Learning Rules from Neurobiology

Douglas A. Baxter and John H. Byrne

Among the more interesting properties of biological neural networks is
their ability to be modified by experience. Many artificial neural net-
works seek to emulate this ability by including mathematical expres-
sions that allow for experience-dependent modifications of some aspect
of the network. Thus, in order both to understand biological neural
networks and to simulate their properties, it is necessary to understand
the conditions under which changes in the cellular parameters under-
lying learning are induced, maintained, and expressed. It has long been
postulated that learning involves modifications of the efficacy or weights
of the existing synaptic connections. Such experience-dependent modi-
fications of synaptic efficacy would be expressed as an alteration in the
relationship between activity in presynaptic and postsynaptic neurons
and thus in the response of the network. Alternatively, the response
properties of a network may be changed by experience-dependent
modifications of the parameters that determine the threshold, pattern,
or frequency of action potentials generated in the postsynaptic neuron
in response to a given presynaptic input (i.e., the transfer or activation
function of the postsynaptic cell). A third possibility is that learning
involves the growth of entirely new synaptic connections and thus
modifies the architecture of the network. Finally, learning may involve
the nonlinear dynamic properties of individual neurons or networks
such that learning is associated with shifting from one stable attractor
to another. It is likely that learning involves aspects of all of these forms
of plasticity.

Of the various mechanisms that have been proposed, the most exten-
sive analyses have been done on learning rules that involve changes of
synaptic weights. This chapter reviews these analyses of activity-
dependent modifications of synaptic efficacy of the type believed to be
involved in learning and describes several mathematical expressions
that reflect some of the features of these forms of synaptic plasticity.
Although many diverse rules govern the induction of synaptic plastic-
ity, it is useful to distinguish two basic categories, nonassociative and
associative. Nonassociative rules depend on one or more state variables,
such as the state of activity in either the presynaptic or postsynaptic
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neuron, whereas associative rules depend on the interaction of two or
more state variables, such as the state of activity in the presynaptic and
postsynaptic neurons. Moreover, associative rules generally require a
specific temporal relationship between the two state variables.

NONASSOCIATIVE SYNAPTIC MODIFICATIONS

Nonassociative rules that govern the induction of synaptic plasticity are
summarized in figure 4.1. There are two types: homosynaptic and
heterosynaptic. Homosynaptic rules (figure 4.1A) are defined as rules
in which changes to the weight of a given synapse are determined by
the levels of activity in either the presynaptic or postsynaptic neurons
of the given synapse (figure 4.1A, rules 1 and 2, respectively). The changes
can be expressed as increases (figure 4.1A, upward arrows) or decreases
(figure 4.1A, downward arrows) in synaptic strength. For heterosynaptic
rules, changes in the weight of a given synapse are induced by either
the levels of activity in nearby synapses (figure 4.1B, rule 3), or by the
activity of modulatory systems (figure 4.1B, rule 4). Thus, homosynaptic
rules depend strictly on local information or state variables (i.e., presyn-
aptic or postsynaptic activity), whereas heterosynaptic rules depend on
quasi-local (i.e., activity in nearby synapses) or global (i.e., activity in
modulatory systems) state variables.

Homosynaptic Modifications

Consider first a simple synaptic arrangement in which a postsynaptic
neuron, B, receives an excitatory input from a single presynaptic neuron,
A (figure 4.1A). The synaptic input to cell B from cell A has a strength
or weight of wg 4. As discussed in chapter 3, the postsynaptic activity
yp is taken to be some nonlinear function f of presynaptic activity y4
and the synaptic weight. Thus, for the single synapse in figure 4.1A, the
postsynaptic activity at a given time f is expressed as:

yB(ﬂ = f{wB’A(t), yA(f)) (4.1)
During learning, the synaptic weight changes as a result of previous
activity, thus:

wp At +1) = wg 4(H) + Awg 4(f) (4.2)

where =0, 1, 2, ... measures discrete time and Awg 4 is the activity-
dependent change in synaptic weight. A nonassociative learning rule,
which is attributed to Eccles (1953), states that changes in synaptic
weight depend on activity in the presynaptic cell. The most general
mathematical expression that captures this notion is:

Awg 4() = Fly4(1) (4.3)

which relates the change in synaptic weight to a function F of activity
in the presynaptic neuron. Many particular learning rules fall under this
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A. Nonassociative Rules for Homosynaptic Modifications of Synaptic Weights
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Rules for Nonassociative Synaptic Modifications

Figure 4.1 Nonassociative rules depend on one or more state variables, such as the state
of activity in either the presynaptic or postsynaptic neuron. There are two classes of
nonassociative rules: homosynaptic and heterosynaptic. (A) Homosynaptic rules are
defined as rules in which changes to the weight of a given synapse are determined by
the levels of activity in either the presynaptic (rule 1) or postsynaptic (rule 2) neuron of
the synapse. The changes may be expressed as synaptic potentiation (upward arrows) or
as synaptic depression (downward arrows). (B) Heterosynaptic rules are defined as rules
in which changes to the weight of a given synapse are determined by either the levels
of activity in nearby synapses (rule 3), or by the activity in a modulatory neuron (rule 4).
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A. Long-Term Potentiation (LTP)

300
= PTP
FA
E 200 [
£ !
g - LTP
'E_ Control

100 Nawa S e
o
b i
o
< 10 Hz / 30 sec

D 1 i 1 | 1 L J
0 1 2 3

Time (hr)

B. Saturation of the Induction of LTP

L \w\w

- g NP

g &

EPSP Amplitude (% Baseling)
8
o
T

-

=

=]
i
i
i
:

o
(=]
o

Time (hr)

C. Optimal Pattern of Stimulation for Induction of LTP

200 [ s
£ _ | n=10
g &
2 050 [
2150 [ = I
g -]
£ gaor
EWOIH"'H-- A A S A e 2 |
5 g |
a Pattemed  Tonic 10 -
w

