors. Furthermore, there is a path from i to every node in G and a path from nyina
to every node in G™!, the inverse graph of G.

Definition 2 Control Flow Graph. A control flow graph for program P is a graph in which
each node is associated with a statement from P and the edges represent the flow of control in P.
Let V be the set of variables in P. With each node n (i.e., each statement in the program and
node in the graph) associate two sets: REF(n), the set of variables whose values are referenced
at n, and DEF(n), the set of variables whose values are defined at n.

Definition 3 Program Slice. For statement s and variable v, the slice of program P with
respect to the slicing criterion < s,v > includes only those statements of P needed to capture

the behavior of v at s.

Exactly what is meant be “capture” varies. The most intuitive definition is presented in the
definition of an erecutable slice. Other definitions are examined later in this section.

3



n | statement

l]le=0

2 | while ( TRUE ) n | statement
3 c=1 5ie=2

4 | endwhile

5jic=2

Figure 2: “Sliceable” Divergent Program and the convergent Slice taken with respect to <5,c>

Definition 4 Executable Program Slice. For statement s and variable v, the slice S of
program P with respect to the slicing criterion < s,v > is any executable program with the
following properties:

1. S can be obtained by deleting zero or more statements from P.

2. If P halts on input I, then the value of v at statement n each time n is executed in P is
the same in P and S. If P fails to terminate normally! n may execute more times in S
that in P, but P and S compute the same values each time n is executed by P.

Note that every program has itself as a slice on any criteria.
EXAMPLE. The program of Figure 2 never executes Statement 5, while the slice on <5,¢>
includes only Statement 5, which is executed once.

2.1 Slicing Control Flow Graphs

This section describes computing a slice as the solution to a data-flow problem using a control-
flow graph as an intermediate representation. It considers a progression of harder slicing prob-
lems beginning with slicing straight-line programs, then considering structured control flow, .
unstructured control flow, data structures, and finally, procedures.

Computing a slice from a control-flow graph is a two step process: first requisite data flow
information is computed and then this information is used to extract the slice. The data-
flow information is the set of relevant variables at each node n. For the slice with respect to
< s,v>, the relevant set for each node contains the variables whose values (transitively) affect
the computation of v at s. The second step identifies the statements of the slice. These include
all nodes (statements) n that assign to a variable relevant at n and the slice taken with respect
to any predicate node that directly controls n’s execution.

1A program fails to terminate normally if it diverges or terminates abnormally, for example, with a division
by zero error.



n | statement | refs(n) | defs(n) | relevant(n)
11b=1 b

2|c=2 c b

31d=3 d b, ¢

4 a=d - d a b,c
5|ld=b+d b,d d b,c
6|b=041 b b |be
Tita=b+c b,c a b,c

8 | print a a a

Figure 3: Relevant Sets for <8,a>.

2.1.1 Slicing Flow Graphs of Straight Line Programs

Straight-line code contains only assignment statements executed one after the other. For such
code the additional slices with respect to predicate nodes are not required. We begin by assuming
that expression evaluation does not alter the values of its operands. Relevant sets for the slice
taken with respect to <n,v> are computed as follows {64]: ‘

1. Initialize all relevant sets to the empty set.
2. Insert v into relevant(n).

3. For m, n’s immediate predecessor, assign relevant(m) the value
(relevant(n) — DEF(m)) U (REF(m) if relevant(n) N DEF(m) # 0)

4. Working backwards, repeat Step (3) for m’s immediate predecessors until nin;tial is reached.

EXAMPLE. Figure 3 shows the relevant sets for a slice taken with respect to <8,a>. The
relevant sets are computed from Line 8 to Line 1. For example, relevant(7) = (relevant(8) —
DEF(7)) U (REF(7) if relevant(8) NDEF(7) # 0) = ({a} —{a}H)U{{b,c} if {a}n{a} #£0) =
{b,c}, and relevant(2) = ({b,c} — {c}) U (D if {b,c} N {c} # @) = {b}. If we were interested
in some variable other than a, the computation of the relevant sets would be different; thus,
different relevant sets must be computed for different slices.

The relevant sets may be viewed as a flow of sets of variables; the slice is the set of statements

that disturb this flow. If no relevant variables are defined at a statement, then the relevant
" set flows through unperturbed. On the other hand, if a relevant variable is de fined then the
statement is added to the slice. In Figure 3, for example, the slice with respect to <8,a >
includes Lines 7, 6, 2 and 1 (Line 6 changes the b that is in the relevant set). Note that, in
practice, the relevant sets and the statements in the slice are computed in a single pass.



n | statement refs(n) | defs(n) | control(n)
1 [b=1 b

2 |c=2 ¢

3 1d=3 d

4 |a=d d a

5 |if (a) then |a

6 d=b+d|bd . 5
7 c=b+d |bd c 5
8 | else 5
9 b=b+11|b b 8
10 d=b+11|D d 8
11 | endif

i12la=b+c b,c a

13 | print a a

Figure 4: Control sets.

2.1.2 Slicing Structured Programs

In straight-line programs each statement has a single unique predecessor. In the presence of
structured control flow, a statement may have multiple control predecessors. The above algo-
rithm requires three modifications to handle this: first the inclusion of control sets, second a
rule for combining relevant sets at control join points, and finally, iteration of the relevant set
computation.

The control set control(n) associates with node (statement) n, the set of predicate statements
that directly control n’s execution [64]. The use of a set here facilitates the transition to
unstructured control-flow in Section 2.1.3. For a structured program, control(n) contains a
single entry, the loop or conditional statement that controls the execution of n, or is empty,
when n is a “top-level” statement. For example, in Figure 4 control(6) includes Statement 5,
the if (a) then; the control sets for Statement 9 includes the Statement 8, the else, whose
control set also includes Statement 5. Whenever a statement is added to the slice, the members
of its control set, k, are added to the slice along with statements in the slice taken with respect
to <k, REF(k)>.

At join points (where two nodes have the same predecessor), the relevant set is the union
of the relevant sets of the two nodes. For example, in Figure 5, relevant(5) is the union of
relevant(6) and relevant(9). This assumes the expression in the conditional at the join point
has no side effects. If it does then after the union, Step (3) of the relevant set computation must
be performed to update the set to account for the side-effects of the expression.

EXAMPLE. Figure 5 shows the data necessary to calculate the slice with respect to <13,a>
of the program shown in Figure 4. The slice is normally computed in conjunction with the



n | refs(n) | refs(n) | control(n) | relevant(n)
1 b a

2 c a,b
3 d a,b
4 |d a a,b
5 |a b,c,d
6 |bd d 5 b,d
7 |6.d c 5 b,c
8 5 ¢, d
9 |b b 8 c,d
10| b d 8 c,d
11 b,c
12 | b, ¢ a b,c
13 a

Figure 5: Relevant Sets on a at 13

n statement

0 while (a)

1 ITn = Tp-1

2 Tpn-1 = Tn-2
il To = I

n + 1 | endwhile

Figure 6: A while statement that needs n passesto compute a slice when z; is in the criteria.

relevant sets: Working backwards from Line 13, since DEF(12) N Relevant(13) # @, Line 12 is
included in the slice and its relevant set is assigned {b, c}. No change occurs at Line 11. Line 10
is included in the slice because DEF(10) N Relevant(11) # @; relevant(10) is assigned {c, d}.
Next, Lines 5 and 8 are included in the slice because control(10) includes 8 and control(8)
includes Line 5. Along with these lines, the lines in the slices with respect to <8, REF(8)> =
<8,0> and <5, REF(5)> = <5,a> are also included. These add to the slice Lines 4 and 3.
Finally, Line 6 completes the slice.

The third change is required to handle loops. The absence of loops allows a slice to be
computed in a single pass over the control-flow graph; the presence of loops requires iterating
over parts of the graph. In particular, iteration over each loop until the relevant sets and slice
stabilize. Hausler [39] has shown that the maximum number of iterations is the same as the
number of assignment statements in the loop. Figure 6 shows how the upper bound is reached.



2.1.3 Slicing Un-Structured Programs

The addition of goto statements, and its restricted forms such as return, exit, break, and continue
complicate the construction of the control sets. One solution is to restructure the program as
goto-less {60} and then slice. The drawback to this method is that the structured version may
be significantly textually dissimilar from the original.

Lyle {64] proposed a simple and conservative solution to slicing over unstructured control
flows: if a goto statement has a non-empty relevant set, include it the slice. The targets of the
goto are included, and so on until the slice stabilizes.

An alternative approach [29] is to note that goto statements are associated with labels. Rather
than look for goto statements to include in the slice, look for labeled statements that are included
in the slice. Then include only the goto statements that branch to these labels. This algorithm
was devised for a language in which the only labels are targets of goto’s, a labeled statement
does no computation, and does not have explicit compound statements. That is, statements of
the form

if ( b ) then {
/* compute X */
} else {
/* compute Y */
3

are replaced by the semantically equivalent:



if ( b ) goto L1

/* compute Y */
goto L2
L1:
/* compute X */
L2: :

Each statement of the form
label : statement ;

is transformed to the semantically equivalent

label : null ;
statement ;

Definition 5 Labeled block. A labeled block is a basic block ? that begins with a labeled
statement and ends when one of the following occurs.

1. The basic block ends.

2. Another labeled block begins; i.e., another labeled statement occurs.

Definition 6 Pseudo-label. Let L be the label of the statement that begins a labeled block B.
The remaining statements in B are said to have pseudo-label L.

On the pass after a pseudo-labeled statement is added to the slice, as each goto statement
is examined it is placed in the slice according to whether or not its target (pseudo-)label has
already been added to the slice. The non-computing labeled statements are added if the actual
label matches a pseudo-label in the slice.

