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David Marr:  1945-1980
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Marr and Computational Neuroscience

● In 1969-1970, Marr wrote three major papers on 
theories of the cortex:

– A Theory of Cerebellar Cortex

– A Theory for Cerebral Neocortex

– Simple Memory: A Theory for Archicortex

● A fourth paper, on the input/output relations between 
cortex and hippocampus, was promised but never 
completed.

● Subsequently he went on to work in computational 
vision.

● His vision work includes a theory of lightness 
computation in retina, and the Marr-Poggio stereo 
algorithm.
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Introduction to Marr's Archicortex Theory

● The hippocampus is in the “relatively simple and 
primitive” part of the cerebrum: the archicortex.

– The piriform (olfactory) cortex is also part of archicortex.

● Why is archicortex considered simpler than neocortex?

– Evolutionarily, it's an earlier part of the brain.

– Fewer cell layers (3 vs. 6)

– Other reasons?  [connectivity?]

● Marr claims that nerocortex can learn to classify inputs 
(category formation), whereas archicortex can only do 
associative recall.

– Was this conclusion justified by the anatomy?
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What Does Marr's Hippocampus Do?

● Stores patterns immediately and efficiently, without 
further analysis.

● Later the neocortex can pick out the important features 
and memorize those.

● It may take a while for cortex to decide which features 
are important.

– Transfer is not immediate.

● Hippocampus is thus a kind of medium-term memory 
used to train the neocortex.
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An Animal's Limited History

● If 10 fibers out of 1000 can be active at once, that gives 
C(1000,10) possible combinations.

● Assume a new pattern every 1 ms.

– Enough combinations to go for 1012 years.

● So: assume patterns will not repeat during the lifetime 
of the animal.

● Very few of the many possible events (patterns) will 
actually be encountered.

● So events will be well-separated in pattern space, not 
close together.



10/06/17 Computational Models of Neural Systems 7

Numerical Contraints

Marr defined a set of numerical constraints to determine 
the shape of simple memory theory:

1. Capacity requirements

2. Number of inputs

3. Number of outputs

4. Number of synapse states = 2 (binary synapses)

5. Number of synapses made on a cell

6.  Pattern of connectivity

7. Level of activity (sparseness)

8. Size of retrieval cue
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N1. Capacity Requirements

● A simple memory only needs to store one day's worth of 
experiences.

● They will be transferred to neocortex at night, during 
sleep.

● There are 86,400 seconds in a day.

● A reasonable upper bound on memories stored is:

 100,000 events per day
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N2. Number of Inputs

● Too many cortical pyramids (108): can't all have direct 
contact with the hippocampus.

● Solution: introduce indicator cells as markers of activity 
in each local cortical region, about 0.03 mm2.

● Indicator cells funnel activity into the hippocampal 
system.

Neocortex

Indicators

Hippocampus
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Indicator Cells

● Indicator cells funnel information into hippocampus.

● Don't we lose information?

– Yes, but the loss is recoverable if the input patterns aren't too 
similar (low overlap).

● The return connections from hippocampus to cortex 
must be direct to all the cortical pyramids, not to the 
indicator cells.

● But that's okay because there are far fewer 
hippocampal axons than cortical axons (so there's room 
for all the wiring), and each axon can make many 
synapses.
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How Many Input Fibers?

● Roughly 30 indicator cells per mm2 of cortex.

● Roughly 1300 cm2 in one hemisphere of human cortex, 
of which about 400 cm2 needs direct access to simple 
memory.  Thus,

  About 106 afferent fibers enter simple 
memory.

● This seems a reasonable number.
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N3. Number of Ouptuts

● Assume neocortical pyramidal cells have fewer than 105 
afferent synapses.

● Assume only about 104 synaptic sites available on the 
pyramidal cell for receiving output from simple memory.

● Hence, if every hippocampal cell must contact every 
cortical cell, there can be at most 104 hippocampal cells 
in the memory.  Too few!

– If 100,000 memories stored, each memory could only have 10 
cells active (based on the constraint that each cell participates 
in at most 100 memories.)  Too few cells for accurate recall.

● Later this constraint was changed to permit 105 cells in 
the simple memory.
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N4. Binary Synapses

● Marr assumed a synapse is either on or off (1 or 0).

● Real-valued synapses aren't required for his associative 
memory model to work.

– But they could increase the memory capacity.

● Assuming binary synapses simplifies the capacity 
analysis to follow.
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Types of Synapses

● Hebb synapses are binary: on or off.

● Brindley synapses have a fixed component in addition 
to the modifiable component.

● Synapses are switched to the on state by simultaneous 
activity in the pre- and post-synaptic cells.

● This is known as the Hebb learning rule.