50 L L L A L

1 2 .
Time (hr) Patterned  Tonic

Long-Term Potentiation in Opener-Neuromuscular Synapses of Crayfish

Figure 4.2 LTP, an enduring enhancement of synaptic efficacy, can be induced by a brief
conditioning stimulus. (A) LTP of excitatory postsynaptic potentials (EPSPs) in opener-
neuromuscular synapses of the crayfish. During the control period, EPSPs were elicited
at a low frequency (0.3 Hz) that did not induce changes in the synapse. LTI was induced
by stimulating the presynaptic neuronat 10 Hz for 30 s (arrow). The conditioning stimulus
induced a enduring enhancement of synaptic efficacy that persisted for the duration of
the experiment. (B) The LTP of EPSPs reaches an asymptote with repeated conditioning
stimuli. Synaptic efficacy was monitored by eliciting EPSPs at a low frequency (0.3 Hz).
Synaptic potentiation was induced by repeated conditioning stimuli of 10 Hz for 30 s
(arrows). The induction of LTP appears to saturate with repeated conditioning stimuli.
(C) A tonic stimulus induces LTI whereas a patterned stimulus does not. Both condition-
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general form, depending on the properties of F. For example, F may be
a positive function (rule 1a), in which case presynaptic activity would
induce a potentiation of synaptic efficacy, or F may be a negative func-
tion (rule 1b), in which case presynaptic activity would induce a depres-
sion of synaptic efficacy.

Some forms of long-term potentiation (LTP) are examples of biological
synaptic plasticity that comply with rule 1 and that provide some in-
sights to the general features of F(y4). LTP is an enduring enhancement
of synaptic efficacy, often persisting for many hours, that can be induced
by a brief (several seconds) conditioning stimulus. This great asym-
metry between the duration of the conditioning stimulus and the dur-
ation of the subsequent synaptic change provides an operational definition
of LTP. LTP occurs in numerous synapses of the central and peripheral
nervous systems of vertebrates and invertebrates, and there are likely
to be many different forms of LTP. This conclusion is based, in part, on
the observation that different rules have been found to govern the
induction of LTP at various synapses (see below).

One example of LTP, which can be described by rule 1a, is the LTP
of excitatory postsynaptic potentials (EPSPs) that has been observed in
opener-neuromuscular synapses of the crayfish (Baxter et al. 1985; Bittner
1989; Keenan et al. 1987). The opener-neuromuscular synapse closely
approximates the two key features of the simple, linear synaptic ar-
rangement described in figure 4.1A and equation 4.1. First, the postsyn-
aptic cells receive synaptic input from a single excitatory neuron. Second,
the postsynaptic cells lack any voltage-gated ionic conductances that
would introduce nonlinearities. Thus, the presynaptic release of the
excitatory transmitter glutamate linearly depolarizes the postsynaptic
cells over a wide range of membrane potentials, and the amplitudes of
the EPSPs reflect the level of presynaptic activity and the efficacy of the
synapse (equation 4.1). Figure 4.2A illustrates some experimental re-
sults. The efficacy of the synapse was tested by stimulating the presyn-
aptic neuron at a low frequency (0.3 Hz) that did not induce changes
in the synapse during the 30-min control period. In this experiment,
potentiation was induced by eliciting action potentials in the presynap-
tic neuron at 10 Hz for 30 s. The potentiation had two kinetically distinct
components. The first component decays rapidly with a time course
corresponding to that of posttetanic potentiation (PTP; for a review of
PTP see Zucker 1989). PTP is followed by a much longer enhancement
of synaptic efficacy that persists for the duration of the experiment, in

ing stimuli delivered 300 presynaptic action potentials over 30 s. In the tonic stimulus,
the 300 presynaptic spikes are elicited at a constant frequency of 10 Hz, whereas in the
patterned stimulus, the 300 presynaplic spikes are arranged as brief (2 to 5 spikes), high-
frequency (100 Hz) bursts that were evenly distributed throughout the 30 s. The results
of ten experiments are summarized. The magnitude of LTP (the percent increase above
the control value) was measured 30 min after the conditioning stimulus. (Modified from
Keenan et al. 1987.)

Chapter 4 Learning Rules from Neurobiology
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some cases up to 8 hr. This latter component satisfies the operational
definition of LTP.

Several lines of evidence suggest that the induction of LTP in the
opener-neuromuscular synapse is nonassociative. First, there are no
other excitatory synaptic inputs to the postsynaptic cells, and there is
no modulatory system in the isolated claw preparation. Second, it is
unlikely that postsynaptic depolarizations are necessary for LTP in this
synapse since the postsynaptic cells do not fire action potentials and
neither the test stimuli nor the conditioning stimulus significantly de-
polarize the postsynaptic cell. Third, a quantal analysis indicated that
LTP could be accounted for by an increase in the presynaptic release
of transmitter (Baxter et al. 1985). Thus, LTP in the opener-neuromus-
cular synapse is believed to be an example of a nonassociative,
homosynaptic form of LTP that is induced by presynaptic activity (rule
1a). A similar rule appears to govern, or at least contribute to, the
induction of LTP in several other excitatory synapses, including sensori-
motor synapses of Aplysia (Walters and Byrne 1985), mammalian sym-
pathetic ganglia (Alonso-deFlorida et al. 1991; Bachoo and Polosa 1991;
Briggs and McAfee 1988), bullfrog sympathetic ganglia (Koyano et al.
1985), and the mossy fiber inputs to pyramidal neurons in the CA3
region of the hippocampus (Zalutsky and Nicholl 1990; see however,
Jaffe and Johnston 1990).

Perhaps the simplest form of F (rule 1a) is a simple product:

Awp A() = ey(t) (4.4)

where € is a positive constant that determines the rate of increase in
synaptic strength (often referred to as the learning rate) and y 4 is some
measure of presynaptic activity. The most common interpretation of y 4
is that this state variable represents the frequency of presynaptic spike
activity, which is averaged over several seconds prior to time . The two
key assumptions in equation 4.4 are that Awg 4 is a monotonically in-
creasing function of presynaptic activity and that the proper measure
for governing the induction of LTP is the average frequency of presyn-
aptic activity. However, our current understanding of nonassociative
LTP does not reflect these assumptions.

