Probabilistic Population Codes in Cortex

Computational Models of Neural Systems
Lecture 7.2

David S. Touretzky
November, 2015
Probability: Bayes' Rule

We want to know if a patient has disease d. Test them.

They test positive. What conclusion should we draw?

- \(P(d) \) \textit{prior} has the disease
- \(P(t \& d) \) \textit{joint} tests positive \textit{and} has the disease
- \(P(t|d) \) \textit{likelihood} tests positive \textit{given} has the disease
- \(P(d|t) \) \textit{posterior} has disease \textit{given} test is positive
- \(P(t) \) \textit{evidence} test is positive (aka “marginal likelihood”)

Bayes' Rule:

\[
P(d|t) = \frac{P(d \& t)}{P(t)} = \frac{P(t|d) \cdot P(d)}{P(t)}
\]
Cricket Cercal System Encodes Wind Direction Using Four Sensory Neurons

Max firing rate ~ 40 Hz; baseline 5 Hz. Assume a Poisson spike rate distribution. Bayesian method gives lowest total decoding error.
Population Vector

- Term introduced by Georgopoulos to describe a method of decoding reaching direction in motor cortex.
- Given a set of neurons with preferred direction unit vectors v_i and firing rates r_i, compute the direction V encoded by the population as a whole.
- Solution: weight each preferred direction vector by its normalized firing rate r_i / r_{max}.

$$
\bar{V} = \frac{1}{N} \sum_{i=1}^{N} \frac{r_i}{r_{max}} \cdot \bar{v}_i
$$

- This is a simple decoding method, but not optimal when neurons are noisy.
Maximum Likelihood Estimator

- MLE uses information about the spike rate distribution to decide how likely is a population spike rate vector \(\mathbf{r} \) given stimulus value \(s \). For a Poisson spike rate distribution, where \(r_i \) is the spike count for true firing rate \(f_i \):

\[
P[\mathbf{r}|s] = \prod_{i=1}^{N} \exp[-f_i(s)\Delta t] \cdot (f_i(s)\Delta t)^{r_i\Delta t} \frac{1}{(r_i\Delta t)!}
\]

- We can then use Bayes' rule to assign a probability to each possible stimulus value. Assume that all stimulus values are equally likely. Then:

\[
P[s|\mathbf{r}] \approx \frac{P[\mathbf{r}|s]}{P[\mathbf{r}]}
\]
Bayesian Estimator

- If we know something about the distribution of stimulus values $P[s]$, we can use this information to derive an even better estimate of the stimulus value.

- For example: the cricket may know that not all wind direction values are equally likely, given the behavior of its predators.

- From Bayes' rule:

$$P[s|r] = \frac{P[r|s] \cdot P[s]}{P[r]}$$
Homogeneous Population Code for Orientation in V1

- Gaussian tuning curves with $\sigma = 15^\circ$. Baseline firing rate = 5 Hz.

- Optimal linear decoder weights to discriminate a stimulus $s^* - \delta s$ from a stimulus $s^* + \delta s$, where $s^* = 180^\circ$. Note that the weight on the unit coding for 180° is zero.

$$t(r) = \sum_i r_i w_i$$

If $t(r) > 0$ conclude that stimulus $> s$.

A

![Tuning curves](image)

B

![Discrimination](image)
Cleaning Up Noise With Recurrent Connections

- Construct an attractor network whose attractor states correspond to perfect (noise-free) representations of stimulus values.
 - For a 1D linear variable, this would be a line attractor.
 - For a direction variable like head direction, use a ring attractor.

- The attractor network will map a noisy activity vector r into a cleaner vector r^* encoding the stimulus value that is most likely being encoded by r.

\[t = 0 \quad \Rightarrow \quad t = \infty \]
Basis Functions

- You can think of the neurons' tuning curves as a set of basis functions from which to construct a linear decoding function.
- But instead of decoding, we can also use these basis functions to transform one representation into another.
- Or use them to do arithmetic.
- Example: calculating head-centered coordinates from retinal position plus eye position.
Recurrent Network Maintains Proper Relationships Between Retinal, Eye, and Head Coordinates
Encoding Probability Distributions

- The previous decoding exercise assumed that the activity vector was a noisy encoding of a single value.

- What if there were inherent uncertainty as to the value of a variable?

- The brain might want to encode its beliefs about the distribution of possible values.

