Refractions, Reflections and Caustics: Basic Concepts

Lecture #15

Reflection and Refraction

Snell's Law

- α Incoming = α Reflected
- $\sin(\alpha)/\sin(\beta)$ = Refractive Index (material dependent)
- Refractive index inversely proportional to speed of light (Huygens Principle)

Air	1.0003
Water	1.333
Glycerin	1.473
Immersion Oil	1.515
Glass (Crown)	1.520
Glass (Flint)	1.656
Zircon	1.920
Diamond	2.417
Lead Sulfide	3.910

Snell's Law and Refractive Index Effects

Light Refraction Through Glass and Water

Image Formation with a Convex Lens

Reflection

Reflections From the Surface of Water

Smooth Water Surface

Wavy Water Surface

Figure 1

Reflection from Convex and Concave Surfaces

Outside Spoon Bowl

Inside Spoon Bowl

Experiment

Reflections from a shiny floor

From Lafortune, Foo, Torrance, Greenberg, SIGGRAPH 97

Really starts to be noticeable at less than 10-15° from the surface.

Fresnel Reflectance

Metal (Aluminum)

Angle from normal

Dielectric (N=1.5)

Gold F(0)=0.82 Silver F(0)=0.95

Schlick Approximation
$$F(\theta) = F(0) + (1 - F(0))(1 - \cos \theta)^5$$

CS348B Lecture 10

Pat Hanrahan, Spring 2002

Fresnel Term

• Fresnel Term as found in text books is $F = \frac{1}{2} \left(\sin^2(\alpha - \beta) / \sin^2(\alpha + \beta) \right) + \tan^2(\alpha - \beta)^* \tan^2(\alpha + \beta)$

Returns good results for strong reflecting water surfaces

Approximated Fresnel Term

- $F_0 = (N-1)^2/(N+1)^2$ is a minimum of incoming light parallel to the normal of the surface.
- $F_{\alpha} = F_0 + (1 \cos(\alpha))^5$ * $(1 F_0)$ is a value between 0 and 1 depending on the angle between the incoming ray and the surface normal.
- e.g. F_{90} = 1, if the incoming ray is parallel to the surface, all light is reflected.

Faceted Diamond Reflections

Designed to reflect all light eventually to Observer.

Anti-reflective Coatings

- Reduce unwanted, stray reflections
- Use material coatings on glass to reduce reflection and maximize transmission.
- Take advantage of destructive light interference.

"One of the most significant advances made in modern lens design, whether for microscopes, cameras, or other optical devices, is the improvement in antireflection coating technology."

Anti-reflective Coatings

Geometry of Lens Antireflective Coatings

Magnesium fluoride very commonly used on Lenses, Microscopes

Refractions or Reflections?

Refractions or Reflections Confusion

Why do you see shiny roads when they are diffuse and are not wet?

Why do you see apparent reflections in deserts?

Where else do you see apparent reflections?

Do you see reflections above objects???

Reflection at the Critical Angle

Mirage and Looming Artifacts

Figure 7

Total Internal Reflection in Fiber Optics

Internal Light Wave Reflections

Used in Endoscopy, Communications

Water Drops: Refractions + Reflections

A Drop and its Environment.

World in a drop

Shapes of falling drop

Shapes of falling drop

Refraction and Reflection

Refraction

$$\theta_r = 2(\pi - \theta_n) + 2sin^{-1}(\frac{sin(\theta_n)}{\mu})$$

$$\phi_r = \pi + \phi_n.$$

Geometric mapping

 $\rho = m \, a \, sin \, \theta_n \,, \quad \phi = \phi_n \,.$

Experiments: Refraction

Experimental setup

Calculated corners are in green

Photometry of Refraction

Plot of Transmitted Radiance

Experiment: Photometry of Refraction

Experimental Setup

Rendered

actual image

difference image

Reflection

$$\theta_s = 2\theta_n - \pi$$

$$\phi_s = \pi + \phi_n.$$

Photometry of Reflection

$$L_s(\hat{n}) = k(i)L_e(\hat{s})$$

Reflection vs. Refraction

$$L(\hat{n}) = (1 - k(i))^2 L_e(\hat{r}) + k(i) L_e(\hat{s})$$

Rendering a Rain drop

Environmental Illumination

Rendering a Drop

World in a Rain Drop

Low Library

Tired of water drops?

Wait, there's more...

Rainbows : Refractions + Reflections + Wavelength of Light

Visible Light Wavelength Dispersion

Equilateral Dispersing Prism

Can you see rainbows during midday?

Why are there two rainbows?

Are there only two rainbows?

Why the color pattern?

Bright Sky under and Dark above the Rainbow

Photo by Ben Lanterman taken immediately after a heavy rainstorm when the air was quite saturated at 4PM.

Caustics: Bunching up Reflections or Refractions

What is wrong with this rendering?

With caustics

Looking at Water

- Light is reflected and refracted at the same time
- There is a light pattern on the ground (Caustics)

- Shafts of light and caustics:
 - http://nis-lab.is.s.u-tokyo.ac.jp/~nis/cdrom/pg/pg2001_iwa.pdf

Caustics by Refraction

- Light is refracted by the water surface
- Some spots are stronger illuminated then others

Light rays through a water surface

Lacemaker's Refracting Condensers (1800s)

Figure 1

Water-filled glass spheres to focus or condense candlelight onto small areas

Lighting Effects

CS348B Lecture 1

Pat Hanrahan, Spring 2002

Graphics Definition

Create nice pictures with translucent objects and render nice effects on diffuse surfaces.

Caustics in Cornell Box

Modeling and Animating Water Surfaces

Caustics by Reflections

Reflections and Caustics: Catadioptric Imaging

Refractions/Reflections and Caustics: Photon Mapping

Lecture #16