2.1.4 Arrays, Records, and Pointers

To handle composite structures and pointers requires a change to the DEF(n) and REF (n)
sets. A simple approach for arrays is to treat each array assignment as both an assignment and
a use of the array. For

n: alf] := z;

2A basic block{52] is sequence of consecutive instructions that are always executed from start to finish.



one may naively assume that DEF(n) = {a} and REF(n) = {i{,x}. But the new value of a
also depends and the old value of @, so a must also be included. The correct value for REF(n)
is {a,i,2}. However, this approach leads to correct, but unnecessary large slices.

To more precisely determine if there is a dependence between a statement that contains
an assignment to «[f(7)] and a statement that contains a use of af[g(j)] requires answering the
question “Can f(i) = ¢g(j)?" In general this question is unanswerable, although it can be solved
for some common index expression types. These solutions are often one sided: algorithms exist
to determine if the answer to the question is “no.” Otherwise, no information is obtained. To
illustrate this, consider the Greatest Common Divisor (GCD) Test applied to the following loop

i=0

while (i < N)

{
X[a; * 1 +ay] = ...
...= X[by * i + by ]
i=1i+1

If ged(ay,b;) does not divide (by — ap) then the GCD test demonstrates the absence of a
dependence between s, and so, but if ged(ay,b;) divides (by — ap), the solution may lay outside
the range 0...N. Other tests [68, 76] are similarly one sided. If none of these tests can prove
the absence of a flow dependence then one is assumed to exist. This provides a more precise,
yet safe, approximation to the correct data relationships. Once this has been done, the slicing
algorithm proceeds as in the absence of arrays.

Records are simple, if not tedious, to treat in a slicing algorithm. Unlike arrays, each field of
a record is identified by a constant (the field’s name). This allows occurrences of record. field
to be treated as occurrences of the simple variable record_field. The assignment of one record
to another is modeled as a sequence of field assignment.

The multiple levels of indirection for both assignment and reference of pointers create difficult
problems. One must obtain every possible location to which a pointer could point. If a variable
is defined or referenced through a chain of pointers (e.g., *****a), then all intermediate locations
in the accessing of the variable must be considered as refed locations.

Lyle, et al. [67] construct, then prune a pointer state graph (PSS) for expression **a. The
PSSi(a) is a directed graph with single source a and defined recursively as

a, if k=0
PSSi(a) =< {v| *a= v}, ifk=1 & edge(a,v) € PSSi(a)
{v|ve PSS (u)Au € PSS;_i(a)}, otherwise & edge(u,v)€ PSSi(a)

PSSi(a) gives the possible references of **a. It is then pruned: Rpgs,(a)(w) = {v € PSSi(a) A
dist(v,w) < k}, where dist(w, v) is the distance, measured in edges, between v and w. Rpgs,(a)(w)

10



is used to compute DEF(n) by eliminating the indirect definitions of w that cannot reached via
k levels of indirection from a. See [67] for a detailed discussion.

2.1.5 Interprocedural Slicing

Slicing across procedures® complicates the situation due to the necessity of translating and
passing the criteria into and out of calling and called procedures. When procedure P calls
procedure @ at statement 7, the active criteria must first be translated into the context of @
and then recovered once () has been sliced.

To translate a set of criteria, C, into a called procedure, for each v € relevant(succ(Q)) N
actual_parameter(Q) map v — w, the corresponding formal parameter of Q. Then generate new
criteria < n%nal,w >. If v € relevant(succ(Q)) N local_de finition(Q), i.e., a local redefinition
of v ocecurs, change the line number of criteria involving v to 7, the call-site of (). When ngu.ﬁa,
is reached, unmap w — v, and replace nfim-a, with 7. Weiser called this new set of criteria
DOWNy(C).

This is essentially an in-line replacement of each procedure occurrence, with appropriate
substitutions. Globals pass into the called procedure undisturbed if their visibility is not blocked
by a variable in Q; thus references to them inside the procedures are captured correctly. This
method was introduced early in the development of the idea of slicing and does not address hard
questions about pointers, aliasing, function parameters, etc.

When P is called from statement j of Q, criteria must be generated to slice up into .
The new criteria are generated in similar fashion to the calling context. Criteria involving local
variables are discarded, so that no undefined references are passed out. Criteria involving formal
parameters are mapped into the corresponding actual of ) with new line number j. Weiser called
this set UPy(C). ,

The sets DOWNy(C) and UPy(C) are then mapped to functions from criteria to criteria:
DOWN(CC) = Ucecc DOWNy(C) and UP(CC) = UceccUPy(C). Union and transitive closure
are defined in the usual way for these relations. Thus (DOWNUU P)*(C) will give a complete
set of criteria to obtain the interprocedural slice for any criteria. This conservative, but correct,
approximation was improved by [48].

2.2 Slicing as a Graph-Reachability Problem

Ottenstein and Ottenstein [73] observed that the program dependence graph (PDG), used in
vectorizing and parallelizing compilers and program development environments, would be an
ideal representation for constructing program slices: “Explicit data and control dependence
make the PDG ideal for constructing program slices” [73].

3This section follows closely that of Weiser [97].
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This section first discusses a variation of the PDG used to compute intraprocedural slices
of structured programs and the extensions necessary to slice programs that contain procedures
and procedure calls[43]. Both of these algorithm have three steps:

1. Construct a dependence graph from the program.
2. Slice the dependence graph. ]
3. Obtain a sliced program from the sliced graph.

The advantage of the dependence graph approach is that steps 2 and 3 are efficient. For
example, Step 2 is linear in the size of the graph. However, step 1, the construction of the pdg is,
O(n?) in the number of statements in the program. In order to focus on the slicing algorithms,
this section does not discuss how Step 1, dependence graph construction, is accomplished (see[26,
38, 43, 48, 61, 73] for details).

2.2.1 Intraprocedure Slicing

The PDG used for intraprocedural slicing by Horwitz, et al. [43] is a modified version of the
dependence graph considered by Ottenstein and Ottenstein {73]. The PDG for program P,
denoted by Gp, is a directed graph whose vertices are connected by several kinds of edges. The
vertices of Gp represent the assignment statements and control predicates that occur in program
P. In addition, Gp includes a distinquished vertex called the entry vertex.

Gp is a multi-graph. Not only can it have more than one edge between two vertices, it
may have more than one edge of a given kind between two vertices. Edges in Gp represent
dependences among program components. An edge represents either a control dependence or
a flow dependence. Control dependence edges are labeled true or false, and the source of a
control dependence edge is always the entry vertex or a predicate vertex. A control dependence
edge from vertex u to vertex v, denoted by v —. v, means that during execution, whenever the
predicate represented by u is evaluated and its value matches the label on the edge to v, then the
program component represented by v will eventually be executed if the program terminates. For
structured languages control dependences reflect the program’s nesting structure. Consequently,
PDG Gp contains a control dependence edge from vertex u to vertex v of Gp iff one of the
following holds:

1. u is the entry vertex, and v represents a component of P that is not nested within any
loop or conditional; these edges are labeled true.

2. u represents a control predicate, and v represents a component of P immediately nested
within the loop or conditional whose predicate is represented by u.

If u is the predicate of a while-loop, the edge u — v is labeled true; if « is the predicate of
a conditional statement, the edge u — v is labeled true or false according to whether v occurs
in the then branch or the else branch, respectively.

12



A flow dependence edge from vertex w to vertex v means that the program’s computation
might be changed if the relative order of the components represented by u and v were reversed.
The flow-dependence edges of a PDG are computed using data-flow analysis. A PDG contains
a flow dependence edge from vertex u to vertex v, denoted by v — v, iff all of the following
hold:

1. u is a vertex that defines variable x.
2. v is a vertex that uses x.

3. Control can reach v after u via an execution path along which there is no intervening
definition of .

Flow dependences can be further classified as loop carried or loop independent. A flow
dependence u —; v is carried by loop L, denoted by u—qr)v, if in addition to 1, 2, 3 above,
the following also hold:

4. There is an execution path that both satisfies the conditions of (3) above and includes a
backedge to the predicate of loop L. :

5. Both u and v are enclosed in loop L.

A flow dependence u —; v is loop independent, denoted by u—v, if in addition to 1, 2, 3
above, there is an execution path that satisfies 3 above and includes no backedge to the predicate
of a loop that encloses both u and v. It is possible to have both u —qry v and u—y;v.

When there is more than one loop-carried flow dependence edge between two vertices, each
is labeled by a different loop that carries the dependence. Figure 7 shows an example program
and its PDG.

For vertex s of PDG G, the slice of G with respect to s, denoted by Slice(G, s), is a graph
containing all vertices on which s has a transitive flow or control dependence (i.e., all vertices
that can reach s via flow and/or control edges):

V(Slice(G,s)) = {v € V(G) |v —7; s}

The edges of Slice(G, s) are those in the subgraph of G induced by V(Slkce(G, s)):

E(Slice(G,S)) = {v—ju€ E(G)|v,ue V(Slice(G,S))}
U{r —. u € E(G) | v,u € V(Slice(G, S))}

The vertices of the slice of the PDG shown in Figure 7 taken with respect to the output vertex
for 7 are highlighted in Figure 7.

