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Dopamine Cells
● Located in SNc (substantia nigra pars compacta) and 

VTA (ventral tegmental area)
● Project to dorsal and ventral striatum, and also to various parts 

of cortex, especially frontal cortex.
● Respond (50-120 msec latency) with a short (< 200 msec) burst 

 of spikes to:
– Unpredicted primary reinforcer (food, juice)
– Unpredicted CS (tone, light) that has become a secondary reinforcer

● Reduced by overtraining; perhaps because environment now predicts
– High intensity or novel stimuli

● Response diminishes with repetition (loss of novelty)
– For a few cells (less than 20%): aversive stimuli
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What Do DA Cells Encode?
● Current theory says: reward prediction error.

– Nicely explains response to unpredicted reinforcers
– Novelty is somewhat rewarding to animals
– Aversive stimuli?  (prediction error)

● Teaching signal for striatum to learn to predict better.
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Specificity of Reward
● Schultz found all DA cells showed similar responses.
● But anatomy tells us that DA cells receive projections from 

different areas (cf. 5 or 21 parallel circuits in basal ganglia), so 
they should have different responses.

– Maybe the problem is that his animals were only tested on a single task.
– More recent experiments have shown that DA neurons can distinguish 

between more and less preferred rewards.
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Dopamine Synapses
● Dopamine cells project to striatal spiny cells.
● Dopamine cells contact the spine neck; cortical afferents 

contact the spine head.
● Heterosynaptic learning rule?

– Afferent input + subsequent dopamine input  LTP.

● Medium spiny cell:
– 500-5,000 DA synapses
– 5,000-10,000 cortical synapses
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Effects of Dopamine
● Focusing: dopamine reduces postsynaptic excitability, which 

focuses attention on the striatal cells with strongest inputs.
● Dopamine probably causes LTP of the corticostriatal path, but 

only for connections that were recently active.
● Since dopamine release does not occur in response to 

predicted rewards, it cannot be involved in maintenance of 
learning.

– What prevents extinction?
– Perhaps a separate reinforcer signal in striatum.
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TD Learning Rule
● Goal: predict future reward as a function of current input x

i
(t).

● Reward prediction error d(t):

● Simplifying assumption: no discounting (g equals 1).

V t  = ∑
i

wixit 

t  = r t   V t  − V t−1

Reward from 
hypothalamus

Indirect 
pathway

Direct 
pathway
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Simple TD Learning Model
● Barto, Adams, and Houk 

proposed a TD learning theory 
based on a simplified anatomical 
model.

● Striosomal spiny cells (SPs) learn 
to predict reinforcement.

● Dopamine cells (DA) generate the 
error signal.

● ST = subthalamic nucleus

Time 
delay
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Time 
delay
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Response to Reinforcers
● Indirect path is fast: striatum to GPe to STN excites dopamine 

cells in SNc/VTA.

● Direct path must be slow and long lasting.  GABA
A
 inhibition 

only lasts 25 msec. Perhaps GABA
B
 inhibition is used, but not 

conclusively demonstrated.
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What's Wrong With This Model?
● Even GABA

B
 inhibition may be too short lasting.

● The model predicts a decrease of dopamine activity preceding 
primary reward.
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Responses to Earlier Predictors
● Highly simplified model using fixed time steps.
● Timing is assumed to be just right for slow inhibition to cancel 

fast excitation: unrealistic.
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Problem: Lack of Timing Information
● The problem with this model is that a single striosomal cell is 

being asked to:
– respond to a secondary reinforcer stimulus (indirect path), and also
– predict the timing of the primary reward to follow (direct path)

● Need a more sophisticated TD model.
● If we use a serial compound stimulus representation, then the 

predicted timing of future rewards can be decoupled from 
response to the current stimulus.

● But this requires a major assumption about the striatum: it 
would have to function as a working memory in order to predict 
rewards based on stimulus history.
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Striatal Representations
● Caudate neuron that responds to stimulus L only within the 

sequence U-L-R.  Apicella found 35 of 125 caudate neurons 
responded to a specific target modulated by rank in sequence 
or co-occurrence with other targets.