Hebb synapses Brindley synapses
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N5. Number of Synapses

● The number of synapses onto a cell is assumed to be 
high, but bounded.

● Anatomy suggests no more than 60,000.

● In most calculations he uses a value of 105.
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N6. Pattern of Connectivity

● Some layers are subdivided into blocks, mirroring the 
structure of projections in cortex, and from cortex to 
hippocampus.

● Projections between such layers are only between 
corresponding blocks.

● Within blocks, the projection is random.
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N7. Level of Activity

● Activity level (percentage of active units) should be low 
so that patterns will be sparse and many events can be 
stored.

● Inhibition is used to keep the number of active cells 
constant.

● Activity level must not be too low, because inhibition 
depends on an accurate sampling of the activity level.

● Assume at least 1 cell in 1000 is active.

● That is,  > 0.001.



10/06/17 Computational Models of Neural Systems 18

N8. Size of Retrieval Cue

● Fraction of a previously stored event required to 
successfully retrieve the full event.

● Marr sets this to 1/10.

● This constitutes the minimum acceptable cue size.

● If the minimum cue size is increased, more memories 
could be stored with the same level of accuracy.
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Marr's Two-Layer Model

● Event E is on cells a
1
...a

N

(the cortical cells)

● Codon formation on b
1
...b

M

(evidence cells in HC)

● Inputs to the b
j
 use 

Brindley synapses

● Codon formation is a type
of competitive learning
(anticipates Grossberg,
Kohonen)

● Recurrent connections to
the a

i
 use Hebb synapses

Neocortex Hippocampus
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Simple Representations

● Only a small number of afferent synapses are available 
at neocortical pyramids for the simple memory 
function; the rest are needed for cortical computation.

● In order to recall an event E from a subevent X:

– Most of the work will have to be done within the simple memory 
itself.

– Little work can be done by the feedback connections to cortex.

● No fancy transformation from b to a.

● Thus, for subevent X to recall an event E, they should 
both activate the same set of b cells.
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Recalling An Event

● How to tell if a partial input pattern is a cue for recalling 
a learned event, or a new event to be stored?

● Assume that events E to be stored are always much 
larger (more active units) than cues X used for recall.

● Smaller pattern means not enough dendritic activation 
to trigger synaptic modification, so only recall takes 
place.
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Codon Formation

● Memory performance can be improved by 
orthogonalizing the set of key vectors.

– The b cells do this.  How?

● Project the vector space into a higher dimensional 
space.

● Each output dimension is a conjunction of a random
k-tuple of input dimensions (so non-linear).

● In cerebellum this was assumed to use fixed wiring. In 
cortex it's done by a learning algorithm.

● Observation from McNaughton concerning rats:

– Entorhinal cortex contains about 105 projection cells.

– Dentate gyrus contains 106 granule cells.

– Hence, EC projects to a higher dimensional space in DG.
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Codon Formation

● For each input event E, different b cells will receive 
different amounts of activation.

● Activation level depends on which a cells connect to 
that b cell.

● We want the pattern size L to be roughly the same for 
all events.

● Solution: choose only the L most highly activated b cells 
as the simple representations for E.

● How to do this?

– Adjust the thresholds of the b cells so that only L remain active.
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Inhibition to Control Pattern Size

● S and G cells are inhibitory 
interneurons.

● S cells sample the input
lines and supply feed-
forward inhibition to the 
codon cells.

● G cells' modifiable  
synapses  track the number 
of patterns learned so far, 
and raise the inhibition 
accordingly.  They  sample 
the codon cell's output via 
an axon collateral.
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Threshold Setting

● Two factors cause the activation levels of b cells to vary:

1) Amount of activity in the a cells (not all patterns are of the 
same size, due to partial cues)

2) Number of potentiated synapses from a cells onto the b cell. 
This value gradually increases as more patterns are stored.

• More cells can become active as more weights are set.

● Solution:

1) S-cells driven by codon cell afferents compute an inhibition 
term based on the total activity in the a

i
 fibers.

Assumes no synapses have been modified.

2) G-cells driven by codon cell axon collaterals use negative 
feedback to compensate for effects of weight increases.

● Together, S and G cells provide subtractive inhibition to 
maintain a pattern size of L over the b units.
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Recall From a Subevent

● If subevent X is fully contained in E, the best retrieval 
strategy is to lower the codon threshold until roughly L 
of the b cells are active.

● But if X only partially overlaps with E, some spurious 
input units will have synapses onto codon units. A 
better strategy is for codon cells to take into account 
the fraction f of their A active synapses that have been 
modified by learning (meaning they are part of some 
previously-stored pattern).

● Unmodified synapses that are active during recall can 
only be a source of noise.