- Hence, population codes might represent probability distributions.
Aperture Problem: In What Direction Is the Bar Moving?
Aperture Problem: In What Direction Is the Bar Moving?
Horizontal Direction Uniformly Distributed Because No Information Available

Some uncertainty about vertical velocity yields a distribution of possible values.
Bayesian Estimation of Velocity: Prior is a Gaussian Centered on Zero

Likelihood $P[r|s]$
Posterior $P[s|r]$

Low Contrast Case

High Contrast Case
Likelihood peaked at same value but curve is narrower, so estimated velocity is higher.
Psychophysical Argument for Representing Distributions Instead of Expected Values

- People estimate velocities as higher when the contrast is greater. How to account for this?
- The Bayesian estimator produces this effect. Humans behave as predicted by Bayes' law.
- Why does this model work? Because:
 - The width of the likelihood distribution is explicitly represented
- Other psychophysical experiments confirm the view of humans as Bayesian estimators.
- This suggests that the nervous system utilizes probability distribution information, not just expected values.
Decoding Gaussian Signals with Poisson Noise

- Translation (blue) shifts the probability distribution but does not change the shape from the original (green).
- Scaling down (red) broadens the variance.
Convolutional Encodings

- For other types of probability distributions we don't want to use uniform Gaussian tuning curves. Instead, convolve the probability distribution with a set of basis functions.

- Fourier encoding (sine wave basis functions):

\[
f_i(P[s|r]) = \int ds \cdot \sin(w_is + \phi_i) \cdot P[s|r]
\]

- Gaussian kernels:

\[
f_i(P[s|r]) = \int ds \cdot \exp\left(-\frac{(s-s_i)^2}{2\sigma_i^2}\right) \cdot P[s|r]
\]

- Decoding of these representations is tricky.
Ernst & Banks Experiment

Estimating the width of a bar using both visual (V) and haptic (H) cues.

Population codes are computed by convolving with Gaussian kernels.

\[P[w | V, H] \propto P[V | w] P[H | w] P[w] \]

“Neural” model does three-way element-wise multiplication.

In this way, we can do inference using noisy population codes.
Ma et al. (2006): Bayesian Inference with Population Codes

Lower amplitude means broader variance.
Sensory Integration of Gaussians w/Poisson Noise

\[\mu_3 = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} \mu_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \mu_2 \]

\[\frac{1}{\sigma_3^2} = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} \]
Generalizing the Approach

- Gaussians with Poisson noise are easy to combine: we can do element-wise addition of firing rates, and the resulting representation is Bayes-optimal.

- Can we generalize to non-Gaussian functions and other types of noise, and retain Bayes-optimality?

- $r_3 = r_1 + r_2$ is Bayes-optimal if $p(s| r_3) = p(s| r_1) p(s| r_2)$.

- This doesn't hold for most distributions but it does for some that are “Poisson-like”.
Poisson-Like Distributions

\[P(r_k|s,g) = \phi(r_k,g_k) \cdot \exp(h^T(s)r_k) \]

\[h'(s) = \Sigma_k^{-1}(s,g_k) f'(s,g_k) \]

\(\Sigma_k \) is the covariance matrix of \(r_k \)

\[\text{gain } g_k = K/\sigma_k^2 \]

\(f_k(s) \) is the tuning curve function

For identical tuning curves and Poisson noise:

\[h(s) = \log f(s) \]

\[\phi_k(r_k,g_k) = \exp(-cg_k) \prod_i \exp(r_{ki} \log g_k)/r_{ki}! \]
Non-Identical Tuning Curves

- When tuning curve functions f_k are not the same, $h(s)$ is not the same for all tuning curves. Simple addition doesn't work.
- But we can still combine tuning curves using linear coefficients A_k, provided the $h_k(s)$ functions are drawn from a common basis set.

$$r_3 = A_1^T r_1 + A_2^T r_2$$
Combining Three Poisson-Like Populations Using Different Types of Tuning Curves

Inputs:

Outputs:

Black dots obtained from Bayes rule.
Simulation with Integrate-and-Fire Neurons

Inputs:
\(\mu_1 = 86.5 \)
\(\mu_2 = 92.5 \)
Simulates cue conflict.

Output units are correlated.

Combined estimate is Bayes-optimal!
Summary

• Population codes are widely used in the brain (visual cortex, auditory cortex, motor cortex, head direction system, place codes, grid cells, etc.)

• The brain uses these codes to represent more than just a scalar value. They can encode probability distributions.

• We can do arithmetic on probability distributions if the population code satisfies certain constraints.
 – Codes that are Poisson-like are amenable to this.

• The population code serves as a basis set.
 – Populations can be combined via linear operations, and in the simplest case, element-wise addition.