Fast Separation of Direct and Global Images Using High Frequency Illumination

Shree K. Nayar, Gurunandan Krishnan, Michael D. Grossberg, Ramesh Raskar

Presented by: Yiying Li and Harrison Billmers
Related Works

- **Inverse Light Transport (Seitz et. al. ICCV 05)**
 - Estimates interreflections contribution given the number of reflections
 - Based on Lambertian assumption and large amounts of data need

- **Dual Photography (Sen et. al. Siggraph 05)**
 - Estimates the transport matrix between camera and projector
 - Still requires a lot of images
 - Don’t need full transport matrix
Direct and Global Components

• Direct Components
 • The radiance of a scene point due to illumination from the source directly

• Global Components
 • Radiance of a scene point due to illumination from other points in the scene
 • Interreflections
 • Subsurface scattering
 • Volumetric scattering
 • Translucency
Direct and Global Components

\[L[c, i] = L_d[c, i] + L_g[c, i] \]

Radiance = Direct Component + Global Component

\[L_g[c, i] = \sum_P A[i, j] L[i, j] \]

The sum of all interreflections from all patches

\[A[i, j] \]

BRDF and Geometry

\[L[i, j] \]

Radiance of patch \(j \) in the direction of patch \(i \)

\[L_g[c, i] = L_{gd}[c, i] + L_{gg}[c, i] \]

\[L_{gd}[c, i] = \sum_P A[i, j] L_d[i, j] \]

2nd order of the form as above

\[L_{gg}[c, i] = \sum_P A[i, j] L_g[i, j] \]
Interreflections

\[L[c, i] = L_d[c, i] + L_g[c, i] \quad L_g[c, i] = \sum_{P} A[i, j] L[i, j] \]
High Frequency Illumination Pattern

Source

Camera

Surface
Direct and Global Components

\[L_g[c, i] = L_{gd}[c, i] + L_{gg}[c, i] \]

\[L^+_{gd}[c, i] = \sum_Q A[i, j] L_d[i, j] \quad L^+_{gg}[c, i] = \sum_P A[i, j] L_g[i, j] \]

If \(A \) is smoothing and we sample at high enough frequency

\[L^+_{gd}[c, i] = \alpha L_{gd}[i, j] \]

\[L^+_{gg}[c, i] = \alpha L_{gg}[i, j] \quad \alpha = \text{Fraction of the patches lit} \]

\[L^+[c, i] = L_d[c, i] + \alpha L_g[c, i] \]
High Frequency Illumination Pattern

\[L^+[c,i] = L_d[c,i] + \alpha L_g[c,i] \]
\[L^-[c,i] = (1-\alpha)L_g[c,i] \]

\[L^+[c,i] = L_d[c,i] + \alpha L_g[c,i] + b(1-\alpha)L_g[c,i] \]
\[L^-[c,i] = bL_d[c,i] + (1-\alpha)L_g[c,i] + \alpha bL_g[c,i] \]
Subsurface Scattering

Source

Camera

Translucent Surface
Volumetric Scattering

Source

Camera

Translucent Surface
Experiment System

• Using a scene with variety of physical phenomena
• Scene is lit with a 1024x768 Projector
• Images were captured with a same size (1024x768) camera
 • Due to the Bayer filter and the noise it incurs
 • 32 takes of the same scene was averaged per image

A: Diffuse Interreflection (Board)
B: Specular Interreflection (Nut)
C: Subsurface Scattering (Marble)
D: Subsurface Scattering (Wax)
E: Translucency (Frosted Glass)
F: Volumetric Scattering (Dil. Milk)
G: Shadow (Fruit on Board)
Experiments

- **Experiment 1**
 - Vary the size of the illumination patch used to construct the high frequency pattern
 - From 3 to 11

- **Experiment 2**
 - Lit the scene with 100 different illumination patterns
 - Kept points of interests unlit @ 6x6 patch

- **Experiment 3**
 - Vary alpha

- **Experiment 4**
 - Vary the frequency of the checkerboard patterns
Experiment 1: Unlit Surrounding Patch

- A: Diffuse Interreflection (Board)
- B: Specular Interreflection (Nut)
- C: Subsurface Scattering (Marble)
- D: Subsurface Scattering (Wax)
- E: Translucency (Frosted Glass)
- F: Volumetric Scattering (Dil. Milk)
- G: Shadow (Fruit on Board)
Experiment 2: Randomized Lighting

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>68.2</td>
<td>35.1</td>
<td>43.8</td>
<td>67.4</td>
<td>72.4</td>
<td>18.7</td>
</tr>
<tr>
<td>std. dev.</td>
<td>2.3</td>
<td>2.2</td>
<td>5.5</td>
<td>2.3</td>
<td>7.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

- A: Diffuse Interreflection (Board)
- B: Specular Interreflection (Nut)
- C: Subsurface Scattering (Marble)
- D: Subsurface Scattering (Wax)
- E: Translucency (Frosted Glass)
- F: Volumetric Scattering (Dil. Milk)
- G: Shadow (Fruit on Board)
Experiment 3: Alpha Variation

A: Diffuse Interreflection (Board)
B: Specular Interreflection (Nut)
C: Subsurface Scattering (Marble)
D: Subsurface Scattering (Wax)
E: Translucency (Frosted Glass)
F: Volumetric Scattering (Dil. Milk)
G: Shadow (Fruit on Board)
Experiment 4: Vary Checkerboard Frequency
Checkboard Illumination Shifts

Due to some light-leakage and defocusing from the projector, more than two images were taken to minimize error.

A 8x8 pixel checkboard pattern (alpha = 0.5) was advanced by 3 pixels 5 times in each direction, for a total of 25 images. The min and max (L_{min}, L_{max}) were found per pixel, in turned used for computing direct and global illumination (L_d, L_g).
Results

Scene

Direct

Global
Results

Scene

Direct

Global
Results

Scene

Direct

Global
Novel Image
Results

Scene

Direct

Global
Variants of Separation Method

- Coded Structured Light
- Shifted Sinusoids

Rather than using a projector, utilize a natural light source and occlude.

- Shadow of Line Occluder
- Shadow of Mesh Occluders
Results
Results

Scene

Direct

Global
Photometric Stereo using Direct Images

Source 1 Source 2 Source 3

Bowl

Global

Direct

Shape

Nayar et al., 1991
Single Image Separation

Utilize an $n \times m$ window around pixels.

Save the value if it is the min or max in its window.

Interpolate to generate full resolution image.

Reduce resolution by a factor of k through averaging.
Failure Case

Direct

Global

Scene
Score: 2 (accept)

Pros:

Simple Concept
Lots of results
Photometric Stereo confirmation

Cons:

Mainly qualitative approach for proving effectiveness
Appendix could be clarified
No details on how source occluders were removed from images
Additional Results
Results
Results

Scene

Direct

Global