The first problem with equation 4.4 is that repeated conditioning
stimuli do not induce ever-increasing synaptic potentiation. Rather, as
illustrated in figure 4.2B, potentiation asymptotically approaches a
maximum. The five upward arrows in figure 4.2B indicate the occur-
rences of conditioning stimuli (presynaptic stimulation at 10 Hz for
30 s). The accumulation of LTP with repeated conditioning stimuli re-
sembles the negatively accelerating acquisition curves of the sort found
in the Rescorla and Wagner (1972; see also Donegan et al. 1989) learning
equations. Combining equations 4.2 and 4.4, and incorporating an ex-
pression that places asymptotic limits on synaptic strength yields:
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wg A(E+1) = wp (1) + [e Y1) (Apay — wp 4] (4.5)

where 4., is the maximum possible synaptic strength. Including A,
as a limit for Awp 4 introduces an additional problem in that synaptic
strength will inevitably saturate. Thus, some mechanism must be in-
cluded to allow for the decrement of synaptic plasticity (see below).

It is possible to estimate values for A, and € from current experi-
mental data. The maximum magnitude of LTP has been found in a
number of different vertebrate and invertebrate preparations to range
between a 50% to 600% increase above the control value of wpg 4 (i.e.,
the value of wg 4 at time = 0). Thus, the value of 1, should be no
more than about six to ten times the value of wg 4 (t = 0). It should be
noted that 4, may not represent the full dynamic range of the syn-
apse. For example, in opener-muscular synapses, short-term facilitation
can enhance synaptic transmission by several orders of magnitude (Bittner
1968, 1989; Zucker 1989), whereas the maximum magnitude of LTP is
only about a three or four fold increase (figure 4.2B). LTP appears to
approach its asymptotic value following only a few conditioning stimuli.
Thus, the value of £ should be between about 0.01% to 0.5% of y,_Figure
4.3A illustrates three numerical examples of the growth of wp 4 that is
predicted by equation 4.5 at three different stimulus strengths.

A second problem with equation 4.4 is that Awg 4 will always tend
to increase because ongoing presynaptic activity will contribute to the
time-averaged value of y4. One solution to this problem is to compute
¥, a measure of the sustained or background level of activity in the
presynaptic neuron averaged over a much longer time span than 4, and
to use a function of (y4 - ¥,4) as the presynaptic expression in equation
4.5. Thus, potentiation would occur only when y4 > 7,4, and no change
will occur when y4 < 74.

A third problem with equation 4.4 is that the average of presynaptic
spike activity may not be the proper measure with which to control the
induction of synaptic potentiation. For example, figure 4.2C illustrates
an experiment that examines the ability of two conditioning stimuli to
potentiate opener-neuromuscular synapses. The two conditioning stimuli
are termed “tonic” and “patterned.” Both conditioning stimuli have a
duration of 30 s and elicit 300 presynaptic action potentials, i.e., an
average presynaptic spike activity of 10 Hz for 30 s. In the tonic stimu-
lus, the 300 spikes are elicited at a constant frequency of 10 Hz, whereas
in the patterned stimulus, the 300 spikes are arranged as brief (2 to 5
spikes), high-frequency (100 Hz) bursts that were evenly distributed
throughout the 30-s period. The patterned conditioning stimulus failed
to induce potentiation, whereas the tonic conditioning stimulus induced
potentiation. These results suggest that the induction of potentiation is
governed by specific features of the conditioning stimulus. In addition,
other experimental data suggest that various aspects of synaptic poten-
tiation, such as the magnitude and duration, can be differentially con-
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Effects of Different Stimulus Strengths on the Solutions of Equations 4.5 and 4.7

Figure 4.3 Equations 4.5 and 4.7 predict synaptic potentiation and depression, respec-
tively, and place asymptotic limits on changes that can occur in synaptic efficacy. (A) As
the presynaptic stimulus strength in equation 4.5 is increased from y, = 25 (trace c) to
¥4 = 50 (trace b) toy 4 = 100 (trace a), potentiation of wp 4 reaches its asymptotic level with
a smaller number of trials (¢ =0.01, A, =3, and wy 4(t = 0) =1 in all three traces). For
simplicity, each of these terms is dimensionless. Note that the strength of the conditioning
stimulus y, affects only the rate of growth, not the maximum level of synaptic poten-
tiation. (B) Because of the inverse relationship between synaptic depression and the
frequency of presynaptic activity in equation 4.7, a very low stimulus strength (y, = 0.01,
trace ¢) rapidly induces maximal depression of wg 4 (€=0.01, 4 . =0.25 and wy 4
(t =0) =1 in all three traces). The rate of depression is slower as the stimulus strength
is increased slightly toy 4 = 0.02 (trace b). In contrast, more intense stimuli (y 4 = 3, trace a)
induce no observable depression.
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trolled by parameters of the conditioning stimulus (Alonso-deFlorida et
al. 1991; see also Grover and Teyler 1990). Thus, it appears that while
equation 4.5 reflects some of the simpler features of synaptic potentia-
tion, such as asymptotic limits to synaptic potentiation, it does not
accurately reflect some of the more subtle properties of potentiation,
such as the stimulus-specificity that governs induction. An alternative
approach is to develop dynamic models of synaptic transmission that
incorporate mathematical formalisms of the underlying cellular mechan-
isms. Such biologically realistic models are likely to express more pre-
cisely the features of synaptic transmission and plasticity. One such
model, activity-dependent neuromodulation of synaptic efficacy, is
described later in this chapter.

The stimulus specificity that is depicted in figure 4.2C illustrates a
potentially intriguing aspect of information processing and storage in
a single synapse. Namely, information processing and information stor-
age can be controlled independently in a single synapse by different
patterns of presynaptic activity. For example, in the opener-neuromus-
cular synapse, brief bursts of high-frequency presynaptic activity are the
optimum stimulus for eliciting a behavioral postsynaptic response,
consisting of significant postsynaptic depolarization and muscle con-
traction (Bittner 1968; Smith 1975). This type of stimulus, however, does
not appear to induce LTP. In contrast, brief trains of low-frequency
presynaptic activity do not elicit a muscle contraction, but do induce
LTP. Thus, long-term changes in synaptic efficacy may be induced without
significant activity in the postsynaptic cell, and conversely the postsyn-
aptic cell can be activated without inducing long-term changes in the
synapse. Moreover, once induced in opener-neuromuscular synapses,
LTP was found to have a multiplicative (not additive) effect on the
short-term synaptic plasticity (Keenan et al. 1987). Thus, LTP functions
to increase the “gain” of information processing throughout the entire
dynamic range of the synapse.