Slicing programs with composite data structures involves changing the computation of the
flow dependence edge only. Two methods for slicing in the presence of arbitrary control flow
(programs containing gotos) require modifying the control dependence subgraph of the PDG,
but not the slicing algorithm. Choi and Ferrante [22] augment the the control flow graph that

13



program Main

59 ij =0 Edge Key

i= 1 . — control dependence :

while i < 11 do — loop-independent flow dependence
SUM = SUM+i —— loop-carried flow dependence
i=i+l

od

print (SUM)
print (i)
end :

Figure 7: An example program, which sums the integers from 1 to 10 and leaves the result in
the variable sum, and its program dependence graph. The vertices of the slice of this PDG
taken with respect to the final use of ¢ is shown in bold.
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is used in the construction of the PDG with a set of fall-through edges, i.e., the lexcial successor
of the goto in the source text. The fall-through edges captures the requisite control flow when
a goto statement is deleted from the slice.

Ball and Horwitz [7] describe a similar technique in which jump statements are represented
by pseudo-predicate vertices, which always evaluate to true. The outgoing control edge labeled
true is connected to the target of the jump, while a false successor is connected to the jump
statement’s continuation: 7.e, the statement that would be executed if the jump were a nop.

Harrold, Malloy and Rothermel(38] describe an efficient construction of PDG's that captures
exact control dependence (i.e., gotos) but uses neither a control flow graph or a post dominator
tree as an auxiliary structure. This construction technique improves the methods of [7, 22]
for construction of the PDG. During the parse, a partial control dependence subgraph, which
incorporates exact control is constructed. The partial control dependence subgraph manages
control flow by ordering the nodes implicitly during construction or explicitly by the creation
of control edges. The presence of gotos does require a minor change to Step 3 of the slicing
algorithm (the projection of a program from the sliced PDG). This change ensures that labels
of statements not in the slice are include in resulting program if a goto to that label is in the
slice.

Another method for computing slices in the presence of arbitrary control flow avoids changing
the PDG at the expense of modifying the slicing algorithm use in step (2) [2]. This method
maintains two relations: postdominator and lexical-successor. The algorithm computes a slice
from the graph use by the HPR algorithm using step (2) and then looks for jump statement not
in the slice whose nearest postdominator in the slice is different from the nearest lexical success
in the slice. Such statement are then added to the slice. As with the algorithms in [7, 22, 38]
and step (3) must be modified to include any necessary labels.

2.2.2 Interprocedural Slicing of Dependence Graphs

Interprocedural slicing as a graph reachability problem requires extending of the PDG and, unlike
the addition of data types or unstructured control flow, it also requires modifying the slicing
algorithm. The PDG modifications represent call statements, procedure entry, parameters, and
parameter passing. The algorithm change is necessary to correctly account for procedure calling
context. This section describes the interprocedural slicing algorithm presented in {48], which
is based on an extension of the PDG called the system dependence graph (SDG).* Horwitz
et al. [48] introduced the term “system dependence graph” for the dependence graphs that
represents multi-procedure programs. The term “system” will be used to emphasize a program
with multiple procedures.
The SDG models a language with the following properties:

4The term “SDG” is used because the term “PDG”is associated with graphs that represent single procedure
programs
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1. A complete system consists of a single main procedure and a collection of auxiliary proce-
dures.

2. Parameters are passed by value-result.

Techniques for handling parameters passed by reference and for dealing with aliasing as
discussed at the end of this section. '

Horwitz, et al. [48] make the further assumption that there are no call sites of the form
P(x,z) or P(g), where g is a global variable. The former restriction sidesteps potential copy-back
conflicts. The latter restriction permits global variables to be treated as additional parameters
to each procedure; thus, they are not discussed explicitly.

An SDG is made up of a collection of procedure dependence graphs connected by interproce-
dural control- and flow-dependence edges. Procedure dependence graphs are similar to program
dependence graphs except that they include vertices and edges representing call statements, pa-
rameter passing, and transitive flow dependences due to calls (we will abbreviate both procedure
dependence graph and program dependence graph by “PDG”). A call statement is represented
using a call vertex; parameter passing is represented using four kinds of parameter vertices: on
the calling side, parameter passing is represented by actual-in and actual-out vertices, which are
control dependent on the call vertex; in the called procedure, parameter passing is represented
by formal-in and formal-out vertices, which are contro] dependent on the procedure’s entry ver-
tex. Actual-in and formal-in vertices are included for every global variable that may be used or
modified as a result of the call and for every parameter; formal-out and actual-out vertices are
included only for global variables and parameters that may be modified as a result of the call.
Interprocedural data-flow analysis is used to determine the parameter vertices included for each
procedure [8, 10].

Transitive dependence edges, called summary edges, are added from actual-in vertices to
actual-out vertices to represent transitive flow dependences due to called procedures. These
edges were originally computed using a variation on the technique used to compute the subor-
dinate characteristic graphs of an attribute grammar’s nonterminals [48]. Recently, Reps et. al.
described a faster algorithm for computing summary edges [84]. A summary edge is added if a
path of control, flow and summary edges exists in the called procedure from the corresponding
formal-in vertex to the corresponding formal-out vertex. Note that the addition of a summary
edge in procedure @ may complete a path from a formal-in vertex to a formal-out vertex in Q’s
PDG, which in turn may enable the addition of further summary edges in procedures that call
Q.

Procedure dependence graphs are connected to form an SDG using three new kinds of edges:
1. a calledge is added from each call-site vertex to the corresponding procedure-entry vertex:
2. a parameter-in edge is added from each actual-in vertex at a call site to the corresponding

formal-in vertex in the called procedure; and

16



3. a parameter-out edge is added from each formal-out vertex in the called procedure to the
corresponding actual-out vertex at the call site.

Figure 8 shows an example system and the corresponding SDG. (In Figure 8, as well as in the
remaining figures of the paper, the edges representing control dependences are shown unlabeled;
all such edges would be labeled true.) ‘

Interprocedural slicing can be defined as a reachability problem using the SDG, just as intra-
procedural slicing is defined as a reachability problem using the PDG. The slices obtained using
this approach are the same as those obtained using Weiser’s interprocedural-slicing method [97].
However, his approach does not produce slices that are as precise as possible, because it considers
paths in the graph that are not possible execution paths. For example, there is a path in the
graph shown in Figure 8 from the vertex of procedure Main labeled “x := sum” to the vertex
of Main labeled “i := yo.” However, this path corresponds to procedure 4dd being called by
procedure A, but returning to procedure Increment, which is not possible. The value of 7 after
the call to procedure A is independent of the value of sum before the call, and so the vertex
labeled “z;, := sum” should not be included in the slice with respect to the vertex labeled
“4 1= Yo Figure 9 shows this slice).

To achieve more precise interprocedural slices, an interprocedural slice with respect to vertex
s is computed using two passes over the graph. Summary edges permit moving across a call
site without having to descend into the called procedure; thus, there is no need to keep track of
calling context explicitly to ensure that only legal execution paths are traversed. Both passes
operate on the SDG, traversing edges to find the set of vertices that can reach a given set of
vertices along certain kinds of edges. Informally, if s is in procedure P then pass 1 identifies
vertices that reach s and are either in P itself or procedures that (transitively) call P. The
traversal in pass 1 does not descend into procedures called by P or its callers. Pass 2 identifies
vertices in called procedures that induce the summary edges used to move across call sites in
pass 1.

The traversal in pass 1 starts from s and goes backwards (from target to source) along
flow edges, control edges, call edges, summary edges, and parameter-in edges, but not along
parameter-out edges. The traversal in pass 2 starts from all vertices reached in pass 1 and goes
backwards along flow edges, control edges, summary edges, and parameter-out edges, but not
along call, or parameter-in edges. The result of an interprocedural slice consists of the sets of
vertices encountered during by pass 1 and pass 2, and the set of edges induced by this vertex
set. A worklist algorithm for finding the vertices of an interprocedural slice is stated in [48].
The (full backward) interprocedural slice of graph G with respect to vertex set S, denoted by
Slice(G, S), consists of the sets of vertices identified by pass 1 and pass 2, and the set of edges
induced by this vertex set.

Slice(G, S) is a subgraph of G. However, unlike intraprocedural slicing, it may be infeasible
(i.e., it may not be the SDG of any system). The problem arises when Slice(G, S) includes
mismatched parameters: different call-sites on a procedure include difference parameters. There
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procedure Main
sum:=0
i=1
whilei < 11 do

call A (sum, i)

od
print(sum)

end

procedure A (x, y)
call Add (x, y)
call Increment (y)

return

Edge Key
—a»  control

intraprocedural flow

(loop-independent)
intraprocedural flow
(loop-carried)

——gs  summary

call .
- ardmeter-in,
Barameter—out

procedure Add (a, b)
a=a+b
return

procedure Increment (z)
call Add (z, 1)
return

Figure 8: Example system and its SDG.
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procedure Main
i=1
whilei < 11 do

procedure A (v)
call Increment (y)
return

procedure Add (a, b)
a:=a+b

return

procedure Increment (z)
call Add(z, 1)
return

call A (i)
od
end()

Edge Key
—_— control

intraprocedural fiow

(loop-independent)
intraprocedural flow
(loop-carried)

- SUMMAary

call, .
- - ardmeter-in,
arameter-out

Figure 9: The SDG from figure 8 sliced with respect to the formal-out vertex for parameter 2
in procedure Increment, together with the system to which it corresponds. Note that this slice
correctly excludes the vertex labeled z;, := supgin figure 8



are two causes of mismatches: missing actual-in vertices and missing actual-out vertices. Mak-
ing such systems syntactically legal by simply adding missing parameters leaves semantically
unsatisfactory systems [19]. In order to include the program components necessary to compute
a safe value for the parameter represented at missing actual-in vertex v, the vertices in the Pass
2 slice of G taken with respect to v must be added to the original slice. A Pass 2 slice includes
the minimal number of components necessary to produce a semantically correct system. The
addition of Pass 2 slices is repeated until no further actual-in vertex mismatches exist.