Visual targets / levers: L=left, R=right, U=upper.
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Striatal Representations

Expectation- and preparation-related striatal neurons:
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Suri & Schultz TD Model

Complete serial compound representation can learn timing.
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TD Reward Prediction

predicted future 
reward ramps down
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Discounting Rate Shapes the Reward Prediction

Error near zero everywhere because 
reward fully discounted and 
prediction ramps up  slowly.
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Effects of Learning
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Separate Model For Each Reward Type



11/14/21 Computational Models of Neural Systems 22

Varying Model Parameters Allows Reward 
Prediction to fit Orbitofrontal Cortex Data

representation decay, but 
long eligibility trace

Reward X and reward Y are
two different liquids.
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Problems With the Suri & Schultz TD Model
● Correctly predicts pause after omitted reward, but incorrectly 

predicts pause after early reward.
● Can't handle experiments with variable inter-stimulus intervals: 

predicts same small negative error at each time step where 
reward could occur and same large positive response where it 
does occur.

● The source of these problems is that the complete-serial-
compound (delay line) representation is too simplistic.

S
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Daw, Courville, and Touretzky (2003, 2006)
● Replace CSC with a Hidden Semi-Markov Model (HSMM) to 

handle early rewards correctly.
● Each state has a distribution of dwell times.
● Early reward forces an early state transition.

S
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Early, Timely, and Late Rewards

Black = ITI state, white = ISI state; 
gray indicates uncertainty.
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Unisgnalled Rewards at Poisson Intervals
● Mean reward prediction error is zero, but mean partially rectified 

error (simulated dopamine signal) is positive, matching the data.
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Variable ISI

The hidden semi-Markov model shows reduced dopamine response when the 
reward appears later vs. earlier, in qualitative agreement with the animal data.
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Summary
● Dopamine seems to encode several things: reward prediction error, 

novelty, and even aversive stimuli.
● The TD learning model does a good job of explaining dopamine 

responses to primary and secondary reinforcers.
● To properly account for timing effects the simple CSC representation 

must be replaced with something better.
● Example: Hidden Semi-Markov Models

– Markov model = states plus transitions

– “Hidden” means the current state must be inferred

– “Semi-” means dwell times are drawn from a distribution; transitions do not occur 
deterministically

● But learning HSMMs is a hard problem: what are the states?
● How is an HSMM learned?  Cortex!
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Theories of Action Selection

1)  Actor/critic model (Barto)

2)  Prepare and Select model (Keeler et al.)
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Actor/Critic: Striosome vs. Matrix
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Striatum As Actor/Critic System (Speculative)
● Striosomal modules (critic) predict reward of selected action.
● Matrix modules (actor) select actions.
● Dopamine error signal trains critic to predict reward and matrix 

to select best action.

PD = pallidum
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Direct vs. Indirect Striatal Pathways
● Direct pathway MSNs express D1 receptors (excitatory effect).
● Indirect pathway MSNs express D2 receptors (inhibitory).
● Both types of MSNs can exhibit LTP.

From Keeler et al. 2014
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More Realistic View of Striatal Circuitry

From Keeler et al. 2014

D1,D2 = medium spiny cells
  expressing D1 or D2 receptor

DA = dopamine cells

FS = fast spiking interneuron

LC = large cholinergic 
         interneuron
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“Prepare and Select” Model
● Old model of direct/indirect pathways: “go” and “no go”.
● Newer model (Keeler et al., 2014): prepare and select.
● Reward learning occurs in both pathways.
● Direct pathway reward learning:

– D1 receptor activation increases the activation of MSNs
– This causes LTP, increasing the efficacy of cortical connections
– With learning, MSN activation becomes less dopamine dependent

● Indirect pathway reward learning:
– D2 receptor activation decreases the activation of MSNs
– But also leads to receptor internalization (removal from membrane)
– This makes the cell more easily excitable in the future, since tonic 

dopamine activity now has less inhibitory effect.
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“Prepare and Select” Model (cont.)
● D1 cells are more sensitive to phasic dopamine firing
● D2 cells respond more to the tonic firing rate
● Theorized control of instrumental behavior:

– Direct (D1) pathway is responsible for behavior initiation
– Indirect (D2) pathway guides execution

● How to test this?
– Behavioral experiments using D1 and D2 agonists and antagonists.
– See the paper for details.

● Still just a speculative proposal.
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