The inverse of LTP is long-term depression (LTD), a type of synaptic
plasticity in which the efficacy of a synapse is persistently reduced. A
form of nonassociative, homosynaptic depression that is induced by
presynaptic activity (rule 1b) has been observed at several excitatory
synapses, including the neuromuscular synapses in crayfish (Pahapill
et al. 1987; Zucker and Bruner 1977), sensorimotor synapses in Aplysia
(Byrne 1982; Castellucci et al. 1970), and inputs to the CA1 pyramidal
cells of the rat hippocampus (Dudek and Bear 1992; Dunwiddie and
Lynch 1978; Mulkey and Malenka 1992). Recent results indicate that the
postsynaptic cell may play a role in the induction of synaptic depression
in CA1 neurons (Dudek and Bear 1992; Mulkey and Malenka 1992).
Thus, synaptic depression in CA1 neurons may turn out to be associa-
tive rather than nonassociative.

At many synapses, the magnitude of depression has been found to be
inversely related, within a range of activity, to the frequency of presyn-
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aptic activity. Thus, low frequencies of presynaptic stimulation (e.g.,
0.01 Hz) induce more depression than higher frequencies of stimulation
(e.g., > 1 Hz). Two expressions, which are fashioned after equations 4.4
and 4.5, can be used to describe synaptic depression. The first is a simple
product in which the learning rate £is now negative:

Awg 4®) = € Wat). 4.6)

In this equation and the next, y, is restricted to a specific range of
values that produces depression. This excludes, for example, y4 = 0; in
the absence of presynaptic activity there should be no change in wg 4.
In addition, although this equation produces decreases in wg 4, it is
again not a biologically plausible expression in that it can lead to nega-
tive values for synaptic weights. In an alternate formulation, the learn-
ing rate £ can remain a positive value, but the asymptote 4 for changes
in synaptic strength is made to be less than the initial value of wg 4 (wp 4
at t=0):

wp At +1) = wy AW + [ WA i — wp A1) (4.7)

where 4., is the minimum possible synaptic strength and values for
Amin are restricted to the range of 0 <4 ; <wp 4 (t = 0). Figure 4.3B
illustrates three numerical examples of the depression of wg 4 that is
predicted by equation 4.7.

Although the values of A, and A, in equations 4.5 and 4.7 are
generally assumed to be constants, recent experimental evidence sug-
gests that their values may depend on the state of the synapse. For
example, a low-frequency conditioning stimulus (e.g., 100 pulses at
1 Hz) applied to Schaeffer collateral/commissural (Sch/comm) projec-
tions to CA1 pyramidal cells in the hippocampus selectively depressed
potentiated synapses but had no effect on control synapses (Barrionuevo
et al. 1980; Staubli and Lynch 1990). This result implies that the type of
response (potentiation vs. no change vs. depression) induced by a given
conditioning stimulus may depend on the strength of the synapse prior
to the conditioning stimulus. Thus, a critical experimental issue is the
determination of the intrinsic and/or extrinsic factors that control the
state-dependent responses of synapses. An intriguing possibility is that
the state-dependent responses of synapses may be influenced by modu-
latory transmitters. Thus, the plasticity at a given synapse could, in
principle, be linked to more global factors that are associated with
motivational or developmental states.

Shimbel (1950) proposed a learning rule in which changes in synaptic
weight depend on postsynaptic activity (figure 4.1A, Rule 2). A general
expression of this learning rule is:

Awg A = Flyg(®) 4.8)

which relates the change in synaptic weight to a function F of postsyn-
aptic activity yg. Several examples of biological synaptic plasticity (see
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below) comply with rule 2, and indicate postsynaptic activity can induce
either synaptic potentiation (rule 2a) or depression (rule 2b).

A form of nonassociative, homosynaptic potentiation that is induced
by postsynaptic activity (rule 2a) has been observed at two excitatory
synapses: bullfrog sympathetic ganglion (Kumamoto and Kuba 1983)
and stellate cells in layer II of the entorhinal cortex of the guinea pig
(Alonso et al. 1990). In the bullfrog sympathetic ganglion, potentiation
was induced by antidromic stimulation (20 Hz for 5 s) of the postgan-
glionic nerve trunk. This postsynaptic electrical activity, which was not
paired with presynaptic activity, led to a doubling of the amplitudes of
the EPSPs. In the entorhinal cortex, potentiation of the projection from
the piriform cortex to stellate cells in layer Il was induced by depolar-
izing the postsynaptic cell. This unpaired postsynaptic conditioning
stimulus led to an approximate doubling of synaptic efficacy.

A mathematical expression for postsynaptically induced potentiation,
can be fashioned after equation 4.5 by replacing the presynaptic factor
Y4 with a term y; that represents some measure of postsynaptic activity,
such as the frequency of spike activity averaged over several seconds
prior to time f. Experimental data suggest that the value of 4 should
be no more than about three times the control value of wp ,. As dis-
cussed above, such a simple mathematical expression may not reflect
some of the more subtle properties of postsynaptically induced synaptic
plasticity. For example, the average of postsynaptic spike activity may
not be the pertinent state variable. In the entorhinal cortex, potentiation
was induced by subthreshold membrane depolarizations; i.e., there were
no postsynaptic spikes. Moreover, only rhythmic postsynaptic depolar-
izations that resembled the intrinsic membrane potential oscillations
that are present in the postsynaptic cells were effective in inducing
potentiation. Thus, the postsynaptic induction of synaptic potentiation
appears to be governed by specific features of the conditioning stimulus.