The second cause of parameter mismatches is missing actual-out vertices. Because missing
actual-out vertices represent dead-code no additional slicing is necessary. Actual-out mismatches
are removed by simply adding missing actual-out vertices to the slice.

A system can now be obtained by projecting the statements of the original system that are
in the original slice or added by the above two steps. These statements appear in the same order
and at the same nesting level as in the original system. The details of this algorithm are given
in [19].

2.2.3 Interprocedural Slicing in the Presence of Call-By-Reference Parameter Pass-
ing and Aliasing

The definitions of the system dependence graph and interprocedural slicing assume that param-
eters are passed by using value-result parameter passing. The same definitions hold for call-by-
reference parameter passing in the absence of aliasing; however, in the presence of aliasing, some
modifications are required. Two extreme methods for handling aliasing include transforming the
system into an aliasing-free system and generalizing the definition of flow dependence. Trans-
lation is done by creating a copy of a procedure for each possible aliasing configuration that it
may be called under. Because the number of aliasing configurations is potentially exponential,
the cost of this transformation may, in the worst case, be exponential in the maximum number
of formal parameters associated with any one procedure.

Generalizing the definition of flow dependence makes the pessimistic assumption that any
aliases that exist during a particular call to a procedure may exist during all calls to the proce-
dure. Such aliases are referred to as may aliases. This requires the use of generalized definitions
for flow dependence. For example, a flow dependence edge connects vertex v to vertex u iff all

of the following hold:
1. v is a vertex that deﬁnes variable x.
2. u is a vertex that uses variable y.
3. x and y are potential aliases.

4. Control can reach u after v via a path in the control-flow graph along which there is no
intervening definition of x or y.
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Note that clause (4) does not exclude there being definitions of other variables that are
potential aliases of z or y along the path from v to . An assignment to a variable = along
the path from v to u only over-writes the contents of the memory location written by v if x
and z refer to the same memory location. If z is a potential alias of x, then there is only a
possibility that x and = refer to the same memory location; thus, an assignment to : does not
necessarily over-write the memory location written by v, and it may be possible for u to read a
value written by v.

The first solution produces more precise (smaller) slices than the second at the expense of
transforming the system. It is possible to consider intermediate solutions to the problem of
slicing in the presence of aliasing. Binkley [18] presents an algorithm that is parameterized by a
set of aliasing information. The more precise this information, the more precise the slice. In the
case of exact information, the same slice is produce as by the transformation approach without
replicating procedures. In the case of a maximal approximation (imprecise information), the
same slice if obtained as by the generalized dependence approach. In between is a range of
possible slices differing only in their precision. '

2.3 Dynamic Slicing as a Data-Flow Problem

Korel and Laski[53] introduced the idea of dynamic slicing. Their solution, pattered after
Weiser’s static slicing algorithm, solves the problem using’ data-flow equations. A dynamic
slice differs from a static slice in that is makes use of information about a particular execution
of a program. Thus, a dynamic slice contains “all statements that actually affect the value of a
variable at a program point for a particular execution of the program” rather than “all statements
that may affected the value of a variable at a program point for any arbitrary execution of the
program” [53].

Most dynamic slices are computed with respect to an ezecution history (called a trajectory
in [53]). This history records the execution of statements as the program executes. The execution
of a statement produces an occurrence of the statement in the execution history. Thus, the
execution history is a list of statement occurrences.

EXAMPLE. Two example execution histories are shown in Figure 10. Superscripts are
used to differentiate between the occurrences of a statement. For example, statement 2 executes
twice for the second execution producing occurrences 2* and 22.

Korel and Laski define a dynamic slice, taken with respect to a set of variables V, An Input
I, and a point P in the execution history (obtained by running the program on I), as a reduced
executable program. The execution history for the execution of this program on input I must
satisfy the slice sub-list property. Intuitively this property is satisfies if the execution history of
the slice is equivalent to the execution history of the original program after removing occurrences
of statement not in the slice.

Figure 11 shows the Korel and Laski slice of the program shown in Figure 10 taken with
respect to ({a}, 2, 3%). Notice that this slice impreciseley includes 3! which does not affect the
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Statement
Number

Program

i

AN WN

read(N)
fori=1toN do
a=2
if ¢/ then
if c2 then
a=4
else
a=6
fi
6
Z=a
od
print(z)

Execution History 1
Input N=1, c7 and ¢2 both true. <1',2', 3!, 4!, 5 6! 81,22 9>

Execution History 2
Input N=2, c] and c2 false on the first iteration and true on the second.
<1',2',31,4', 8", 22,32, 4%, 5, 6", 82,23, 9'>

Figure 10: Two execution histories.
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read(N) Execution history of slice
fori=1toNdo

a=2 <11,2!,3!, 22, 32>
od

Figure 11: A dynamic slice of the program shown in Figure 10 and its execution history.
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computation at 3. Why this occurrence is needed in the Korel and Laski framework and how
Agrawal and Horgan remove it is discussed at the end of this section.

Two formalize the notion of a dynamic slice, we consider the relationship between the execu-
tion histories of the program and its slice (on the same input). The execution history of the slice
should be obtained by removing occurrences from execution history of the original program. To
do this we must remove occurrences of statement not in the slice and remove all occurrences
after the occurrence with respect to which the slice was taken.

Formally, we make use of three the operators:

1. collect(list, predicate) = [l € list | predicate(l) = true]
2. fromt(list,l;) = [l; € list | j <=1
3. occurrence_of(l;, P) = true iff ; is an occurrence of a statement of P.

Definition 7 Dynamic Slice. Program P’ is the slice of program P taken with respect to (V, I,
p) if L and L' are the execution histories for P and P', respectively, p’ is the occurrence of p in
L', and the following property is satisfied.

front(L',p") = collect( front(L,p), M.occurrence_of(l, P'))

EXAMPLE.  For the slice taken with respect to ({a}, 2, 3! ) of the program shown in
Figure 10 we have (< 11,2!,31,22,32 > 3!) = < 11,21,3! >
and

collect ( front (< 11,2%,3!, 41 8! 22 32 42 5! 61,82 23 9! > 31), AM.occurrence_of(l,P')) =
collect(< 1,2',3' >, Al.occurrence-of(l,P')) =< 11,2},3! >
While for the slice with respect to ({a}, 2, 3?)

front (< 11,2,381,22 32 > 3%) =< 11,21 31 22 32 >,

and

collect(front(< 11,243 41,8 22 32 42 5! 61,8223 9! > 32), Al.occurrence_of(l,P'))
collect(< 1',2',3!,41,81,22 32 > A.occurrence_of(l, P')) =< 1},21,3!,22,3% >,

Dynamic slices are computed from three data flow relations computed from the program.
The first two capture the flow and control dependences. Unlike static slicing, these definitions
refer to the execution history; thus, they capture dependences that actually happened in the
particular execution of the program rather than dependences that may occur in some execution
of the program as is the case with static slicing. The final relation is explained below.

The first definition captures flow dependences that arise when one occurrence represent the
assignment of a variable and another a use of that variable. For example, in Figure 10 when c!
and c¢2 are both false, there is a flow dependence from s3 to ss.

Definition 8 Definition-Use (DU). v DUw — v' appears before w’ in the exvecution history
and there is o variable = defined at v', used at w/, but not defined by any occurrence between v'
and .

24



The second definition captures control dependence. The only difference between this defini-
tion and the static control dependence definition is that multiple occurrence of predicates exist.
Consequently, care must be taken to avoid a statement earing dependent on a predicate from
an earlier iteration of a loop.

Definition 9 Test Control (TC). v'TC w3 — w is control dependent on v (in the static sense)
and for all occurrences w* between v' and W, w is control dependent on v.

The definition of a dynamic . slice requires the use of
front(L',p') = collect(front(L,p), M.occurrence_of(l,P')). The above two relations are in- -
sufficient to ensure this. For example, the slice obtained from the program in Figure 10 taken
with respect to ({a}, 2, 3?) using only the above two relations is < 1',2!,22,3% >, which omits
3!. In this example the omission would be benign, but in other examples the slice would not
have the correct execution history. Korel and Laski solve this problem by including the following
relation. Note that this produces a conservative solution to the problem. That is, some dynamic
slices are bigger than they need to be.

Definition 10 Identity Relation (IR). v IRW — v = u.

The relations DU, TC, And IR are used to formulate the algorithm for a dynamic slicing by
computing an ever growing approximation to occurrences in the slice. Let E be the execution
history produces for program P when run on input /. In the following two equations only the -
front of E is of interest to the dynamic slice, since only these occurrences may affect the point
where the slice originates.

The first approximation to the slice taken with respect to (V, I, I') contains the direct control
and data influences:

S° = {vi € front(E,l') | v TCUI} U {v! € front(E,l')|z € V Az is defined at ¢/ but not
defined by any occurrence between v? and I'.

The slice is found by iterating the following until a fixed point is reached. S+ = S'U {7 €
front(E,l')|3uk € §7s.t. v (DUUTCUIR)u*}. The above iteration must terminate since E
is finite and bounds each S'. To complete the slice it is necessary to include the occurrence with
respect to which the slice was taken. Finally, the sliced program P’ is obtained by projecting
out of P those statement that have occurrences the fixed point solution.

