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The brain is an organ that processes information. Brain

systems such as the cerebellum receive inputs from

other systems and generate outputs according to their

internal rules of information processing. Thus, our

understanding of the cerebellum is ultimately best

expressed in terms of the information processing it

accomplishes and how cerebellar neurons and synapses

produce this processing. We review evidence that indi-

cates how Pavlovian eyelid conditioning reveals cerebel-

lar processing to be an example of feedforward control.

Eyelid conditioning demonstrates a capacity for learning

in the cerebellum that is error driven, associative and

temporally specific – as is required for feedforward con-

trol. This computation-centered view is consistent with

a variety of proposed functions of the cerebellum, includ-

ing sensory–motor integration, motor coordination,

motor learning and timing. Moreover, feedforward pro-

cessing could be the common link between motor and

non-motor functions of the cerebellum.

Manyideashavebeenproposedregardingthefunctionof the
cerebellum, including roles in sensory-motor integration,
motor coordination, motor learning, timing, solving the
inverse kinematic problem, sensory acquisition, etc. Such
statements offunction are lacking, in that they are generally
descriptions of what is missing when the cerebellum is
damaged. Our main thesis is that Pavlovian eyelid con-
ditioning makes it possible to understand the cerebellum in
terms of what it computes. We review evidence to suggest
that eyelid conditioning provides a relatively direct approxi-
mation of the input–output transformations of the cerebel-
lum. The emerging view portrays cerebellar computation as
a straightforward example of feedforward processing of
inputs in order to improve movement accuracy. Specifically,
we show how eyelid conditioning reveals a temporal
specificity to cerebellar learning that helps ensure that the
faulty motor commands are altered to improve an errant
movement. This hypothesis is consistent with ideas that the
cerebellum is involved in sensory-motor integration, motor
coordination, motor learning and timing.

From a model system to modeling a system

Although initially viewed as a model of associative learning,
it is increasingly clear that Pavlovian eyelid conditioning is
an especially useful means of studying cerebellar compu-
tation and its underlying mechanisms. This transition has
occurred with the steady accumulation of evidence to

indicate that eyelid conditioning engages the cerebellum
in a straightforward and conceptually useful manner. In a
typicalexperiment, thepairedpresentationofacuestimulus
such as a tone and a reinforcing stimulus such as a puff of air
directed at the eye leads to the acquisition of a conditioned
response: the eyelid closes in response to the tone (Fig. 1a).
Recording, lesion and stimulation studies have shown that

Fig. 1. Eyelid conditioning and the cerebellum. (a) In rabbit eyelid conditioning, a

tone serves as the conditioned stimulus (CS) and a puff of air or mild electrical

stimulation serves as the unconditioned stimulus (US). The cerebellum is crucial

for both learning and performance of conditioned eyelid responses (CRs). Data

points are taken from available literature. Learning is measured as CR probability

in asymptotically trained animals. (b) Learning depends strongly on the intersti-

mulus interval (ISI): the time between the onset of the CS and that of the US (top).

CR probability in asymptotically trained rabbits is maximal for an ISI between

200 ms and 500 ms, decreasing sharply for shorter intervals and more gradually

for longer ones. In addition, the CR is timed to the ISI, such that rabbits trained at

ISIs of 200 ms (blue) and 500 ms (green) will produce responses that peak near 200

and 500 ms after tone onset (vertical broken line), respectively (bottom). Traces are

from individual rabbits trained at the ISI indicated by the data points with corre-

sponding colors in the top panel. The markers above each trace in the bottom

panel indicate when the puff is presented relative to the tone on training trials.
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tone and puff presentations are conveyed to the cerebellum,
respectively, via activation of its two major types of afferents
– the mossy fibers and climbing fibers [1,2]. Furthermore,
output of the cerebellum via one of its deep nuclei is
responsible for the expression of the learned responses
[3,4] (Fig. 1a). This relatively direct mapping of stimuli
to inputs and of outputs to responses makes the
behavioral properties of eyelid conditioning a good
first approximation of the input–output transform-
ations of the cerebellum [5,6]. For example, the various
ways that tones and puffs can promote or fail to
promote learning suggest the rules that govern how
patterns of mossy fiber and climbing fiber inputs
engage cerebellar learning [7,8].

