# Compressive Light Field Photography using Overcomplete Dictionaries and Optimized Projections

Kshitij Marwah<sup>1</sup>

Gordon Wetzstein<sup>1</sup>

Yosuke Bando<sup>2,1</sup>

Ramesh Raskar<sup>1</sup>

<sup>1</sup>MIT Media Lab

<sup>2</sup>Toshiba Corporation

Presenter: Chinghang Chen, Chenyang Li



# How is it done today?







Camera Arrays e.g., [Wilburn et al. 2002,2005]





Sequential Acquisition e.g., [Levoy and Hanrahan 1996], [Liang et al. 2008]

# **Problem & Assumption**

- Capture light field with one single camera by one snapshot without losing spatial resolution
- Natural light fields are sufficiently compressible in some basis or dictionary









#### Previous Mask-Coded Light Field Projection



Sum of Sinusoids or MURA [Veeraraghavan 2007]





- Multiplexing + linear reconstruction
- Low resolution light fields similar to the lenslets design

"On Plenoptic Multiplexing and Reconstruction", IJCV, Wetzstein et al. 2013

# **Compressive Sensing**



# **Light Field Capture**

$$i\left(x\right)=\int_{\mathcal{V}}l\left(x,
u\right)d
u.$$
  $i(x)=\int_{\mathcal{V}}f(x+s(\nu-x))\,l(x,
u)\,d
u$  Ray Optics  $s=d_{l}/d_{a}$  Light Field  $l(x,
u)$ 

#### **Problem Formulation**

$$\mathbf{i} = \mathbf{\Phi} \mathbf{l}, \quad \mathbf{\Phi} = \begin{bmatrix} \mathbf{\Phi}_1 & \mathbf{\Phi}_2 & \cdots & \mathbf{\Phi}_{p_{\nu}^2} \end{bmatrix}$$
 $\mathbf{i} \in \mathbb{R}^m$  the vectorized sensor image
 $\mathbf{l} \in \mathbb{R}^n$  light field
 $\mathbf{\Phi}_j \in \mathbb{R}^{m \times m}$ 
 $\mathbf{i} = \sum_j \mathbf{\Phi}_j \mathbf{l}_j$ 
 $\mathbf{i} = \mathbf{\Phi} \mathbf{l} = \mathbf{\Phi} \mathcal{D} \boldsymbol{\alpha} \quad \mathcal{D} \in \mathbb{R}^{n \times d} \quad \boldsymbol{\alpha} \in \mathbb{R}^d$ 



$$\begin{array}{ll} \underset{\{\boldsymbol{\alpha}\}}{\text{minimize}} & \|\boldsymbol{\alpha}\|_0 \\ \text{subject to} & \|\mathbf{i} - \boldsymbol{\Phi} \mathcal{D} \boldsymbol{\alpha}\|_2 \leq \epsilon \end{array}$$

$$\underset{\{\boldsymbol{\alpha}\}}{\operatorname{minimize}} \ \|\mathbf{i} - \boldsymbol{\Phi} \boldsymbol{\mathcal{D}} \boldsymbol{\alpha}\|_2 + \lambda \, \|\boldsymbol{\alpha}\|_0$$



# Solve for Alpha

Greedy Methods

Orthogonal Matching Pursuit (OMP)

Convex Relaxation Methods

Basis Pursuit Denoise (BPDN)



# **Compressive Light Field Reconstruction**







Basis Pursuit Denoise:

$$\begin{array}{ll} \underset{\{\boldsymbol{\alpha}\}}{\text{minimize}} & \left\|\boldsymbol{\alpha}\right\|_1 \\ \text{subject to} & \left\|\mathbf{i} - \boldsymbol{\Phi}\boldsymbol{\mathcal{D}}\boldsymbol{\alpha}\right\|_2 \leq \epsilon \end{array}$$



#### **Compressive Light Field Representation**



### **Compressive Light Field Representation**



# Compressibility



### **Compressibility Evaluation**





Light field atoms have better compression performance than other standard bases



### **Dictionary Learning**

 $lpha_i$  s.t.  $lpha_i$  is sparse

**Training light field** 

**Dictionary** 

Coefficient vector

for all i

Sample 1,800,000 random 4D patches from training light fields, use coreset of 50000 patches



# **Dictionary Learning**



# **Light Field "Atoms" in Dictionary**

Light fields can be represented by only a few of these atoms



5,000 atoms, each 9x9 pixels and 5x5 views

# **Optical Preservation of Light Field Info**





Proposed Technology: Mask-Coded Light Field Projection



- random and optimized optical codes
- multiplexing & nonlinear reconstruction

# **Mask Pattern Optimization**

$$G = \Phi \mathcal{D}$$

$$i =$$







**Image** 

Coded projection Dictionary Coefficient vector





# Prototype Setup with a Variable Mask





#### **Diffuse Scene**



Coded 2D Projection







Reconstructed 4D Light Field



#### **Diffuse Scene**



Coded 2D Projection



Reconstructed 4D Light Field



### Refocus



Reat Focus

# **Glossy Scene with Refraction**



Coded 2D Projection



Reconstructed Light Field 5x5 viewpoints

#### **Animated Scenes**



# **Additional Applications – Compression**

Light field represented by 5 most significant coefficients only



# **Additional Applications – Denoising**



# **Approach Summary**

#### Pros:

No spatial resolution loss, and one snapshot will do.

The dictionary is able to recover occluded scene, sharp edge, or complex lighting condition such as refraction.

#### Cons:

Dictionary is expensive to train, and the atoms are adapted to training data. (depth range, aperture diameter, scene structures)

The reconstruction complexity.

Light transmission loss.

# **Paper Summary**

- Solution to important issues
- Should talk more on the limitation, depth of field, or angular resolution
- The hardware implementation in this paper did not address artifacts such as angle-dependent color and intensity nonlinearities.
- **1.5**

# Thank you

Q&A