EXAMPLE. The dynamic slice of Execution History 2 from Figure 10 taken with respect
to ({a}, 2, 3!) is computed as follows

DU = {(1*,2')(3',8')(6",8)(82,9")}

TC = {(2},3%)(2},4")(2",8")(2",3%)(2!,4%)(2",8%)(2%,3%)(2?,4%)(2?,8%)(4*,5")(5', 6)}

IR = {(2,2%)(2",2%)(2%,2°)(3", 3%)(4',4%)(8',8%)}

SO — {21}

St = {113 21}

S% = {1!,2'} = S; thus the iteration ends.
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S={3 u{1t,2'} = {11,213

Similar to static slicing, handling unstructured control flow requires modifying the definition
of control dependent on used in the definition of TC. Unlike static slicing, handling different
data types can be done more precisely in a dynamic slice. First consider arrays. Because
the subscript value is known at run time, the ambiguity of array accesses in static slicing is
gone. The only complication this raises is that different occurrences of a statement may assign
different variables (for simplicity, we consider each array element a different variable). Records
are similarly handled by treating each component as a separate variable. Finally, consider
dynamically allocated memory. This can also be handled by giving each newly allocated block
of memory a pseudo name. At the end of the next section we describe how Agrawal and Horgan
replace the notion of (pseudo) variable name to improve dynamic slicing in debugging.

2.4 Dynamic Slicing as a Graph-Reachability Problem

Agrawal and Horgan presented the first algorithms for finding dynamic slices using dependence
graphs [5]. We first consider two simple dynamic slicing algorithms that are imprecise. We then
consider two exact algorithms that differ only in their space complexity. The initial description
of all four algorithms assumes scalar variables. The extensions necessary to handle complex
data structures including, for example, (unconstrained) pointers, arrays, records, and unions
.are considered at the end of this section

The first two algorithms both mark some portion of a PDG as “executed.” The first marks
executed vertices and the second marks executed edges. Both algorithms suffer because they
summarize in one place (a vertex or an edge) all the times a statement or dependence edge
between statements was executed. The first algorithm initially labels all vertices in the PDG
as “unexecuted.” As the program runs, whenever a statement is executed its corresponding
vertex is marked as “executed.” After execution the slice is computed by applying the static
slicing algorithm restricted to only marked vertices (and the edges that connect them). Thus,
unexecuted vertices will not be in the dynamic slice.

As illustrated in Figure 12 by Slice 1, this approach produces imprecise slices because it is
possible for a vertex to be marked executed even though it does not actually affected a given
computation. For Slice 1, s3 is executed, but the assignment at sg overwrites the value written
to a. Therefore, s;3 need not be in the dynamic slice.

The second algorithm marks “executed edges.” This produces more precise answers by
leaving out statements that were executed, but had no influence on the variables in the slice
(the corresponding edges were not “executed.” It’s imprecision comes in loops where different
iterations execute different edges. In Slice 1 shown in Figure 12, marking edges allows the
algorithm to leave out s3, because the flow dependence edge from s3 to sg is never executed.
However, for the 2, this edges is executed during the first iteration of the loop. Since the second
iteration overwrites the value of @, s3 need not be in the dynamic slice. The problem is that
different iterations require marking different edge occurrences . Summarizing all occurrences on
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Slice 1: slice on z at s¢ for the input N=1, where ¢/ and c2 both true:
static slice contains s,—s,
dynamic slice (marking nodes) contains 5,~sg, 55, 9
dynamic slice (marking edges) contains s, 5;, §4=5¢, 55, Sy

Slice 2: slice on z at s, for input N=2, where ¢/ and c2 false on the first iteration and true on the second:
static slice contains s,—sy
dynamic slice (marking nodes) contains s,—sg, 55, Sg
dynamic slice (marking edges) contains s,—5s¢, 53, S

Figure 12: Two dynamic slices of the program shown in Figure 10 that show the limitation of
the first two dynamic slicing algorithms.
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PDG

Figure 13: The PDG for the program shown in Figure 10

a single edge introduces imprecision.

ExaMPLE. Figure 12 compares static slicing with these two dynamic slicing algorithms
for two different inputs. (Figure 13 shown the PDG for this program). The static slice taken at
(the vertex representing) statement sy with respect to z contains the entire program because all
three assignments to a may reach the use at statement sg. The node-marking dynamic slicing
algorithm produces a smaller slice for both inputs because s; does not execute in either case.
These slices, however, unwantedly include s3 which does execute, but which does not affect the
computation of z. The edge-marking algorithm correctly handles this in Slice 1, because the
flow dependence edge from s3 to sg is not executed. However, the weakness of the edge marking
algorithm is shown by Slice 2: Although the assignment at s, does no affect the output value of
z, this flow edges is executed by the first iteration of the loop. Because it is marked executed,
89 is included in the slice.

In order to omit statements in loops like s3, it is necessary to have multiple occurrences of
the vertices and edges in the loop. This is captured by the execution history of a program for
a given input. For example, Slice 2 of the program in Figure 12 produces the execution history
< 1, 2%, 31, 41, 81, 22 3! 42 52 62, 82, 23, 9 > where the superscripts are used to denote
different executions of the same statement.

A dynamic slice can now be defined in terms of a variable, an execution history, and an
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Figure 14: The DDG for the Slice 2 in the examle shown in Figure 12

occurrence of a statement in the execution history. The slice contains only those statements
whose execution had some effect on the value of the variable at the occurrence of the statement
in the execution history. To obtain this slice a Dynamic Dependence graph (DDG) is produced
from the execution history. A dynamic dependence graph has a vertex for each occurrence
of a statement in the execution history and contains only executed edges. Because a DDG
separates the occurrences of the executed vertices and edges, a vertex in a loop to have multiple
occurrences, which can have different incoming dependence edges. This removes the imprecision
in the two simple approaches.

Control dependence edges of the DDG are copies of the control dependence edges from
the static dependence graph. There is a single dynamic flow dependence for each variable v
referenced at a node n. The source of this edge is computed from the Dynamic Reaching
Definitions (DRDs), which are in turn computed from the execution history as follows:

DRD(var,empty) = §.

DRD(var, < previous-history | last_node >) =

{last_node} if var € def(last_node)
DRD(var, previousyistory) otherwise
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ExaMPLE. Figure 14 shows the DDG for the Slice 2 of the program shown in Figure 12.
This graph contains two occurrences of sg. The first has an incoming flow dependence edge from
s4 while the second has an incoming flow dependence edge from ss. Since the only occurrence
of s¢ has an incoming edges from the second occurrence of sg, s¢ and not s are included in the
slice.

The disadvantage of this approach is its space requirement. Since a loop may execute an
unbounded number of times, there may be an unbounded number of vertex occurrences. This is
clearly unacceptable and, it turns out, unnecessary. A dynamic slice is a subset of the original
program; consequently, there can be only a finite number of slices (subsets). The final dynamic
slicing algorithm, which computes the same slices as the third algorithm, exploits this fact to
limit the size of the dynamic dependence graph.

The fourth algorithm, considers each new vertex occurrence v as the DDG is built. If a
suitable vertex occurrence u exists in the DDG then v is merged into «. Vertex occurrence u is
suitable if its slice is the same as the slice of the new vertex occurrence. That is the statements
whose occurrences affect u are the same as the statements that affect v. Note that since the slice
is a projection of the DDG back on to the original program, it is possible to combine vertices
that are not created from the same statement.

The algorithm maintains three sets: De finition/Nodes, which maps a variable’s name to the
last vertex occurrence that defines it; PredicateNode, which maps a control statement to its
most recent occurrence in the DDG: and ReachingStatements, which, for each node n, contains
all the statements of the original program with an occurrence that reaches n. The slice with
respect to a occurrence of statement s is simply those statements in ReachingStatements(s),
when the occurrence of s is created.

2.4.1 Dynamic Slicing of Programs with Unconstrained Pointers

Agrawal and DeMillo extended the above notion of dynamic slicing to programs that contain
unconstrained (C like) pointers. The technique applies also to arrays, constrained (Pascal like)
pointers, records, and other data structures [4].

What makes unconstrained pointers difficult is the loss of the 1-1 mapping from variables
assigned and used and from memory locations assigned and used. This is no longer true in
the presence of more complexed data structures. While aggregates such as records can be
handled by treating each field as a separate variable, and even array elements can be treated
as separate elements, since dynamic slicing has access to the run-time index value, pointers
presents a particularly difficulty problem. If we ignore “pointer laundering” through variant
records, constrained pointers, such as those found in Pascal, always point to a nameable object
of a particular type. Special names are given to objects allocated from the heap. As with
records and arrays, run-time information allows us to identify the particular object pointed to
by a given pointer. In contract, unconstrained pointers , such as those found in C, may use or
modify arbitrary (unnamed) memory locations.
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This forces us to generalize first the notion of a variable (var in the proceeding definition ofa
Dynamic Reaching Definition) to memory cells. Each cell is composed of a starting address and
a length. A flow dependence exists between a node that modifies cell; and a node the reference
cell, if cell; and celly overlap. This occurs when there is a non-empty intersection of the set
of addresses cell, .start, ..., celly .start + celly length and cell start, ..., celly.start + celly.length.
For example, if cell; represents an assignment to a structure and celly represents a use of a field
in this structure then the two cells overlap. Notice that an assignment to a field of the structure
may only modify part of the cell (the same is true of assignments to an element of an array). In
the following definition, the function PreCell(cell 1, celly) denotes the part of cell) before cell,.
Likewise, PostCell(celly, celly) denotes the part of cell; after celly.