A form of nonassociative, homosynaptic depression that is induced
by postsynaptic activity (rule 2b) has been observed in Sch/comm pro-
jections to CA1 pyramidal neurons in the hippocampus (Pockett et al.
1990; see also Dunwiddie and Lynch 1978). Depression of excitatory
synaptic transmission was induced by antidromic stimulation (e.g., six
bursts of 50 stimuli at 100 Hz, delivered at 10-s intervals) of the axons
of CA1 pyramidal neurons. This postsynaptic electrical activity, which
was not paired with presynaptic activity, decreased the amplitudes of
EPSPs to as little as 14% of their control values. A function, which
approximately describes postsynaptic induced depression, can be fash-
ioned after equation 4.5 first by substituting yp (postsynaptic activity)
for the presynaptic term and by restricting the values of 4, to a range
of 0 < Apin < wp 4t = 0) (ie., A, must be less than the control value
for synaptic strength). Experimental data suggest that the lower limit
of Appin should be about 0.14.

Chapter 4 Learning Rules from Neurobiology
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Heterosynaptic Modification

Consider a common synaptic arrangement in which a postsynaptic neuron,
B, receives converging excitatory inputs from several presynaptic neu-
rons, such as presynaptic neurons A and C in figure 4.1B. Experimental
data suggest a learning rule in which changes in the synaptic weight
of cell A can be a function of the activity in the neighboring presynaptic
neuron C:

Awg 4(®) = Fye®) (4.9)

where y is some measure of activity in neuron C. Activity in neuron
C can either potentiate (rule 3a) or depress (rule 3b) the synaptic strength
of the nonactive cell, neuron A. A mathematical expression for this form
of heterosynaptic plasticity (rule 3) can be fashioned from equation 4.5
by replacing y4 with yc. As before, this expression will represent syn-
aptic potentiation if the value of A, is greater than wg 4 (t = 0) (the
control value of synaptic strength) and depression if the value of 4,
is less than wp 4 (t = 0).

A form of nonassociative, heterosynaptic potentiation that can be
induced in a set of nonactive synapses by activity in neighboring syn-
apses (rule 3a) has been observed at several excitatory synapses, includ-
ing inputs to the stellate ganglion of the cat (Bachoo and Polosa 1991)
and certain classes of inputs to pyramidal cells in the CA3 region of the
hippocampus (Bradler and Barrionuevo 1989, 1990). In the stellate ganglion,
synaptic potentiation was examined by stimulating two distinct groups
of preganglionic axons, the third and fourth thoracic white rami (T3WR
and TAWR, respectively). A conditioning stimulus (e.g., 40 Hz for 5s)
applied to TAWR, while T3WR was unstimulated, induced heterosynaptic
potentiation in the T3WR pathway and increased the T3WR response
by an average of 600% above the control values. If the conditioning
stimulus was applied to the test pathway, T3SWR, homosynaptic poten-
tiation was induced in T3WR. If the conditioning stimulus was applied
to the postganglionic axons, no changes in synaptic efficacy were in-
duced. Thus, the heterosynaptic potentiation in this preparation was not
a consequence of postsynaptic electrical activity and these synapses can
express both homosynaptic and heterosynaptic potentiation, Currently,
little is known about the ways in which these two forms of synaptic
plasticity interact within a single synapse.

A form of nonassociative, heterosynaptic depression that can be in-
duced in a set of nonactive synapses by activity in neighboring synapses
(rule 3b) has been observed in several excitatory synapses in the hip-
pocampus, including inputs to: pyramidal cells in the CA1 (Dunwiddie
and Lynch 1978; Lynch et al. 1977), pyramidal cells in the CA3 (Bradler
and Barrionuevo 1989, 1990), and granule cells in the dentate gyrus
(Abraham and Goddard 1983; Abraham et al. 1985; Levy 1985; Levy and
Steward 1979, 1983; White et al. 1988, 1990). For example, in the CA3
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Synaptic Plasticity Observed at Inputs to Hippocampal CA3 Pyramidal Neurons

Figure 4.4 Heterosynaptic plasticity at inputs to a hippocampal CA3 pyramidal neuron
(P) was examined by stimulating four separate groups of presynaptic fibers: Schaeffer
collateral /commissural (S), fimbrial (F), and two distinct groups of mossy fibers (M1, M2).
Stimulation (+) of a subset of the mossy fiber input, M1, induced heterosynaptic depres-
sion in the nonstimulated mossy fiber input, M2, and heterosynaptic potentiation in the
fimbrial and Schaeffer pathways. Stimulation of either the Schaeffer collateral /commis-
sural or fimbrial inputs also induced heterosynaptic depression in the nonstimulated
mossy fiber pathway. (Data summarized from Bradler and Barrionuevo 1990.)

region of the hippocampus, heterosynaptic depression was examined by
stimulating up to four separate groups of presynaptic fibers: Schaeffer
collateral /commissural (S), fimbrial (F), and two distinct groups of mossy
fibers (M1, M2) (figure 4.4). A conditioning stimulus (five 6-pulse 100 Hz
trains delivered at 0.02 Hz) applied to a subset of the mossy fiber inputs
(M1) induced heterosynaptic depression in a nontetanized subset of
mossy fibers, M2, whereas heterosynaptic potentiation was induced in
the fimbrial and Schaeffer pathways. Heterosynaptic depression of the
mossy fiber pathways also could be induced by conditioning stimuli
applied to either the Schaeffer or fimbral pathways. Only the mossy
fiber pathway was capable of inducing heterosynaptic potentiation and
this heterosynaptic potentiation was restricted to non-mossy fiber
pathways.

A feature of heterosynaptic plasticity not captured by rules similar to
equation 4.5 is the spatial limitation that may apply to interactions among
synapses. For example, White et al. (1988, 1990) found in the dentate
gyrus that heterosynaptic depression could be induced only between
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populations of synapses that converged onto overlapping dendritic regions.
Indeed, the degree of heterosynaptic interactions, as measured by the
magnitude of depression, was correlated with the extent of spatial overlap
(i.e., the strength of heterosynaptic interactions between pathways was
directly related to the proximity of the interacting synapses). Thus,
mathematical expressions of heterosynaptic interactions should incor-
porate some description of the anatomical features of the dendritic tree
and of the spatial arrangements of different populations of synapses on
the dendrites. The spatial limitations of heterosynaptic interactions also
suggest a intriguing aspect to single-cell information processing and
storage—namely, different regions of a cell can process and store infor-
mation independently. To capture this feature, single lumped parameter
models of the postsynaptic cell are not appropriate.

