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What we did last time

Learned some operational laws:

- They relate different system 
variables such as utilization, throughput and  
service demand.

- They do not require distribution  
assumptions about arrival processes and   
service times.
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What we did last lecture? (cont.)

Learned the performance bounds for closed 
computer systems:

- To improve performance bounds, need to 
improve the bottleneck device.
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Single Server Open Systems

server

queue
jobs
arrival 

service time distribution

FCFS
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Single Queue Models

The single queue model is the simplest 
queueing model.

Such a model can be used to analyze individual 
resources in computer systems.

E.g., if all the jobs waiting for the CPU in a 
system are kept in one queue, then the CPU can 
be modeled using results that apply to single 
queues.

Response time and queue length are the major 
performance metrics.
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Lecture Outline

1. notation of M/M/1 queue

2. exponential distributions & Poisson   
processes

3. solution for M/M/1 queue

4. M/M/1 queue with finite buffers

5. single queue with multiple servers

6. comparison of system configurations
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Queueing Notation
To specify a queueing system, we need to specify six 
parameters:

1. arrival process - interarrival time distribution

2. resource demands - service time distribution

3. number of servers

4. system capacity - finite buffers vs infinite buffers

5. population size

6. service disciplines - FCFS, LCFS, PS, etc.
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The Arrival Pattern I

Each job is assumed to be drawn from the 
population or input source.

Queueing theory usually assumes an infinite 
population because the mathematical model is 
easier to analyze.

If the jobs arrive at time t1, t2, t3,…, the 
interarrival times of jobs are defined as ti+1 - ti, 
for i = 1,2,… 
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The Arrival Pattern II

We assume the arrivals of jobs follow a 
statistical pattern. 

I.e., the interarrival times of jobs follow a 
common probability distribution with mean 1 / λ.

λ is called arrival rate of jobs.
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The Service Distribution I 

We assume the service demands of jobs are 
identically and independently distributed with a 
common distribution.

If the work demand of a job is S units, and the 
corresponding server has the capacity C 
units/sec, 

then the ratio S / C is called the service time.
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The Service Distribution II

E.g.,

- each program on the average has 200  
instructions 

- the CPU executes 4000 instructions per second

We say the service time follows a distribution 
with mean 0.05 seconds.
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The Service Distribution III

Hereafter, 

we only specify the service time distribution and 

denote the service time by S.

The inverse of the mean service time is called 
the service rate µ.
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Shorthand Notation

We use a shorthand notation to specify the six 
parameters :

A/S/m/B/K/SD

where 
A is the interarrival time distribution
S is the service time distribution
m is the # of servers
B is the # of buffers
K is the population size
SD is the service discipline
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Common Distribution Notation

Since the interarrival time and service time are 
random variables, we need notations to specify 
some of the common probability distributions:

M - exponential

D - deterministic (constant)

G - general (gamma, Weibull, Pareto, etc …)
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Example

M/M/3/20/1500/FCFS
means:

- exponential interarrival and service time

- 3 servers and buffer size 20

- 1500 jobs that can be served

- service discipline is first come, first served
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Example (cont.)

If the last 3 terms are unspecified, it means 

- infinite buffers 

- infinite population size 

- FCFS discipline
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The Exponential Distribution

The exponential distribution (Exp) is used to 
model the time between successive events.

The service time at devices are also modeled as 
exponentially distributed.

The probability density function of the Exp with 
rate µ is given as 

f(x) = µ exp(- µx) for x ≥ 0.
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Memoryless Property

The most important feature of the Exp is the 
memoryless property : 

the residual service time of a job follows Exp(µ), 

no matter how long the job has been serviced.
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Poisson Processes

When the interarrival times of jobs are 
identically and independently distributed as 
Exp, the arrival process is a Poisson process.

It’s called Poisson because the # of arrivals over 
a given time interval has a Poisson distribution.

A Poisson arrival process with rate λ means the 
interarrival times follow Exp with rate λ.
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Properties of the Poisson Process I

Memoryless : the remaining time before the next 
arrival follows Exp(λ), 

no matter when the last arrival took place.