Definition 11 DRD in the presence of unconstrained pointers. Let cell' = def(last_node).
DRD(cell,empty) = 0
DRD((address,0), history) = 0
DRD(cell, < previous_history | last_node >) =

DRD(cell, previous_history) if cellNcell =9
last_node U DRD(PreCell(cell, cell'), previous_history)
U DRD(PostCell(cell, cell’), previous_history) otherwise

This technique works well when dealing the kind of error shown in the following code (note
that different compilers may lay memory out differently):

{
int i, j, al4];
i=2
for (i=0; i<=4; i++)
alil = 0; /* incorrectly assigns j=0 when i = 4 */
print j;
}

When ¢ = 4, the cell defined by alil = 0 and the cell for j overlap (the are identical in
this example). A static slice with respect to j at the end of the program would only include
the assignment j = 2. However, the dynamic slice using the above definition of dynamic data
definition includes the assignment “afi] = 0" and the enclosing for loop. An indication that j is
getting clobbered by the loop.
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2.5 Alternative Approaches to Computing Program Slices
2.5.1 Denotational Program Slicing: Functional Semantics

Hausler [39] has developed a denotational approach for slicing structured programs. This ap-
proach uses the functional semantics of the “usual” restricted structured language; one with
scalar variables, assignment statements, if-then-else statements, and while statements. The
Mills’ semantics [60] is defined for the language: the meaning of the program is determined by
a mapping from the variables to values.

In the Mills’ semantics, programs are constructed by composition of statements (i.e. func-
tions from state to state). This permits the definition of a sliceable subprogram: any sequence
of statements with the last j statements deleted. Thus slices can be taken at arbitrary points
in the program.

The function

o : statements X variables — variables

captures the relevant sets. While the function
6 : statements X vartables — statements

captures the slice. These two functions are defined semantically for each language construct.
This vields a precise “Millsian” slice; moreover, gives primitive recursive finite upper bounds on
the number of times repetitive statements must be iterated to obtain the slice. These bounds
are linear in the number of assignment statements in the program.

2.5.2 Denotational Program Slicing: Descriptive Semantics

Venkatesh [91] also looked at denotational slicing with the aim of separating semantically based
definitions of a program slice from the justification of the algortihm to compute the slice. He has
constructed a three dimensional framework for the comparison and analysis of the definitions of
a slice: ‘

1. Executable or Closure®

2. Forwarc_l or Backward
3. Static or Dynamic

and then gives semantic definitions of the 8 combinations.

In [91] the idea of “contamination” was introduced as an extension to the usual semantics of
the language in order to clarify the differences of the concepts. This notion is further elaborated
on in [34] as a form of error propagation to slice functional programs. In both instances,

5«Closure” comes from the graph-theoretic method used to compute the slice.
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contaminated values are tracked via the semantics; in the end all contammated expressions are
those that are in the forward slice.
Tip [89] gives an alternative characterization using 4 criteria:

1. Computation Method: Data-Flow, Functional, or Graph-Reachability
2. Interprocedural Solution or not
3. Control Flow: Structured or Arbitrary

4. Data types: Scalars, Composites, Pointers.

2.5.3 Information Flow Relations

Bergeretti and Carré [13] construct three binary information flow relations on a structured
subset of a Pascal-like language. These relations are associated with each program statement
(and hence inductively over the entire language). The first relation, A, over V x V, where
V is the set of variables of the program, associates values of program variables on entry to a
statement, S, with values of variables on exit from S. This can be loosely interpreted as “the
value of v on entry to S may be used in the evaluation of the expression e in S.” This relation
is a formalization of the results of Denning and Denning [25] in secure information flow.

The second relation, p, also over V x V, associates values of variables on entry to statement
S with the value(s) of the expression parts in S. That is, “the value of v on entry to S may be
used in obtaining the value w on exit from S.” The entry value of v may be used in obtaining
the value of some expression e in S, that in turn may be used in obtaining the exit value of w.

The third relation, y, over E x V where E is the set of expressions in the program, associates
an expression e with a variable v for statement S iff “a value of expression e in S may be used
in obtaining the value of the variable v on exit from S.” For example, if S is the assignment
statement “a:= b+ ¢ then

MS) = {(b,a),(c,a)}
p(S) = {(b,a),(c,a)} U{(v,v) —(a a)|veV}
w(S) ={(b+ec,a)}

Transitive closure of the p relation permits construction of a partial program associated with
a variable. This partial program is a program slice taken with respect to the variable at the
last statement of the program. Relation y is related to the edges of a dependence graph. For
example, it need only be computed once after which a program slice can be computed in linear
time.
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2.5.4 Parametric Program Slicing

Parametric program slicing [27] uses graph rewriting to compute constrained slices. The con-
straint refers to the amount of input available. A fully constrained slice (where input has a
fixed constant value) is a dynamic slice, while a fully unconstrained slice is a static slice. A
partially constrained slice is computed when some inputs have known values. The resulting slice
is smaller than a static slice, but does not require complete execution of the program as with a
dynamic slice.

Constrained slices are computed using a term graph rewriting system [9]. As the graph is
rewritten, modified terms and sub-terms are tracked. As a result, terms in the final (completely
rewritten) graph can be tracked back to terms in the original graph. This identifies the slice
of the original graph that produced the particular term in the final graph. A minimal amount
of syntactic post processing is necessary to convert this “term slice” into a syntactically valid
sliced program.

2.5.5 Dynamic Slicing using Dependence Relations

Gopal describes a technique for computing dynamic slices using dependence relations {35]. This
approach abstracts from the program three relations at each statement S:

1. S,: the dependence of statement S on the input value of variable v.
2. wvg: the dependence of output variable v on statement S.
3. v,: the dependence of output variable v on the input value of variable u.

Rules are given for different statement kinds (e.g., assignment and conditional statements)
and for sequences of statements. For example, the rules for the composition of statements S!
and S? are as follows (o represents the composition operator):

1. S, =S uU(S20l)

2. vg=viU(v2o})

3. vy = (v 05,)U(SzNS,)

2.5.6 Parallel Slicing

Danicic, et al. [37] introduce a parallel algorithm for computing backward, static slices. This is
accomplished by converting the CFG into a network of concurrent processes. Each process sends
and receives messages that names the relevant sets of variables. The significant contribution of
this work is that the algorithm outputs the entire set of criteria which would yvield the computed
slice. Thus the set of all criteria of a given program is partitioned into equivalence classes, with
the slice itself used as the partitioning relation.
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2.5.7 Value Dependence Graphs

The value dependence graph, (VDG) [92], is a data flow-like representation that evolved from
an attempt to eliminate the control flow graph as the basis of the analysis phase and using
demand dependences instead. The VDG is a representation that is independent of the names
of values, the locations of the values, and when the values’ are computed. It is a functional
representation that expresses computation as value flow. A value is computed if it is needed.
Thus, VDG requires explicit representation of stack and heap allocators, I/O ports, etc, so that
value can be obtained. Loops are represented as function calls, so no backward pointing edges
are required, as in the CFG. The VDG has two advantages that make it suitable for program
slicing: all operands are directly connected to the inputs (via the functional semantics) and the
computation is expressed as value flow. So a single VDG represents the slices for every possible
computation. The drawback to this approach is that points of computation are lost; values are
the only sliceable objects.

3 Applications of Program Slicing

This section describes how program slicing is used in a collection of application domains. In
applying slicing to these domains several variations on the notions of program slicing as describe
in Section 2 are developed. The order of this section in not necessarily the historical order in
which the problems were addressed. Rather, they are organized to facilitate presentation. For
example, the differencing techniques described in Section 3.1 grew out on the integration work
described in Section 3.2.

3.1 Differencing

Programmers are often faced with the problem of finding the differences between two programs.
Algorithms for finding tertual differences between programs (or arbitrary files) are often insuf-
ficient. Program slicing can be used to identify semantic differences between two programs.
There are two related programs differencing problems:

1. Find all the components of two programs than have different behavior.
2. Produce a program that captures the semantic differences between two programs.

Dependence graphs solutions to both problems have been given. The only reason for not using
the data-flow approach is efficiently; the solutions require multiple slices of the same program,
which can be done in linear time using dependence graphs.

For programs old and new, a straightforward solution to Problem 1 is obtained by com-
paring the backward slices of the vertices in old and new’s dependence graphs Goq and Gpey.
Components whose vertices in Gpe,, and Goq have isomorphic slices (see [45] for a definition of
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isomorphic slices) have the same behavior in old and new [86]; thus, the set of vertices from
Gnew for which there is no vertex in G4 with an isomorphic slice safely approzimates the set
of components new with changed behavior. This set is a safe as it is guaranteed to contain all
the components with different behavior. It is (necessarily) an approzimation because the exact
differencing problem is unsolvable.

We call the vertices in G with different behavior than in Guq the set of affected points.
The complexity of the straight forward solution for finding affected points outlined above is
cubic in the size of Ghew (slice isomorphism can be determined in linear time [45]). This set
can be efficiently computed in linear time using a single forward slice starting from the set of
directly affected points: those vertices of G, with different incoming dependence edges than in
Goa [21].

A solution to the second differencing problem is obtained by taking the backward slice
with respect to the set of affected points. For programs with procedure and procedure calls,
two modifications are necessary: First, the techniques described at the end of Section 2.2.2
are required to ensure the resulting program is executable. Second, this solution is overly
pessimistic: consider a component ¢ in procedure P that is called from two call-sites ¢; and c».
If ¢ is identified as an affected point by a forward slice that enters P through ¢; then, assuming
there is not other connection, we want to include ¢; but not ¢y in the program that captures
the differences. However, the backward slice with respect to ¢ would include both ¢; and ¢;. A
more precise solution can be obtained by using a combination of the individual interprocedural
slicing passes describes in Section 2.2.2 [21].