As illustrated in figure 4.1B, the heterosynaptic interactions between
neurons can be mediated by modulatory transmitters; that is, changes
in synaptic weight are a function of the activity in a modulatory neuron
or system, yp:

Awg 4(£) = F(yp (D). (4.10)

These modulatory neurons can either potentiate (rule 4a) or depress
(rule 4b) the synaptic efficacy of neuron A. A particularly well-charac-
terized example of such heterosynaptic interactions is the modulation
of the sensory neurons that mediate defensive withdrawal reflexes in
Aplysia (for reviews, see Byrne 1987; Byrne and Crow 1991; Byrne et al.
1991a, ¢; 1993; Kandel and Schwartz 1982). The properties of these
sensory neurons can be affected by several modulatory transmitters,
some of which induce heterosynaptic potentiation while others induce
heterosynaptic depression. For example, serotonin (5-HT) can induce
nonassociative heterosynaptic potentiation in sensory neuron synapses.
Binding of serotonin to its receptors activates several second messen-
ger/kinase systems in the sensory neurons, two of which are the cAMP-
dependent protein kinase A system and the Ca2*/phospholipid—-dependent
protein kinase C system (Bernier et al. 1982; Ocorr and Byrne 1985;
Sacktor and Schwartz 1990). These second messenger/kinase systems,
in turn, modulate the properties of ion channels, which results in in-
creased neuronal excitability, increased spike duration, increased Ca?*
influx, and hence increased transmitter release from sensory neurons
(Baxter and Byrne 1990; Klein and Kandel 1980; Sugita et al. 1992). In
addition, these second messenger/kinase systems seem to directly modulate
aspects of the secretory machinery, which in turn enhances transmitter
release (Braha et al. 1990; Gingrich and Byrne 1984, 1985, 1987; Gingrich
et al. 1988; Hochner et al. 1986; Pieroni and Byrne 1992).

In contrast, the neuropeptide FMRFamide can induce nonassociative
heterosynaptic depression in sensory neuron synapses. FMRFamide
activates the arachidonic acid second messenger pathway (Piomelli et
al. 1987), and in general, the effects of FMRFamide are the opposite of
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those induced by serotonin. FMRFamide modulates ion channels in
such a way that neuronal excitability, spike duration, Ca®* influx, and
hence transmitter release, are all reduced (Belardetti and Siegelbaum
1988; Critz et al. 1991; Edmonds et al. 1990). In addition, FMRFamide
seems to directly inhibit aspects of the secretory machinery, which in
turn reduces transmitter release (Pieroni and Byrne 1992; see also Man-
Son-Hing et al. 1989) and may have postsynaptic actions as well (Peter
et al. 1992).

Thus, the actions of the modulatory transmitters that induce
heterosynaptic modification are mediated via a complex assembly of
interacting second messenger systems and enzymatic reactions that affect
multiple subcellular processes. This complexity in the mechanisms that
underlie heterosynaptic modulation can not be easily manifested by
relatively simple mathematical expressions such as equations 4.5 or 4.10.
More biologically realistic and dynamic models of the types of subcel-
lular and molecular mechanisms that can underlie heterosynaptic
modulation have been developed (Aszédi and Friedrich 1987; Aszédi
et al. 1991; Buxbaum and Dudai 1989; Friedrich 1990; Gingrich and
Byrne 1985, 1987; Gingrich et al. 1988; Greenberg et al. 1987; see below).
These models illustrate that the molecular processes underlying neu-
ronal functions, including the kinetics of enzyme reactions, interactions
among second messenger systems, and regulation of transmitter release,
play critical roles in determining the features of neuronal plasticity.

ASSOCIATIVE SYNAPTIC MODIFICATIONS

Associative modifications of synaptic efficacy depend on the temporal
correlation between the activities in two neurons. Although several
associative learning rules have been proposed on the basis of theoretical
work, only recently have examples of associative synaptic modifications
been demonstrated experimentally. Below are reviewed several examples
of biological synaptic plasticity that are governed by the temporal in-
teractions between two neuronal stimuli and that provide some insight
to the formulation of biologically plausible associative learning rules.

Hebbian Rule for Synaptic Modification

Possibly the best known associative learning rule was proposed by
Hebb (1949). His postulate for learning states:

When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency as one
of the cells firing B is increased.

The key feature of the Hebbian rule is that increases in synaptic weight
are dependent on concurrent activity in the presynaptic and postsyn-
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aptic cells. This simple conjunctive mechanism for synaptic potentiation
can be represented by the general expression:

Awg 4(H) = Fly,(, ya®) , @.11)

which relates the change in synaptic weight to a function F of both
presynaptic and postsynaptic activity.

At least one form of synaptic potentiation, which has been examined
extensively in the Sch/comm projections to CA1 pyramidal cells in the
hippocampus, appears to conform to the Hebbian rule. A weak presyn-
aptic stimulus, which by itself fails to induce any change in synaptic
efficacy, can induce LTP when paired with intracellular depolarizations
of the postsynaptic cell (Gustafsson et al. 1987; Kelso et al. 1986; Wigstrom
et al. 1986). This form of LTP can be induced even when Na*-mediated
postsynaptic action potentials are blocked (Kelso et al. 1986). Evidently,
it is sufficient that the postsynaptic cell to be strongly depolarized at
the same time that the presynaptic cells are stimulated. The temporal
specificity of this form of synaptic potentiation has been examined by
varying the intervals between postsynaptic depolarization and presyn-
aptic stimulation (Gustafsson et al. 1987; Kelso et al. 1986; see also
Brown et al. 1989; Gustafsson and Wigstrom 1986; Hashemzadeh et al.
1991; Levy and Steward 1983). Simultaneous occurrences of presynaptic
stimulation and postsynaptic depolarization are the most effective at
inducing potentiation. In addition, potentiation can be induced with
postsynaptic depolarizations that start several tens of milliseconds after
the presynaptic activity, but not with postsynaptic depolarizations that
terminate before the presynaptic activity. These results suggest that
following presynaptic stimulation there remains a “trace” of previous
activity during which time the synapses continue to be eligible for
modification. (For other consequences of this trace, see chapter 2.)