Superposition : if we combine m Poisson input 
streams with rate λi into a single stream, 

then we again have a Poisson process with the 
rate 

λ = λ1 + λ2 + … + λm.
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Properties of the Poisson Process II

Decomposition : if we split a Poisson stream 
into k substreams such that the probability of a 
job going to the i-th substream is pi, 

then each substream is also Poisson with the 
rate piλ.
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M/M/1

M/M/1 queue means a single-server system with 
Poisson arrivals and exponentially distributed 
service time.

M/M/1 queue can be used to model 
• single-processor system
• individual devices in computer systems

This queueing model is analytically tractable 
under the exponential assumptions.



12
Title
Date

© 1998 by Carnegie Mellon University

© 2001 Carnegie Mellon University Performance Analysis II23

M/M/1 -Parameters

The input parameters of a M/M/1 queue include

- arrival rate λ

- service rate µ

The performance quantities are based on these 
two parameters and the traffic intensity ρ = λ / µ.

Additional to the exponential assumptions, we 
also assume the system is stable, 
i.e. ρ <1 or λ < µ.
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Performance Metrics

The common performance metrics include:

E{Ns} = mean # of jobs in the system

E{Nq} = mean # of jobs in the queue

E{Ts} = mean time in the system for a job

E{Tq} = mean waiting time in the queue

U = utilization of the server
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Basic Relations

Since the mean # in the server is equal to the 
utilization, we have

E{Ns} = U + E{Nq}
and

E{Ts} = E{S} + E{Tq}.

Note that E{S} = mean service time = 1 / µ.

If we know E{Ns} or E{Nq}, by Little’s Law, we 
can get E{Tq} or E{Ts}.  
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Markov Processes

1

λ λ λ λλ

µ µ µ µµ
0 2 3 k

Due to the exponential assumptions, the # of jobs in 
the system can be modeled as a Markov process.

In probability theory, Markov processes have been 
well studied and the solution for computing
P (# jobs in the system) exists.
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Solution

Undergoing the black-box operation, we have 
the stationary distribution for job #:

P(n jobs in the system) = (1- ρ) ρn.

Form this, we can deduce the mean # in the 
system:

E{Ns} = ρ / (1- ρ)

By Little’s Law, the mean time in the system is:
E{Ts} = 1 / [ µ (1- ρ)]
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System Utilization

Question : From the probability distribution of 
job # in the system, how do we compute the 
utilization?

Answer : utilization = P(the server is busy)
= P(n>0) 
= 1 - P(n=0)
= ρ.

So, E{Nq} = E{Ns} - U = ρ2/ (1- ρ).

By Little’s Law, E{Tq} = ρ/ [ µ (1- ρ) ].
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M/M/1/B finite buffer systems

serverqueue

FCFS
Is system 
full? No

Yes
Can hold only B jobs
in the system.

New arrival will
be lost if the 
system is full.

Exp(µ)

Poisson λ
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Markov process for M/M/1/B

1

λ λ λ λ

µ µ µ µ
0 2 3 B

The Markov process is the same as the M/M/1 
case but with a finite # of states.



16
Title
Date

© 1998 by Carnegie Mellon University

© 2001 Carnegie Mellon University Performance Analysis II31

Solution

After going through the black-box operation, the 
probability distribution for the # of jobs in the 
system is:

P(n jobs in the system) = ρn (1 - ρ) / (1 - ρB+1 )

for n = 0,1,2,…,B.

From the # jobs distribution, we can deduce 
E{Ns} and E{Ts}. 

But they are too complicated to show here.

© 2001 Carnegie Mellon University Performance Analysis II32

Loss Probabilities 

The more interesting quantity for the finite 
buffer queue is the loss probability, i.e., the 
fraction of jobs that are turned away.

Another nice property of Poisson processes is 
that the Arrivals See Time Averages (PASTA).

i.e., P(an arrival sees n jobs in the system)
= P(n jobs in the system)
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Capacity Planning

Loss probability
= P(an arrival sees B jobs in the system) 
= P( B jobs in the system)
= ρB (1 - ρ) / (1 - ρB+1 ).

Question : For a system with traffic intensity ρ, 
how large a buffer size do we need in order to 
keep the loss probability less than 1%?