3.2 Program Integration

The program integration operation concerns the problem of merging program variants [15, 21,
43]. Given a program Base and two variants, A and B, each created by modifying separate copies
of Base, the goal of program integration is to determine whether the modifications interfere,
and if they do not, to create an integrated program that incorporates both sets of changes as
well as the portions of Base preserved in both variants. The need for program integration arises
when a system is “customized” by a user and simultaneously upgraded by a maintainer, and the
user desires a customized, upgraded version; or when several versions of a program exist and
the same enhancement or bug-fix is to be made to all of them. :

The integration algorithm uses program differencing to identify the changes in Variants A
and B with respect to Base. Preserved components are those components that are not affected
in A or B. This set is safely approximated as the set of components with isomorphic slices in
Base, A, and B. A merged program is obtained by taking the graph union of the (dependence
graph for) the differences between A and Base, the differences between B and Base, and the
preserved components. This program is then checked for interference. Interference exists if the
changes in Variant A and Variant B are incompatible. If there is no interference a merged
program is produced that captures the changed behavior of A and B along with the preserved
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behavior of all three programs.

While it is N P-hard[43], an important property of the algorithm is that it is semantics-based.
An integration tool makes use of knowledge of the programming language to determine whether
the changes made to Base to create the two variants have undesirable semantic interactions;
only if there is no such interference will the tool produce an integrated program. The algorithm
also provides guarantees about how the execution behavior of the integrated program relates to
the execution behaviors of the base program and the two variants.

3.3 Software Maintenance

Software maintainers are faced with the upkeep of programs after their initial release and face
the same problems as program integrators: understanding existing software and making changes
without having a negative impact on the unchanged part. A new kind of slice, called a decom-
position slice [32], is useful in making a change to a piece of software without unwanted side
effects.

While a slice captures the value of a variable at a particular program point (statement), a
decomposition slice captures all computations of a variable and is independent of program loca-
tion. A decomposition slice is useful to a maintainer when, for example, variable v is determined
to have a value to be changed. A differencing tool based on decomposition slicing, called the
Surgeon’s Assistant [28, 32|, partitions a program into three parts (assume the computation of
variable v is to be changed):

Independent Part. Statements in the decomposition slice taken with respect to v that are
not in any other decomposition slice.

Dependent Part. Statements in the decomposition slice taken with respect to v that are in
another decomposition slice.

Compliment. Statements that are not independent (i.e., statements in some other decompo-
sition slice, but not v’s).

Variables can be similarly categorized:

Changeable. All assignments to the variable are within the independent part.

Unchangeable. At least one assignment to the variable is in a dependent part. If the main-
tainer modifies this statement, the new value will flow out of the decomposition.

Used. Variables used in the compliment but not in the independent or dependent parts. The
maintainer may not declare new variables with these names.



For a maintainer trying to change the code, only independent and dependent statements
(i.e., the decomposition slice taken with respect to v) are of interest. Furthermore, the Surgeon’s
Assistant only allows modifications of the independent part and changeable variables (and newly
declared variables). The advantage of this approach is that after making a modification only
the independent and deppendent parts need be tested. The complement is guaranteed to be
unaffected by the change: testing on the complement is unnecessary[31]. Finally, a program is
formed by merging the modified independent part and the unchanged compliment. This can be
done in linear time[30], without adverse side affects to computations in the compliment. The
result is a modified and tested program:

3.4 Testing

Software maintainers are also faced with the task of regression testing: retesting software after
a modification. This process may involve running the modified program on a large number of
test cases, even after the smallest of changes. Although the effort required to make a small
change may be minimal, the effort required to retest a program after such a change may be
substantial. Several algorithms based on program slicing have been proposed to reduce the cost
of regression testing. While decomposition slicing eliminates the need for regression testing on
the complement, there still may be a substantial number of tests to be run on the dependent,
independent and changed parts. Slicing can be used to reduce the number of these tests.

The following algorithms assume programs are tested using test data adequacy criterion:
a minimum standard that a test suite (a set of test cases) must satisfy. An example is the
all-statements criterion, which requires that all statements in a program be executed by at least
one test case in the test suite. Satisfying an adequacy criterion provides some confidence that
the test suite does a reasonable job of testing the program [11, 79, 20].

Gupta et. al., present an algorithm for reducing the cost of regression testing that uses
slicing to determine components affected transitively by an edit at point p [36]. They consider
a variety of different types of edits (statement addition, statement deletion, modification of
the variables used in a statement, etc.) While some of these require simplified versions of the
following procedure, in general two slices are used. The first slice is a backward slice from p.
Definitions in this slice of variables used at p are recorded. The second slice is a forward slice
also starting from p. Uses in this slice of variables defined at p are recorded. Def-Use pairs from
a definition in the first slice to a use in the second are potentially affected by the change and
must be retested. ,

Bates and Horwitz present test case selection algorithms for the all vertices and all flow-
edges test data adequacy criterion [11]. The key to their algorithm is the notion of equivalent
ezecution patterns. Two program components with equivalent execution patterns are executed
by the same test cases [11]. Consider, for example, a component old from a tested program
and component new of a modified version of this program. If test case t tests old, and old and
new have equivalent execution patterns then test case t is guaranteed to test new. No new test
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case need be devised (even if new does not exist in the original program). The algorithms only
selects tests that test changed portions of the modified program.

Components with equivalent execution patterns are identified using a new kind of slice called
a control slice. A control slice, which is essentially a slice taken with respect to the control
predecessors of a vertex, includes the statements necessary to capture “when” a statement is
executed without capturing the computation carried out at the statement.

The notion of equivalent execution patterns is to strong in the presence of procedures and
procedure calls because it does not separate different calling-contexts (z.e., different chains of
call sites). Consider a simple program with two procedures main and P where main calls P. If
another call to P is added to main then the control slice for any component in P will include this
new call and therefore cannot be isomorphic with any control slice from the original program.
Consequently two such components cannot have equivalent execution patterns.

Calling context is more accurately accounted for by replacing equivalent execution patterns
with the weaker notions of common ezecution patterns [20]. Components with common execution
patters have equivalent execution patterns in some calling context. These components are
identified using another kind of slice called a calling-context slice, which applies the second pass
of backward slicing algorithm described in Section 2.2.2 “back” through the sequence of call-sites
that make up a calling-context.

Program differencing can be used to further reduce the cost of regression by reducing the size -
of the program that the tests must be run on [17]. For a small change, the program produced
using the program differencing techniques described in Section 3.1 is considerably smaller and
consequently requires fewer resources to retest, especially when run on the reduced test set
produced by any of the above algorithms.

3.5 Debugging

Program slicing was discovered as an operation performed by experienced programmers when
debugging code [95, 93]. Programmers, given a piece of code with a bug in it, were asked to
describe the code after removing the bug. They could reproduce certain “parts” of the code
almost exactly, while others they could not. These parts were not continuous blocks of text
(e.g., files, procedures, or functions), but rather they were what we now call program slices.
Formalization of this debugging activity lead to the first algorithms for program slicing (93, 94].

Turning this around, a tool that computes program slices is a valuable aid in debugging. It
allows the programmer to focus attention on those statements that contribute to a fault. In
addition, hilighting a slice assists in uncovering faults caused by a statement that should be in
a slice but is not.

Several kinds of slices are useful in debugging. First, dynamic slicing is one variation of
program slicing introduced to assist in debugging [53, 54]. When debugging, a programmer
normally has a test case on which the program fails. A dynamic slice, which normally contains
less of the program than a static slice, is better suited to assist the programmer in locating a
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bug exhibited on a particular execution of the program. As seen in section 2.4.1, dynamic slicing
can even assist in finding bugs caused by invalid pointers or array subscripts.

Slicing is also useful in algorithmic debugging, which applies the following algorithm to the
debugging process: starting from a external point of failure (e.g., an arrant output value), the
debugging algorithm localizes the bug to within a procedure by asking the programmer a series
of questions. These questions relate to the expected behavior of a procedure. For example,
“should add(4,2) return 67?” Based on these answers, procedures that have the expected output
are treated as working, while procedures that produce unexpected answers are “opened.” This
means the debugger attempts to determine if the calls in the procedure produce expected results.
Algorithmic debugging terminates ends at a procedure with no calls or in a procedure in which
all the calls produce the expected output.

One draw back of algorithmic debugging is its asking questions about procedures that do
not effect a buggy result. Program slicing can be of assistance here [50]: any call not in the slice
with respect to the buggy output can be ignored; it cannot affect the buggy result. Further,
parameters that are not in the slice, even for a call that is, can also be ignored.

Debugging was also the motivation for program dicing and latter program chopping. Dicing
uses the information that some variables fail some tests, while other variables pass all tests,
to automatically identify a set of statements likely to contain the bug [66]. A program dice is
obtained using set operations on one or more backward program slices. Some dices are more
interesting than others. The interesting ones include the intersection of two slices, and the
intersection of slice A with complement of slice B. The first dice, which identifies common code,
is helpful in locating bugs when two computations are both incorrect assuming all incorrectly
computed variables are identified and no program bug masks another bug [{66]. This dice is also
useful in ensuring software diversity in safety critical systems. If for example, the computation of
trip-over-temperature-sensor and trip-over-pressure-sensor include the same computation (often
a function call) then this computation is in the dice taken with respect to the two trip signals.
Such a computation is of interested in safety critical systems because a bug in this computation
may cause both sensors to fail. ‘

The second dice, which yields code unique to A, is helpful in locating bugs in computation
on A if computation of B is correct. For example, consider a program that counts the number
of words and characters in a file. If the final value of character_count is correct, but the
final value of word_count is not then the second kind of dice could be applied. In this case, it
contains statements that affect the value of word_count but not the value of character_count.
This implies the looping and reading of characters from the file need not be considered.