Although neither firing postsynaptic action potentials per se nor strictly
conjunctive activity may be required, potentiation of Sch/comm projec-
tions to CA1 cells is generally consistent with the Hebbian rule in that
synaptic potentiation takes place only when the synapse is active in
close temporal contiguity with strong postsynaptic depolarizations. A
similar rule appears to govern the potentiation in excitatory projections
from the entorhinal cortex to the dentate gyrus of the hippocampus (for
review see Levy 1985), as well as excitatory synapses in a wide variety
of brain areas (for reviews, see Teyler and DiScenna 1987; Teyler et al.
1990; Tsumoto 1990) and possibly some excitatory synapses of
invertebrates (Miller et al. 1987).

There have been many mathematical formalisms suggested for the
Hebbian rule (for reviews see Brown et al. 1990; Sejnowski and Tesauro
1989, 1990). The simplest implementation of the Hebbian rule is a prod-
uct of the average frequencies of spike activity in the presynaptic and
postsynaptic cells:

Awg A1) = €y4(1) yp(t) (4.12)
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where € is a small, positive constant. As discussed above (see discussion
of equation 4.4), there are problems with a simple product equation. For
example, the product equation predicts that Awg 4 is a monotonically
increasing function of conjunctive activity. This prediction is in contrast,
however, to experimental observations in which potentiation of Sch/
comm projections to CA1 cells saturates with repeated conditioning
stimuli (Gustafsson and Wigstrom 1986; Larson and Lynch 1986; see also
Abraham et al. 1985; Levy and Steward 1979). Although this problem
can be overcome by including an upper limit for Awg 4 such as A, in
equation 4.5, limiting Awp 4 introduces the additional problem that
chance coincidences of presynaptic and postsynaptic activity will inevi-
tably lead to saturation of the synapse.

Brown et al. (1990; see also Kairiss et al. 1988; Kohonen 1984, 1990)
suggested a more flexible expression: a bilinear equation that combines
the product equation for Hebbian potentiation and mechanisms for
decreases in synaptic strength:

wp At +1) = Wy A1) + (€Y Yp(D) = Byp®) = (yy) -8 (413)

where 3, yand &are constants in the simplest case, or functions in a more
generalized form. Thus, the term (- (Byp)) represents a form of
nonassociative synaptic depression that is induced by postsynaptic activity
(Pockett et al. 1990), the term (- (yy4)) represents a form of nonassociative
synaptic depression that is induced by presynaptic activity (Dunwiddie
and Lynch 1978), and the term (- ) represents the passive decay of
plasticity. Figure 4.5A illustrates the response of this bilinear equation
(equation 4.13) to four phases of stimulation. During the first phase
(phase a in figure 4.5A), only the presynaptic cell is active and wp 4
undergoes homosynaptic depression. During the second phase (phase b),
only the postsynaptic cell is active and wg 4 again is depressed. During
conjunction activity (phase ), wg 4 potentiates as predicted by the prod-
uct equation for the Hebbian rule. Finally, noncoincident activity (phase d)
again results in synaptic depression.

Levy and co-workers (Levy 1985, 1989; Levy and Colbert 1991; Levy
and Desmond 1985; Levy et al. 1983; Lopez et al. 1990) also have sug-
gested a mathematical expression for the Hebbian rule that allows for
reversible synaptic modifications and that incorporates asymptotic lim-
its on both potentiation and depression of synaptic weight:

wB,A(f +1) = wB,A“} +[e G(yﬂ{ﬂ) (cyalt) - wB,A(”)] (4.14)

where G is some measure of the net postsynaptic depolarization or
activity and c is a positive constant. (In the simplest case G = yg(f).)
Figure 4.5B illustrates the response of equation 4.14 to four phases of
stimulation. If the postsynaptic term, G, is equal to zero (phase a in
figure 4.5B), then no change in synaptic weight occurs. Thus, the postsyn-
aptic term is permissive of change. If G >0, then the difference
cya4 - wp 4 determines whether potentiation or depression of synaptic
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Changes in Synaptic Weight Predicted by Two Forms of the Hebbian Learning
Rule

Figure 4.5. (A) Bilinear Hebbian rule (eq. 4.13) suggested by Brown et al. (1990). The
changes in synaptic weight wp 4 thatare predicted by equation 4.13 are illustrated during
four phases of stimulation (e = 0.00385, B = 0.005, y=0.005, and & = 1, in all four phases
and control value of wp 4 = 1). During phase a, only the presynaptic cell is active (y 4 = 40
and yg =0) and wg 4 undergoes homosynaptic depression. During phase b, only the
postsynapticcell isactive (y 4, = 0and y = 40) and wp 4 againis depressed. During phase ¢,
conjunction activity (y, = 40 and y, = 40) induces potentiation of wy 4. During phase d,
noncoincident activity (y, = 0 and yp = 40) again induces depression. (B) Hebbian rule
incorporating reversible synaptic modifications and asymptotic limits on both potentia-
tion and depression of synaptic weight (eq. 4.14), suggested by Levy (1985). The changes
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weight occurs. When ¢ y4 < wg 4, depression occurs (phase b). When
Cya > wpg 4, potentiation occurs (phase c). Finally, the potentiation can
be reversed when cy, <wpg 4 and G >0 (phase d). This reversal of
potentiation is termed depotentiation (Levy 1985; see also Fuijii et al.
1991). Learning rules that allow both increases and decreases in synaptic
strength avoid eventual saturation and allow synapses to function through-
out a broader dynamic range.

