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Synaptic Plasticity Is A Major Research Area

● Long Term Potentiation (LTP)
● Reversal of LTP
● Long Term Depression (LTD)
● Reversal of LTD
● Short-Term Potentiation
● and more...

Thousands of papers!
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Types of Plasticity in Hippocampus

LTP

NMDA receptor dependent NMDA receptor independent

STP    |   LTP
1,2,3

E-S potentiation

Non-Hebbian LTP

Paired-pulse facilitation

Post-tetanic pot. (PTP)

Mossy fiber LTP

Bliss & Collingridge 1993

(E-S = epsp spike)
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Short-Term Plasticity

● Could serve a spike filtering function.
● Synapses with low probability of transmitter release are more 

likely to show facilitation.
– Acts as a high pass filter: high frequency spike trains will be 

transmitted more effectively.

● Synapses with a high probability of transmitter release are more 
likely to show depression.

– Acts as a low pass filter: occasional spikes are transmitted without 
change, but high frequency spike trains are attenuated.
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Properties of LTP
● Input specificity

– Only active input pathways potentiate.

● Associativity
– A strong stimulus on one pathway can enable LTP at another pathway 

receiving only a weak stimulus.
– Baxter & Byrne called this “heterosynaptic” LTP

● Cooperativity
– Simultaneous weak stimulation of many pathways can induce LTP.

● Rapid induction
– Brief high-frequency stimuli can quickly potentiate a synapse.
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Input Specificity Threshold Effect

LTP
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Associativity

LTP

LTP
weak

strong

LTP

LTP
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Cooperativity

LTP



10/31/21 Computational Models of Neural Systems 9

LTP in the Perforant Path of Hippocampus

before stim after stim

population spike
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Specificity and Associativity

● Electrodes placed so that S1 
activates fewer fibers than S2.

● Weak input S1 alone:
– PTP, but no LTP

● Strong input S2 alone:
– LTP only on strong pathway

● Weak + Strong together:
– LTP at both pathways

S1 (weak)

S2 (strong)
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The NMDA Receptor

Malenka 1999Magnesium block: very
little NMDA current
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Fluorescence Imaging of Calcium in Dendritic Spine

1 m2

Calcium influx in a CA1 pyramidal 
cell in response to HFS



10/31/21 Computational Models of Neural Systems 13

Response to Single Stimulus

Bliss & Collingridge 1993
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Response to High Frequency Spike Train

Bliss & Collingridge 1993
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Evidence that NMDA Receptor Contributes to LTP

● Blocking NMDA receptors blocks LTP even 
though the cell is firing.

● Activation of NMDA receptors causes Ca2+ 
to accumulate in dendritic spines.

● Buffering Ca2+ using calcium chelators 
inhibits LTP.

● Adding Ca2+ directly to the cell enhances 
synaptic efficacy, mimicking LTP.

● But stability of LTP may depend on other 
mechanisms (mGluR; 2nd messenger).
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Phases of LTP

● Short Term Potentiation (STP): 10–60 minutes
● Early stage LTP (LTP1): 1–3 hours

– blocked by kinase inhibitors but not protein synthesis inhibitors

● Late stage LTP2: several days
– blocked by translational inhibitors but

independent of gene expression

● Late stage LTP3: several weeks
– involves expression of 

Immediate Early Genes (IEGs)

dependent on 
protein synthesis



10/31/21 Computational Models of Neural Systems 17

Early Phase LTP
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AMPA Receptor trafficking

Citria & Malenka (2008)
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Calmodulin

● Calcium-binding protein involved in 
many metabolic processes

● Small: approx. 148 amino acids
● Can bind up to 4 calcium atoms
● Ca2+ could come from NMDA

current or release from internal
stores

● The Ca2+/calmodulin complex
activates CamKII
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CaMKII
● Calcium/calmodulin-dependent

protein kinase II: 2 rings of 6 subunits;
accounts for 1-2% of protein in the brain

● Activated by binding Ca2+/calmodulin complex.
● Must be phosphorylated to induce LTP.
● Acts on AMPA receptors & many other things.
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CaMKII Activation by Calmodulin
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Short-Term CaMKII Auto-Phosphorylation

● If intracellular concentration of Ca2+ is higher and 
Ca2+/calmodulin binds to two adjacent subunits, one can 
phosphorylate the other.  Lasts several minutes.
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Long-Term CaMKII Auto-Phosphorylation
Can Persist Independent of Calcium If

Auto-Phosphorylation Rate is High Enough

CaMKII as a “molecular switch”:
a kind of memory device inside
the dendritic spine.