The original work on dicing considered only backward slices. Incorporating forward slices
increases the usefulness of dicing. For example, the notion of program chopping identifies the
statement that transmit values from a statement ¢ to a statement s [49]: chop(t, s) includes those
program points affected by the computation at program point ¢ that affect the computation at
program point s. A program chop is useful in debugging when a change at ¢ causes an incorrect
result to be produced at s. The statements in chop(t, s) are the statements that transmit the
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effect of the change at ¢ to s. Debugging attention should be focused there. In the absence of
procedures, chop(t, s) is simply the intersection of the forward slice taken with respect to ¢t and
the backward slice taken with respect to s and can be viewed as a generalized kind of program
dice. The same is not true for interprocedural chopping [85].

As initially introduced, s and t must be in the same procedure, P, and only components from
P are reported. This was later generalized to allow s and t to be in different procedures and
to contain components for procedure other than P [85]. It is interesting to noté that for inter-
procedural chopping the dicing idea of intersections a forward and backward slice is imprecise.
Interprocedural version of other set theoretic operations on slices that work with intraprocedural
slices, have eluded researchers [81]. Precise interprocedural chopping is addressed in {85].

3.6 Software Quality Assurance

Software quality assurance auditors are faced with a myriad of difficulties, ranging from inad-
equate time to inadequate computer-aided software engineering (CASE) tools [33]. One par-
ticular problem is the location of safety critical code that may be interleaved throughout the
entire system. Moreover, once this code is located, its effects throughout the system are diffi-
cult to ascertain. Program slicing is applied to mitigate these difficulties in two ways. First,
program slicing can be used to locate all code that contributes to the value of variables that
might be part of a safety critical component. Second, slicing-based techniques can be used to
validate functional diversity (i.e., that there are no interactions of one safety critical component
with another safety critical component and that there are no interactions of non safety critical
components with the safety critical components).

A design error in hardware or software, or an implementation error in software may result
in a Common Mode Failure of redundant equipment. A common mode failure is a failure as a
result of a common cause, such as the failure of a system caused by the incorrect computation
of an algorithm. For example, suppose that X and Y are distinct critical outputs and that X
measures a rate of increase while Y measures a rate of decrease. If the computation of both of the
rates depends on a call to a common numerical differentiator, then a failure in the differentiator
can cause a common mode failure of X and Y.

One technique to defending against common mode failures uses functzonal diversity. Func-
tional diversity in design is a method of addressing the common mode failure problem in software
that uses multiple algorithms on independent inputs. Functional diversity allows the same func-
tion to be executed along two or more independent paths.

One technique to solve this problem combines Fault Tree Analysis and program slicing. Once
the system hazards have been identified, the objective of fault tree analysis is to mitigate the
risk that they will occur. One approach to achieving this objective is to use system fault tree
analysis. Under the assumption that there are relatively few unacceptable system states and
that each of these hazards has been determined, the analysis procedure is as follows. The auditor
assumes that a hazard has occurred and constructs a tree with the hazardous condition as the
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root. The next level of the tree is an enumeration of all the necessary preconditions for the
hazard to occur. These conditions are combined with logical and and or as appropriate. Then
each new node is expanded “similarly until all leaves have calculable probability or cannot be
expanded for some reason”[59].

System fault tree analysis gives the auditor the sub-components of the system that must
be carefully examined. Part of this examination is the validation that there are no interactions
with non-critical functions. The determination of the specific components that will be examined
is up to the auditor. This information should be obtainable from the design documentation.

Slicing is used as an aid to validating safety as follows. First, the auditor uses system fault
tree analysis to locate critical components. The software that is invoked when a hazardous
condition occurs is identified in the system. The auditor then locates the software variables
that are the indicators of unsafe conditions. Program slices are extracted on these “interesting”
variables. These slices can be used to validate that there are no interactions between critical
components or with non-critical components using program dicing.

Program slices can also be used to assure diversity: computed from the outputs of individual
hazards can be examined to determine the logical independence of the events. For instance, if
A and B are two critical conditions, the dice computed by intersecting the program slices on
these two conditions provides partial information on whether or not both conditions can occur
simultaneously. If the dice is empty then there is no way that the software can guarantee that
both will not occur simultaneously (there may be other ways the verify that both will not occur).
If the dice in not empty, inspection of the overlap may prove that both conditions cannot occur
together (although the functional diversity of such computations is suspect).

These program projections can also be highlighted for more vigorous analysis, inspection
and testing. A static program slice can be further refined by examining the trajectory of specific
inputs through the program; dynamic slices are used to observe individual instances of the
computation. This simplifies the tedious task of the auditor and permits undivided attention to
be focused on the analytic portions of the audit.

The utility of a slicing tool comes from automating the task of finding statements that are
relevant to a computation. Without any tool, the software quality assurance auditor evaluating
functional diversity would examine the program under consideration until outputs were identified
that should be computed independently. The auditor would then try to verify independence by
reading code.

Unravel [67] is a static program slicer developed at the National Institute of Standards
and Technology as part of a research project. It slices ANSI-C programs. Its only limitations
are in the treatment of unions, forks, and pointers to functions. The tool is divided into
three main components: a source code analysis component to collect information necessary for
the computation of program slices, a link component to link flow information from separate
source files together and an interactive slicing component that the software quality assurance
auditor can use to extract program components and statements for answering questions about
the software being audited.
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3.7 Reverse Engineering

Reverse engineering concerns the problem of comprehending the current design of a program
and the way this design differs from the original design. This involves abstracting out of the
source code the design decisions and rationale from the initial development (design recognition)
and understanding the algorithms chosen (algorithm recognition).

Program slicing provides a toolset for this type of re-abstraction. For example, a program
can be displayed as a lattice of slices ordered by the is-a-slice-of relation [32, 81, 12]. Comparing
the original lattice and the lattice after (years of) maintenance can guide an engineer towards
places where reverse engineering energy should be spent. Because slices are not necessarily
contiguous blocks of code they are well suited for identifying differences in algorithms that may
be span multiple blocks or procedures.

Beck and Eichmann observer that elements “towards the bottom” of this lattice are often
clichés [12]. For example, in the word count program the slice that reads the characters from a
file is contained in (is-a-slice-of ) three other slices (these slices count the number of words, lines,
and characters in the input). The common slice is the read-a-file clicheé.

Beck and Eichmann also propose the notion of interface slicing for use in reverse engineering.
Understanding a program often requires identifying its major abstractions and there interfaces.
An interface slice is essentially a forward slice taken with respect to the entry vertices in a
collection of procedures {12]. This projection of a general software module (e.g., a set, list, or
window widget), captures the particular behaviors required for a particular use.

An interface slice is computed from an interface dependence graph as a forward graph traver-
sal. The dual of this operation uses a backward graph traversal (i.e., traverses the dependence
edges from target to source). Starting from all calls on procedure P, this “backward” interface
slice includes the public interfaces for those procedures (from other modules) that require P.

While interface slicing is useful in reverse engineering, it seems more useful in reshaping the
development process. In particular, as Beck and Eichmann observe, a programmer with access
to a large repository of software modules often wants only part of the functionality of a module
in the repository. Presently, the programmer has two unsatisfactory options: (1) create a special
copy of the module, or (2) include unwanted code. The first option requires access to the source
code, which may not be possible. It also creates multiple copies of some functions from the
module, which complicates later updates. The second option increases the code size and may
degrade the performance of the compiler when optimizing the code.

Interface slicing can be used to provide a third alternative that has neither of these defi-
ciencies: the complete module is made available to the interface slicer. A programmer, desiring
partial functionality from a module, tells the interface slicer which exported functions are re-
quired. The interface slicer the produces the public interface for the required functions without
releasing the source for their implementation. Thus a specialized version of the original is made
available to the programmer without introducing a new copy or releasing proprietary source
code.
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3.8 Functional thesion

Cohesion is an attribute of a software unit that purports to measure the “relatedness” of the
unit. Cohesion has been qualitatively characterized as coincidental, logical, procedural, commu-
nicational, sequential and functional, with coincidental being the weakest and functional being
the strongest{98]. Yourdon and Constantine note that functional cohesion “is an integral part
of, and is essential to, the performance of a single function.” [9§]

To construct a slicing-based measure of functional cohesion, Bieman and Ott [16] define
data slices, a backward and forward static slice that uses data tokens (variable and constant
definitions and references) rather than statements as the unit of decomposition. This definition
ensures that any change will impact at least one slice and leads to a slice abstraction model of
the procedure under consideration: one can regard the slice as the sequence of variable tokens
that are contained in it.

The tokens that are in every data slice are referred to as super-glue; tokens that are in more
than 1 data slice are referred to as glue. The metrics are based on the ratios of the appearance
of glue and super-glue tokens in a slice. Strong Functional Cohesion is the ratio of super-glue
tokens in the slice to the number of tokens in the slice. Weak Functional Cohesion is the ratio
of glue tokens in the slice to the number of tokens in the slice.

Another method for measuring cohesion is to measure the adhesiveness of the individual
tokens. A token that glues five data slices together is more adhesive than a token that glues
only two data slices together. Thus, the adhesion of an individual token is the ratio of number
of slices in which the token appears to the number of data slices in a procedure.

Bieman and Ott show that these metrics form a well-defined, ordinal measure of the func-
tional cohesion of a program. That is, they show the orderings imposed match ones intuition.
They are unable to show that are on a ratio scale (that meaningful composition of the metrics
exist). The measures are not additive. The study of the relationship of these metrics to product
attributes such as reliability and maintainability is ongoing.
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