Two ways in which eyelid conditioning is influenced by
the delay between the onsets of the tone and the puff
(the interstimulus interval or ISI) are particularly telling
(Fig. 1b). Learning occurs for only a narrow range of ISIs.
In rabbits, acquisition of conditioned responses fails to
occur with ISIs ,100 ms, is robust with ISIs between 200
and 500 ms (tone before puff), and becomes increasingly
poor as the ISI increases beyond the optimal range [9]. The
timing of conditioned responses is also influenced by the
ISI. Latencies to onset and rise times are gauged so that
conditioned responses peak at about the time the puff is
normally presented [10]. Behavioral studies indicate that
this adaptive timing is learned and is not attributable to
the strength of learning where response latencies are short
for strong learning and longer for weak learning [11].

Our goal is to relate these time-dependent properties of
eyelid conditioning to concrete statements about the
computation performed by the cerebellum. In order to do
so, it will be useful to begin by reviewing the concept of
feedforward control.

Feedforward control and learning

Making accurate movements requires sensory input. In
principle, this input can be applied to motor commands in
two general ways: feedback and feedforward. This distinc-
tion can be illustrated using control of room temperature.
A standard thermostat controls room temperature via
feedback. It activates the heating–cooling system when
the thermometer (sensory input) signals that room
temperature differs from the target setting. Thus, feed-
back about current performance is used to generate output
commands. Although feedback control does not require
learning, only an accurate comparison between actual and
target temperature, it is inherently slow. A thermostat can
only react, after processing delays, to existing errors in
temperature, and cannot predict such errors. Moreover,
attempting to speed up a feedback-based system causes
oscillations [12] (Fig. 2a).

By contrast, feedforward control combines sensory
inputs and previous experience to predict the appropriate
output (Fig. 2b). This allows quick reactions because errors
are anticipated rather than detected. A hypothetical
feedforward thermostat would use input from a variety
of sensors to predict heater–cooler output required to
maintain desired temperature. For example, such a
system would react to the opening of a door on a cold
day (the sensory signal) with activation of the heating
system before the room temperature dropped. Although
feedforward control can be fast, accuracy requires learning
from previous experience. This learning involves the use of
simple directional error signals (e.g. room too cold) to
modify the subsequent responses of the system to similar
inputs. If the room becomes too cold after a window is
opened, the internal settings of the thermostat would be

Fig. 2. Feedback and feedforward control. (a) An example of a feedback-regulated thermostat. Though simple and accurate, feedback regulation tends to be slow and

attempts to speed it up cause oscillations. In this example, an attempted correction by a powerful heating system (in response to a decrease in temperature caused by

opening a window) overshoots the mark, forcing another attempted adjustment by a powerful cooling system that also overshoots the mark, and so on. The upper and

lower boundaries of the yellow area indicate the thresholds for detecting temperature change. (b) An example of a feedforward thermostat, which counteracts (orange

lines) the changes in temperature predicted by the opening of windows (green lines). Though much quicker than feedback control, feedforward control is more compli-

cated, requiring the ability to detect error-predicting stimuli (windows opening) and to delay anticipatory responses appropriately. Here, the opening of a large window

(unbroken green line) predicts a faster decrease in temperature than does the opening of a small window (broken green line). The anticipatory response (increasing room

temperature; broken or unbroken orange lines) must therefore be appropriately delayed in response to the predictive stimulus (opening a large or small window). This type

of calibration requires associative learning that is temporally specific.
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altered so that the heater is activated longer the next time
that window is opened.

If the cerebellum operates as a feedforward control
system, as has been previously suggested [12,13], then it
should display this type of associative learning in which
output is adjusted for sensory inputs that reliably predict
errors. This is precisely the capacity for learning in the
cerebellum that is revealed by eyelid conditioning. When
specific mossy fibers inputs (tone) reliably predict an error
signaled by a climbing fiber input (puff), cerebellar output
for subsequent tones is adjusted.

Temporally specific learning

The demands on this learning are made more complex by
the likelihood that not all sensory signals will predict
errors with the same time delay. The time-dependent
properties of eyelid conditioning show that cerebellar
learning is well suited to solve this problem.

In the thermostat analogy, some sensors might be
activated when a small window is opened, and others
activated by opening a larger window. On a cold day, these
signals would predict the same error (room too cold), but
with different delays (Fig. 2b). Similarly, the appropriate

responses to learn are differently timed: turn on the heater
rapidly after receiving an input connected to the large
window, but slowly activate the heater in response to a
signal connected to the small window (Fig. 2b). This
example illustrates that learning for a feedforward system
should adjust outputs so that they are time-locked to the
occurrence of the errors, not to the sensory inputs.

