Reinforcement Learning Models of the Basal Ganglia

Computational Models of Neural Systems
Lecture 6.2

David S. Touretzky
November, 2013
Dopamine Cells

- Located in SNC (substantia nigra pars compacta) and VTA (ventral tegmental area)
- Project to dorsal and ventral striatum, and also to various parts of cortex, especially frontal cortex.
- Respond with a short burst (50-120 msec latency) to:
 - Unpredicted primary reinforcer (food, juice)
 - Unpredicted CS (tone, light) that has become a secondary reinforcer
 - Reduced by overtraining; perhaps because environment now predicts
 - High intensity or novel stimuli
 - Response diminishes with repetition (loss of novelty)
 - For a few cells (less than 20%): aversive stimuli
What Do DA Cells Encode?

- Current theory says: reward prediction error.
 - Nicely explains response to unpredicted reinforcers
 - Novelty is somewhat rewarding to animals
 - Aversive stimuli? (prediction error)

- Teaching signal for striatum to learn to predict better.
Specificity of Reward

- Schultz found all DA cells showed similar responses.
- But anatomy tells us that DA cells receive projections from different areas (cf. 5 or 21 parallel circuits in basal ganglia), so they should have different responses.
 - Maybe the problem is that his animals were only tested on a single task.
 - More recent experiments have shown that DA neurons can distinguish between more and less preferred rewards.
Dopamine Synapses

- Dopamine cells project to striatal spiny cells.
- Dopamine cells contact the spine neck; cortical afferents contact the spine head.
- Heterosynaptic learning rule?
 - Afferent input + subsequent dopamine input \implies LTP.
- Medium spiny cell:
 - 500-5,000 DA synapses
 - 5,000-10,000 cortical synapses
Effects of Dopamine

• Focusing: dopamine reduces postsynaptic excitability, which focuses attention on the striatal cells with strongest inputs.

• Dopamine probably causes LTP of the corticostriatal path, but only for connections that were recently active.

• Since dopamine release does not occur in response to predicted rewards, it cannot be involved in maintenance of learning.
 – What prevents extinction?
 – Perhaps a separate reinforcer signal in striatum.
No dopamine activity

Dopamine-induced focusing

Dopamine-induced long term facilitation

cortex

striatum
Simple TD Learning Model

- Barto, Adams, and Houk proposed a TD learning theory based on a simplified anatomical model.
- Striosomal spiny cells (SPs) learn to predict reinforcement.
- Dopamine cells (DA) generate the error signal.
- ST = subthalamic nucleus
Time delay
primary reinforcement
TD Learning Rule

- Predicted reward is a function of current input $x_i(t)$.

$$V(t) = \sum_{i} w_i x_i(t)$$

- Reward prediction error $\delta(t)$:

$$\delta(t) = r(t) + \gamma V(t) - V(t-1)$$

- Simplifying assumption: no discounting (γ equals 1).
Response to Reinforcers

- Indirect path is fast: striatum to GPe to STN excites dopamine cells in SNc/VTA.
- Direct path must be slow and long lasting. GABA_A inhibition only lasts 25 msec. Perhaps GABA_B inhibition is used, but not conclusively demonstrated.
What's Wrong With This Model?

- Even GABA_B inhibition may be too short lasting.

- The model predicts a decrease of dopamine activity preceding primary reward.
Responses to Earlier Predictors

- Highly simplified model using fixed time steps.
- Timing is assumed to be just right for slow inhibition to cancel fast excitation: unrealistic.
Problem: Lack of Timing Information

• The problem with this model is that a single striosomal cell is being asked to:
 – respond to a secondary reinforcer stimulus, and also
 – predict the timing of the primary reward to follow

• Need a more sophisticated TD model.

• If we use a serial compound stimulus representation, then the predicted timing of future rewards can be decoupled from response to the current stimulus.

• But this requires a major assumption about the striatum: it would have to function as a working memory in order to predict rewards based on stimulus history.
Review of Anatomy: Striosome vs. Matrix
Striatum As Actor/Critic System (Speculative)

- Striosomal modules (critic) predict reward of selected action.
- Matrix modules (actor) select actions.
- Dopamine error signal trains critic to predict reward and matrix to select best action.
Striatal Representations

Expectation- and preparation-related striatal neurons:

![Diagram showing the time course of activity for expectation of instruction, preparation of movement, expectation of trigger, and expectation of reward. The x-axis represents time in seconds, from -2 to 6, and the y-axis represents impuls/s. Peaks are indicated at the instruction, trigger, and reward times.]
Striatal Representations

- Caudate neuron that responds to stimulus L only within the sequence U-L-R. Apicella found 35 of 125 caudate neurons responded to a specific target modulated by rank in sequence or co-occurrence with other targets.
Suri & Schultz TD Model

Complete serial compound representation can learn timing.
TD Reward Prediction

A

first presentation

reward $u_1(t)$

reward prediction $p_1(t)$

prediction error $e_1(t)$

20th presentation

reward $u_1(t)$

reward prediction $p_1(t)$

prediction error $e_1(t)$

predicted future reward ramps down
Discounting Rate Shapes the Reward Prediction

Error near zero everywhere because reward fully discounted and prediction ramps up slowly.
Effects of Learning

A Before learning

- stimulus
- reward
- reward prediction
- putamen neurons
- reward prediction error
- dopamine neurons

B After learning

- stimulus
- reward
- reward prediction
- putamen neurons
- reward prediction error
- dopamine neurons

1 sec
Separate Model For Each Reward Type

\[\sum_{m=1}^{6} V_{1m} x_m \]

\[\sum_{m=1}^{6} V_{2m} x_m \]
Varying Model Parameters Allows Reward Prediction to fit Orbitofrontal Cortex Data

A

prediction of reward Y
orbitofrontal neuron

B

prediction of reward X
γ = 0.95
orbitofrontal neuron

C

prediction of reward X
δ = 0.8
orbitofrontal neuron

representation decay, but long eligibility trace
Problems With the Suri & Schultz TD Model

- Correctly predicts pause after omitted reward, but incorrectly predicts pause after early reward.
- Can't handle experiments with variable inter-stimulus intervals: predicts same small negative error at each time step where reward could occur and same large positive response where it does occur.
- The source of these problems is that the complete-serial-compound (delay line) representation is too simplistic.
Daw, Courville, and Touretzky (2003, 2006)

- Replace CSC with a Hidden Semi-Markov Model (HSMM) to handle early rewards correctly.
- Each state has a distribution of dwell times.
- Early reward forces an early state transition.
Early, Omitted, and Late Rewards

Black = ITI state, white = ISI state; gray indicates uncertainty.
Unisignalled Rewards at Poisson Intervals

- Mean reward prediction error is zero, but mean partially rectified error (simulated dopamine signal) is positive, matching the data.
Variable ISI

The hidden semi-Markov model shows reduced dopamine response when the reward appears later vs. earlier, in qualitative agreement with the animal data.
Summary

- Dopamine seems to encode several things: reward prediction error, novelty, and even aversive stimuli.
- The TD learning model does a good job of explaining dopamine responses to primary and secondary reinforcers.
- To properly account for timing effects the simple CSC representation must be replaced with something better.
- Example: Hidden Semi-Markov Models
 - Markov model = states plus transitions
 - “Hidden” means the current state must be inferred
 - “Semi-” means dwell times are drawn from a distribution; transitions do not occur deterministically
- But learning HSMMs is a hard problem: what are the states?
- How is an HSMM learned? Cortex!