Answer : we need to solve for B numerically in 
ρB (1 - ρ) / (1 - ρB+1 ) < 0.01
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M/M/m Multiple Server Systems

M/M/m queue is used to model
• multiprocessor systems
• devices that have several identical servers

1

2

m

FCFS

Poisson λ

service time ∼ Exp (µ)Whenever a server
is idle, it takes the job
at the head of the queue,
if there is one.
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Markov Process for M/M/m queue

1

λ

µ

0 2 m-1 m m+1

λ λλλλ

mµ(m-1)µ2µ mµ3µ mµ

The service rate is not constant due to the multiple
servers.

When there are fewer than m jobs in the system, they
are going at a lower rate.

The traffic intensity is defined as ρ = λ/ ( mµ ).
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Solution

After the black-box operation, the stationary 
distribution for job # in the system is:

P(n jobs in the system) 

= P0 (m ρ)n / n! , if n < m

= P0 ρn mm / m! , if n ≥ m
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Probability of System Idle

P0 is the probability of zero jobs in the system, 
which is found to be:
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Probability of Queueing

An interesting quantity in M/M/m queue is the 
probability of queueing

or the probability that an arriving job needs to 
wait before it accesses the server.

Again, by PASTA, 
Pq = probability of queueing

= P(at least m jobs in the system)

= (mρ)m P0 / [m! (1- ρ)].
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Performance Metrics

From the stationary probability distribution and 
Little’s Law, we can deduce the following 
results:

E{Ns} = mρ + ρ Pq / (1- ρ)

E{Nq} = ρ Pq / (1- ρ)

E{Ts} = 1 / µ + ρ Pq / [λ (1- ρ)]

E{Tq} = ρ Pq / [λ (1- ρ)]
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Single queue vs Multiple queues I

λ/m

λ/m

λ/m µ

µ

µ

multiple queues

mµ

single queue

λ

Should we put all the resources together to form a 
single server or
split the jobs into different queues?
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Single queue vs Multiple queues II

The single queue is just an M/M/1 queue with 
traffic intensity ρ = λ / ( mµ ).

For the multiple queues, if we split the jobs 
randomly such that they have equal probability 
of going to each server,

then we still have Poisson arrivals processes.
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Single queue vs Multiple queues III

Hence, the system can be modeled as m 
independent M/M/1 queues with traffic intensity 
ρ = λ / ( mµ ).

Since all the M/M/1 queues are identical, we only 
need to look at one of them.
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Comparison

Multiple queue : ρ = ( λ/m)/ µ = λ / (m µ)

E{Ts} = m ρ / [λ (1- ρ)]

Single queue : ρ = λ / (m µ)

E{Ts} = ρ / [λ (1- ρ)]

So the single queue is m times faster than the 
multiple queues. 
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One fast server or m slow servers?

µ
λ

µ

µ mµ

M/M/m M/M/1

λ

Now we know that multiple queues is no good.
Should we use one fast server or m slow server?
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Comparison I

Note that both systems have the same traffic 
intensity

ρ =  λ / (m µ).

We look at the ratio of the mean response times: 

E{Ts
M/M/m} / E{Ts

M/M/1}

= 1/µ + ρ Pq / [λ (1- ρ)]  /  ρ / [λ (1- ρ)]

= Pq + m(1- ρ).
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Comparison II

When ρ ≈ 0, then Pq ≈ 0, 

E{Ts
M/M/m} / E{Ts

M/M/1} = Pq + m(1- ρ) = m.

M/M/1 is m times faster than M/M/m.

When ρ ≈ 1, then Pq ≈ 1, 

E{Ts
M/M/m} / E{Ts

M/M/1} = Pq + m(1- ρ) = 1.

M/M/m and M/M/1 have the same mean response time.
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Comparison III

As the service rate of the M/M/m system is lower 
than M/M/1, each job has to spend more time at 
the server.

However, when the traffic intensity is high, each 
job needs to wait longer in the queue in the 
M/M/1 model compared to the M/M/m model.

From this result, we also know that putting all 
the jobs in a single queue is better than putting 
them in separate queues, when we have multiple 
servers.
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Remarks

One of the advantage to use multiple queues is 
that we can provide guaranteed services to 
different classes of jobs.

The result holds only when the service time is 
exponentially distributed. 

For general service time distribution, multiple 
queues may have a lower mean response time 
than the single queue.
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Homework

Exercises on 

- applying operational laws to timesharing  
systems

- M/M/m queueing modeling