10/31/21 Computational Models of Neural Systems 24

Retrograde Messengers as a Pre-Synaptic 
Mechanism for LTP

NO = nitric oxide

AA = arachidonic acid
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Retrograde Transmission of Endocannabinoids

LTD of excitatory 
synapses onto medium 
spiny cells in striatum 
resulting from 
retrograde transmission 
of an endocannabinoid 
signal.
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Late Phase LTP

Extracellular Signal-
regulated Kinase
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LTP and LTD
● Most synapses that exhibit  LTP also show LTD.
● Hypothesis: the balance between phosphatases and kinases 

determines potentiation vs. depression.

low frequency (1 Hz) high frequency

phosphatases dominate kinases dominate
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Ocular Dominance Formation in Area 17 (V1)

● Most neurons in area 17 show some ocular dominance (OD)
● Critical period for OD formation in kittens: up to 3 months
● OD column formation depends on activity of visual receptors

– Demonstrated through ocular deprivation experiments

● Also depends on postsynaptic
activity; NMDA-dependent
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BCM Rule and Ocular Dominance in Area 17 (V1)

● Monocular deprivation experiments:
– Brief period of MD shifts

dominance to the open eye
– OD changes take only a 

few hours to start
– Deprived eye responses can be

restored withing minutes 
by bicucculine (GABA blocker)

● Binocular deprivation (BD) does not decrease synaptic efficacy 
in 2 month old kittens.



10/31/21 Computational Models of Neural Systems 30

Bear et al. Model of Synaptic Plasticity in Area 17

c = ml⋅dl  mr⋅dr

c = cortical cell activity
m = synaptic weights
d = presynaptic activty

dm
dt

= c , c

left eye right eye
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Sliding Threshold

● When closed eye reopened, 
OD distribution quickly 
restored.

● Hypothesis: sliding threshold 
for synaptic modification.

● q
M
 = <c2>

● Sign of weight change 
depends on level of 
postsynaptic activity.
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BCM Rule
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BCM Rule Can Cause Increase or Decrease

900 pulses delivered
at the frequencies shown
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Need for Inhibitory Inputs

● Absence of presynaptic activity from deprived eye would cause 
weights to go to 0; how could they ever grow again?

● Solution: inhibition from interneurons makes it appear that the 
weights are zero, but in reality they're just small.

c = ml⋅dl  mr⋅dr  ∑ Lijc j
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What Does This Model Explain?

● Binocular deprivation (BD) doesn't reduce synaptic efficacy 
because the cortical cells aren't firing.
– Explanation: BCM learning requires at least some postsynaptic activity.

● Bicucculine (GABA blocker) restores deprived eye responses in 
minutes.
– Explanation: synaptic strengths for deprived eye need not decrease to 

zero.  Just need to get low enough to be balanced by cortical inhibition. 
Bicucculine shuts off this inhibition.
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How Might the Threshold q be Altered?

● Could level of CaMKII auto-phosphorylation determine the 
threshold q

M
?

● Auto-phosphorylation increases the affinity of CaMKII for 
calmodulin by 1000-fold.
– Could act as a calmodulin buffer
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How Might the Threshold q be Altered?

● q
M
 is supposed to be a function of postsynaptic cell spike rate, 

not activity level local to the dendritic spine.
● So for this theory to be correct, spike rate information must 

propagate back to all spines.  How does it do it?
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Synaptic Tagging and Capture

Redondo & Morris (2011)

PRP = plasticity-related products
E-LTP = early-stage LTP
L-LTP = late-stage LTP

How are synapses tagged for long term potentiation, which involves structural changes?
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Synaptic Tagging and Capture

Redondo & Morris (2011)

Potentiation of a weakly-stimulated synapse can be rescued by PRPs transported 
cell-wide as a result of strong stimulation at other synapses.
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Spike-Timing-Dependent Synaptic Plasticity

● Markram et al., Science, 1997
● Pair of thick-tufted layer 5 

pyramidal cells
● Synapses:

– black to red (green dots)
– red to black (blue dots)

● Paired pre- and postsynaptic 
spiking (5 spike pairs at 10 Hz, 
repeated 10 to 15 times spaced 
4 seconds apart)
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Spike-Timing-Dependent Plasticity
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Timing Window for STDP
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