● Thus, a b cell should only fire if a sufficient proportion f 
of its active synapses have been modified, meaning 
they are part of at least one stored pattern — perhaps 
the correct one, E.
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Recall From a Subevent

● A cell should only fire if it's being driven by enough 
modified synapses.

● A = number of active synapses.

● f = fraction of synapses that have been modified.

● The cell's division threshold is equal to fA.

● Let S be the summed activation of the cell:

● The cell should fire if S > fA,  or  S / (fA) > 1.

S = ∑
i

a
i
w

i
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D-Cells
● D cells compute fA and pass it 

as an inhibitory input to the 
pyramidal cells.

● D cells apply their inhibition 
directly to the cell body, like 
basket cells in hippocampus.

● This type of inhibition causes a 
division instead of subtraction.

● McNaughton: division can be 
achieved by shunting 
inhibition, e.g., the chloride-
dependent GABA

A
 channel.



10/06/17 Computational Models of Neural Systems 29

Dual Thresholds

● Cells have two separate thresholds:

– The absolute threshold T, controlled by inhibition from S and G 
cells, should be close to the pattern size L, but must be reduced 
when given a partial cue.

– The division threshold fA, controlled by inhibition from D cells.

● Marr's calculations show that both types of thresholding 
are necessary for best performance of the memory.

● How to set these thresholds? No procedure is given.

– Willshaw & Buckingham try several methods, e.g., staircase 
strategy: start with small f and large T. Gradually reduce T until 
enough cells are active, then raise f slightly and repeat.
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Simple Memory With Output Cells

A cells
codon cells

projection back to A
Output cells
(from 3-layer model)
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Inadequacy of the Simple Model

● Assume that N = 106 a
i
 afferents.

● Assume each neocortical pyramid can accept 104 
synapses from the b

j
 cells.

● Assume upper bound of 200 learned events per cell, 
due to limitation on number of afferent synapses.  (Marr 
derived this from looking at Purkinje cells in 
cerebellum.)

– Use 100 events/cell as a conservative value.

● If capacity n = 105 events, and each b cell participates 
in 100 of them, then activity  = 10-3. With 104 b cells, 
only 10 can be active per event.

– Too few for reliable representation. Threshold setting would be 
too difficult with such a small sample size.
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What's Wrong With This Argument?

● The simple model is inadequate because the activity 
level is too low: only 10 active units per stored event.

● But this is because Marr assumes only 104 evidence 
(codon) cells. Why?

– Limited room for afferent synapses back to the cortical cells.

● This is based on the notion that every evidence (codon) 
cell must connect back to every cortical cell.

● Later in the paper he relaxes this restriction and 
switches to 105 evidence cells.
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Combinatorics 1: Permutations

● How many ways to order 3 items: A, B, C?

● Three choices for the first slot.

● Two choices left for the second.

● One choice left for the third.

● Total choices  =  3 x 2 x 1  =  3!  = 6.

B A C
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Combinatorics 2: Choices

● How many ways to choose 2 items from a set of 5?

● Five choices for first item. Four choices for the second.

● Permutations of the chosen item are equivalent:
combination B,E is the same as combination E,B

● So total ways to choose two items is (5 x 4)/(2!) = 10.

● Since 5! = 5 x 4 x 3 x 2 x 1, we can get 5x4 from 5!/3!

In formal notation, what is the value of  5
2   =  C(5,2) ?

 5

2  =
5!

3!
/2! =

5!

3!⋅2!
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Choices (continued)

● How many ways to choose k=2 items from n=5 ?

● Allocate 5 slots giving n! = 120 permutations:

● All permutations of the k chosen items are equivalent, 
so divide by k! = 2.

● All permutations of the (n-k) unchosen items are 
equivalent, so divide by (n-k)! = 6.

n
k  =

n !

k ! ⋅ n−k !

k! (n-k)!



10/06/17 Computational Models of Neural Systems 36

Review of Probability

● Suppose a coin has a probability z of coming up heads.

● The probability of tails is (1-z).

● What are the chances of seeing h heads in a row?

● What are the chances of seeing exactly h heads in a 
row, followed by exactly t tails?

● What about seeing exactly h heads total in N tosses?

zh

zh
⋅ 1−z t

N

h  ⋅ zh
⋅ 1−zN−h
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Binomial Distribution

● How many heads should we expect in N=100 tosses of 
a biased (z=0.2) coin?

– Expected value is E<h> = N z = 20.

● What is the probability of a particular sequence of 
tosses containing exactly h heads?

● The probability of getting exactly h heads in any order 
follows a binomial distribution:

P [〈 t
1,

t
2,
 , t

N
〉 ] = zh ⋅ 1−zN−h

Binomial N ; z[h ] = N

h  ⋅ zh
⋅ 1−zN−h



10/06/17 Computational Models of Neural Systems 38

Marr's Notation

P
i

Population of cells.