These basic ideas can be applied to produce more
specific and concrete expectations about the temporal
properties that cerebellar learning should display. When
an error signal arrives via a climbing fiber input, the faulty
cerebellar output that should be altered by learning has
already occurred ,100–200 ms ago (Fig. 3a, top). This
reflects the time required for cerebellar output to be
translated into movement, as well as for the movement
error to occur, be detected and conveyed to the cerebellum.
Thus, no learning should occur for mossy fiber inputs that
arrive ,100 ms before the climbing fiber error, because
they occur after the offending cerebellar output. Although
learning should occur for mossy fiber inputs that arrive
over a range of delays, as illustrated above, this range
cannot be infinite. Otherwise, each climbing fiber input
would induce learning for all prior mossy fiber inputs and

Fig. 3. Computational properties of the cerebellum. (a) The classical interstimulus interval (ISI) function in learning theory, as presented in Fig. 1, describes learning as

dependent on the interval by which the onset of the puff trails after that of the tone (top). In addition, the ISI determines the timing of the conditioned response (CR), with

longer ISIs producing increasingly delayed CRs (bottom). (b) The ISI function and ISI-specific timing, from the perspective of cerebellar computation. In this view, it is more

useful to think of learning as depending on when mossy fiber input (MF) occurs before climbing fiber input (CF) (top). Only a small window of intervals within a range

appropriate for fast movements supports learning. In addition, cerebellar output is adjusted so that it occurs just before and peaks near the puff-evoked error (bottom). The

accurately timed eyelid closure minimizes the movement error. The markers above each trace in the bottom panel indicate when the onset of MF activity occurs in relation

to the CF input on training trials.
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there would be no specificity to the learning. These
constraints define the period over which mossy fiber
inputs could be useful predictors of the climbing fiber
error signal (Fig. 3b, top). Learning should occur for mossy
fiber inputs that arrive within a limited temporal window,
defined by a relatively sharp boundary around 100 ms and
falling off gradually at the other boundary. Figure 3
illustrates that this is the temporal window of learning
displayed by eyelid conditioning (compare Fig. 3a with
Fig. 3b, top).

Although cerebellar learning can be engaged by mossy
fiber signals that precede climbing fiber error signals over
a range of time delays, the appropriate change in
cerebellar output should occur just before the error signal,
when the faulty motor commands were issued. This is the
same temporal specificity displayed by conditioned eyelid
responses, which are timed to occur just before the error
signal (Fig. 3b, bottom). Thus, eyelid conditioning reveals
that when a mossy fiber input consistently predicts a
climbing fiber error signal with a specific time delay,
cerebellar learning will adjust output at the appropriate
time so that the errant motor commands are altered. In
summary, eyelid conditioning reveals that the temporal
properties of cerebellar learning are appropriate for
predictive feedforward control.

Mechanisms of temporally specific learning

Analysis of cerebellum-dependent behaviors such as eyelid
conditioning and adaptation of the vestibulo–ocular reflex
(VOR) has revealed a great deal about how cerebellar
neurons and synapses accomplish this computation [8,14].
Evidence from such studies indicates that plasticity in
both the cerebellar cortex and cerebellar nuclei is involved
[15,16]. For learning that increases cerebellar output,
climbing fiber inputs drive the induction of plasticity in the
cortex. Recent evidence indicates that spontaneous climb-
ing fiber activity is required to maintain equilibrium in the
cerebellar cortex, and that inhibition of climbing fibers
below the spontaneous level is required for learning that
decreases cerebellar output [17,18]. This is consistent with
the behavior of climbing fibers during increases and
decreases in the gain of the VOR [19].

In the cerebellar nuclei, recent studies using recording
and electron microscope analyses demonstrate that eyelid
conditioning is associated with an increase in excitatory
synapses [20,21]. The hypothesis that induction of deep
nucleus plasticity is driven by input from the cerebellar
cortex [6] is supported by theoretical analyses of VOR
adaptation [22] and eyelid conditioning [23], and by data
suggesting that eyelid conditioning is blocked by perma-
nent or reversible lesions of the cerebellar cortex [24,25]. A
non-synaptic form of plasticity induced in vitro also
requires specific patterns of Purkinje cell activity [26].

Evidence indicates that the computations associated
with the temporal specificity of cerebellar learning occur in
the cerebellar cortex [27]. Lesions of the cerebellar cortex
abolish the learned timing of conditioned eyelid responses
[28]. After permanent lesions or reversible inactivation of
the cerebellar cortex, conditioned eyelid responses are no
longer properly timed and instead default to a relatively
fixed, short latency [15,24,25,27–30].