N
i

Number of cells in population  P
i

L
i

Number of active cells for a pattern in  P
i


i

Fraction of active cells:  L
i
/N

i

R
i

Threshold of cells in  P
i

S
i

Number of afferent synapses of a cell in  P
i

Z
i

Contact probability: likelihood of synapse from cell in  P
i−1

 to  P
i


i

Probability that a particular synapse in  P
i
 has been modified

E 〈 x 〉 Expected (mean) value of x

n Number of stored memories
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Response to an Input Event

● Assume afferents to P
i
 distribute uniformly with 

probability Z
i
.

● L
i-1

 = number of active afferents.

● What is the expected pattern size in this population?

● What do the terms in this formula mean?

E 〈L
i
〉 = N

i ∑
r=R

i

L
i−1

L
i−1

r ⋅Z
i

r
⋅1−Z

i

L

i−1
−r
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Response to an Input Event

● One term of the summation is the probability that a cell 
will receive an input of size exactly r, given L

i-1
 active 

fibers in the preceding layer.

● r is number of active fibers; R
i
 is the threshold.

● Must have r ≥ R
i
 in order for the layer i cell to fire. Also, 

r ≤ L
i-1

, the pattern size for layer i-1.

● Large R
i
 keeps us on the tail of the binomial distribution.

● The value of 
i
 = L

i
 / N

i
 will be small.

E 〈L
i
〉 = N

i ∑
r=R

i

L
i−1

L
i−1

r ⋅Z
i

r
⋅1−Z

i

L

i−1
−r

probability a  unit has EXACTLY r  active input fibers

probability a  unit has AT LEAST R
i
 active input fibers (so is active)
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Counting Active Synapses

N
i−1

 cells;  L
i−1

 are active


i−1

= L
i−1

/ N
i−1

S
i
 synapses; x are active

Number of active synapses x is binomially distributed.

P x  = S i

x  ⋅ 
i−1

x ⋅ 1−
i−1


S

i
−x

E 〈 x 〉 = 
i−1

S
i
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Constraint on Modifiable Synapses
Activity 

i−1
= L

i−1
/N

i−1
.

Proportion of synapses active at each active cell of  P
i
 is at  least equal to

  the mean 
i−1

 because the active cells are on the tail of the distribution.

The amount by which it exceeds this decreases as  S
i


i−1
 grows.

Probability that a (pre,post)­synaptic pair of cells is simultaneously
 active is 

i−1


i
.

After  n  events, probability that a particular synapse of  P
i
 is facilitated is:


i

= 1−1−
i−1


i

n

If 
i−1

 is small, then 
i−1


i
 is smaller, so this gives roughly


i
≈ 1−exp −n

i−1


i


because for small  ,    1−
n

≈ exp −n
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Constraint on Modifiable Synapses

● For modifiable synapses to be useful, not all should be 
modified after n events are stored.

– Otherwise we could just make all of them fixed.

● Suppose we want at most 1 – (1/e) of them to be 
modified, which is about 63%.

● Thus we have computational constraint C1:


i

≤ 1 − 1 /e

= 1 − exp −1

≈ 1 − exp −n
i−1


i


n
i−1


i

≤ 1
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Condition for Full Representation

● Activity in P
i
 must provide an adequate representation 

of the input event.

● Weak criterion of adequacy: change in input fibers 
(active cells in P

i-1
) should produce a change in the cells 

that are firing in P
i
.

● Cells in P
i
 just above threshold  losing one input will 

shut off the cell.
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Condition for Full Representation

Probability  P  that an arbitrary input fiber doesn't contact any
active cell of  Pi  (so  Pi  doesn't care if it's shut off) is:

P = (1−Z i)
L i

P ≈ exp (−αi N i⋅S i / N i−1)

Let's require  P < e−20   (about  2×10−9 ).  Then with a
little bit of algebra we have computational constraint C2:

S iαi N i ≥ 20 N i−1

Li = αi N i

Z i = S i / N i−1
1−n ≈ exp −n
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Summary of Constraints

● To store lots of memories, patterns must be sparse.

● For the encoding to always distinguish between input 
patterns, outputs must change in response to any input 
change.

– There must be enough units and synapses to assure this.

● Assumes output cells are just above threshold so losing 
1 input fiber will turn them off.  They must be on the tail 
of the binomial distribution for this to hold.

Constraint C1:     n
i


i−1
 1

Constraint C2:     S
i


i
N

i
≥ 20 N

i−1
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What's Next?

● Move to a larger, three-layer, block-structured model.

● Add recurrent connections.

● Derive conditions under which recurrent connections 
improve recall results.

● Map this model onto the circuitry of the hippocampus.
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