Currently, there is little empirical evidence to indicate
how the cerebellar cortex learns to delay responses until
the appropriate time. Instead, ideas about the particulars
of this computation have been pursued mostly through
computer simulations. A large-scale simulation of the
cerebellum (,12 000 simulated neurons), which incorpor-
ates climbing fiber-driven plasticity in the cortex and
Purkinje cell-driven plasticity in the nucleus, successfully
captures the basic behavioral properties of eyelid con-
ditioning [5]. These include acquisition and extinction of
conditioned responses, the appropriate timing of responses
and the dependence of learning on the ISI.

Timing requires temporal coding, such as a population
of cells where different subsets of cells are active at
different times during or after an input. In the simulation,
this is accomplished with granule cells, the most abundant
neuron type in the cerebellum. Interactions between the
populations of simulated granule and Golgi cells make
different granule cells active at different times during an
input that simulates a tone [31]. The learned responses of
the simulation are timed to occur just before the error
signal (puff), because the climbing fiber input specifically
induces plasticity in synapses active at that time. Extinc-
tion processes also operate to suppress responding early in
the simulated tone and sharpen response timing. An
empirical test produced results consistent with this
prediction [29].

Extinction also plays an important role in the simu-
lation for dependence of learning on the ISI [5]. As in eyelid
conditioning, learning in the simulation declines as the
time interval between mossy fiber and climbing fiber input
increases (Fig. 3, top). This decline occurs because, on each
training trial, acquisition occurs for synapses that are
active towards the end of the simulated tone, and
extinction occurs for synapses that are active at other
times. As the ISI increases, extinction increasingly
dominates acquisition until, with a long enough ISI,
there is no net gain each trial.

Such ideas derived from simulations are best thought of
as food for thought. In some cases, mechanistic predictions
have been made from successful simulations, with positive
results. With continued interplay between simulations
and experiments, the precise details of how cerebellar
neurons implement temporally specific learning for
feedforward control will hopefully become clear.

Concluding remarks

Pavlovianeyelid conditioninghas emerged as a valuable tool
for studying cerebellar computation. Eyelid conditioning
engages the cerebellum in a relatively direct way: mossy and
climbing fibers, respectively, convey information about the
tone and the puff to the cerebellum, and cerebellar output
drives theexpressionof the conditioned response.Because of
this straightforward mapping, the behavioral properties of
eyelid conditioning are a reasonable first approximation of
the input–output transformations accomplished by the
cerebellum. The computation that is revealed is remarkably
consistent with the requirements for predictive feedforward
control of movements: learning is error driven, associative
andtemporallyspecific.Throughexperimentandsimulation,
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the systems-level mechanisms that underlie this compu-
tation are becoming increasingly clear.

The disadvantage of eyelid conditioning is its artifi-
ciality, which should raise concerns that this computation
might not apply to all cerebellum-dependent processes.
There are three factors, however, that support its general-
ity. First, the regularity of connectivity seen across the
cerebellar cortex suggests that the computation performed
in one region applies to all regions. Second, the compu-
tation revealed by eyelid conditioning is independent of
precisely what mossy fiber inputs encode. Whether
activated by a tone, the position of a limb or some cognitive
process, the cerebellum will process mossy fiber inputs as
arbitrary signals that do or do not reliably predict events.
For climbing fiber inputs, the only constraint is that what is
encoded should convey the need for cerebellar output to be
greater at that time. Thus, the increasing evidence that
lateral regions of the cerebellum in humans are engaged
during cognitive rather than motor tasks is not inconsistent
with the computation revealed by eyelid conditioning [32].

The third and strongest piece of evidence comes from
similarities between cerebellar contributions to eyelid
conditioning and to control of eye movements. Strong
parallels in patterns of input and demands on outputs
between eyelid conditioning and VOR adaptation have
beennotedpreviously,particularly inlearnedtiming[14,33].
Studies on saccades also illustrate the contribution of
temporally specific learning. Multiple cerebellar outputs
control saccades [34], and their inactivation makes
saccades grossly inaccurate [35]. We have recently
suggested how the computation revealed by eyelid
conditioning explains the adaptation of saccades [36].
Finally, smooth-pursuit eye movements require the
cerebellum and display predictive properties consistent
with feedforward control [37,38]. Moreover, a simulated
network based on the cerebellum has been shown to
produce accurate and predictive smooth pursuit [39].

Temporally specific learning thus encapsulates many of
the functions that have previously been proposed for the
cerebellum, including sensory–motor integration, motor
learning, timing and motor coordination. This role offers
an explanation for the dysmetric and uncoordinated
movements seen in individuals with cerebellar pathology.
A detailed understanding of this cerebellar computation
could represent the foundation for further insights into
how the cerebellum contributes to non-motor functions [32].
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