An additional feature that can be incorporated into these mathemati-
cal expressions of the Hebbian rule is a term describing the temporal
specificity. As discussed above, presynaptic activity appears to produce
a “trace” that allows the synapses to remain eligible for potentiation for
several tens of milliseconds following cessation of presynaptic stimu-
lation. A common method for incorporating a “trace” is by offsetting
the presynaptic term by a time 7 (for examples and additional discussion
see Brown et al. 1990; Klopf 1988, 1989; Sejnowski and Tesauro 1989;
Sutton and Barto 1981; Tesauro 1986). A general equation for the Hebbian
rule that incorporates the differential effects of several values of 7 can
be written as follows:

k
Awg 4 (1) = € ), Flyalt—1)) Glyp(t) (4.15)
=0

where F(y(t - 7)) represents a function of the presynaptic stimulus
“trace” and G(yp(t)) represents a function of the postsynaptic activity.
Several forms of the function F have been proposed. For example, F can
equal the previous level of presynaptic activity, c; y4(t - 7) where c; is
a positive coefficient that determines the contribution of each offset, or
F can equal the change in the level of presynaptic activity, c; (y4(f) -
ya(t — 7). Similarly, there are a number of possible forms for G, such
as the level of postsynaptic activity, yg(t), or the change in the level of
postsynaptic activity. The use of changes in the level of activity is a way
of reversing the sign of the synaptic modification (e.g., potentiation vs.
depression) and thus avoids the problem of saturation (Klopf 1988,
1989).

In addition to the mathematical equations for the Hebbian rule dis-
cussed above (equations 4.12 through 4.15), a number of more biologi-
cally realistic and dynamic models of Hebbian synaptic plasticity have
been developed (Gally et al. 1990; Gamble and Koch 1987; Holmes and
Levy 1990; Kitajima and Hara 1990, 1991; Lisman 1989; Wickens 1988;

in wy 4 thatare predicted by equation 4.14 areillustrated during four phases of stimulation
(e=0.011, and ¢ = 0.04 in all four phases; initial value of Wy 4= 1). During phase a, only
the presynaptic cell is active (i, = 50 and ygz = 0) and wy 4, remains unchanged. During
phase b, only the postsynaptic cell is active (4 = 0 and yp = 50) and wp, 4 is depressed.
During phase c, conjunctive activity (y, = 50 and y, = 50) induces potentiation of wyg ,.
During phase d, noncoincident activity (y, =0 and yz = 50) “depotentiates” wg 4.
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Zador et al. 1990). These models include formal descriptions of the many
complex biophysical and/or biochemical processes that may underlie
the induction and maintenance of associative LTP. For example, the
central tenet of the Hebbian rule is the requirement for conjunctive
presynaptic activity and postsynaptic depolarization in order for syn-
aptic modifications to occur. It is generally agreed that this feature of
Hebbian potentiation in CA1 area of the hippocampus is derived from
an unusual property of the N-methyl-D-aspartate (NMDA) subtype of
glutamate receptor: its dual regulation by transmitter and membrane
voltage (for reviews see Brown et al. 1988, 1990, 1991; Bliss and Collingridge
1993; Collingridge and Bliss 1987; Collingridge and Singer 1990; Gustafsson
and Wigstrom 1988; Madison et al. 1991; Nicoll et al. 1988; Siegelbaum
and Kandel 1991; Teyler and DiScenna 1987; see also Cline 1991). As
illustrated in figure 4.6, two events must occur before the ionophore of
the NMDA receptor will open: The presynaptic transmitter, glutamate,
must bind to the receptor and the Mg?* block of the channel must be
removed by a strong postsynaptic depolarization. The subsequent influx
of Ca?* through the open NMDA ionophore is critical for the induction
of synaptic modifications (Collingridge et al. 1983; Lynch et al. 1983;
Malenka et al. 1988). The elevation of postsynaptic Ca%* is believed to
trigger a complex sequence of enzymatic reactions that alter the prop-
erties of the postsynaptic and/or presynaptic cells (for reviews see
Madison etal. 1991; Siegelbaum and Kandel 1991; Tsumoto 1990). (Chapter
2 discusses the consequences of this functioning for neuronal modeling,
and chapter 3 points out similarities between the subsequent alteration
of presynaptic transmitter release and connectionist models.)

Models that include quantitative descriptions of the NMDA receptor,
of voltage-gated ionic channels, of the geometric and electrotonic struc-
ture of dendritic spines and process, and of the dynamics of the regu-
lation of intracellular CaZ* predict that short, high-frequency stimuli are
more effective in elevating the concentration of Ca%* than longer, low-
frequency stimuli (Gamble and Koch 1987, Holmes and Levy 1990;
Zador et al. 1990). Moreover, a model of Ca’*-dependent enzymes in
the postsynaptic spines predicts that the elevation of Ca?* can trigger
either potentiation or depression of synaptic efficacy (Lisman 1989). The
“sign” of the modification is determined by the levels of Ca?*: Lower
levels of CaZ* are predicted to induce synaptic depression and higher
levels are predicted to induce potentiation. Taken together, these mod-
els appear to accurately predict the experimental observations that tonic,
low-frequency stimulation tends to induce depression or depotentiation,
whereas patterned, high-frequency stimulation tends to induce poten-
tiation (Dudek and Bear 1992; Dunwiddie and Lynch 1978; Grover and
Teyler 1990; Larson and Lynch 1986; Mulkey and Malenka 1992; Pavlides
et al. 1988; Staubli and Lynch 1987, 1990). Moreover, these models
provide insights into the spatial and temporal interactions among syn-
apses in the complex dendritic structure of the postsynaptic cell. For
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The NMDA Receptor: A Molecular Basis for the Hebbian Learning Rule

Figure 4.6 The dual regulation of the NMDA receptor by the binding of glutamate and
by membrane voltage allows for the detection of conjunctive presynaptic and postsynaptic
activity. (A) Presynaptic activity alone releases the excitatory transmitter glutamate
(GLU), which binds to both NMDA and non-NMDA receptors. A net influx of monovalent
cations through ionophores associated with the non-NMDA receptors produces postsyn-
apticdepolarization. A voltage-dependent block by Mg?* of the ionophore associated with
the NMDA receptor prevents the postsynaptic influx of Ca?* that is necessary for the
induction of synaptic potentiation. (B) Presynaptic release of glutamate in conjunction
with a large postsynaptic depolarization removes the Mg?* block of the NMDA channel
and allows Ca?* influx into the postsynaptic neuron, activating Ca2*-dependent processes

that induce synaptic potentiation.
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example, recent models indicate that postsynaptic spines play an impor-
tant role in amplifying and compartmentalizing the Ca?* signals that are
crucial for synaptic modification (Gamble and Koch 1987; Holmes and
Levy 1990; Koch et al. 1992; Zador et al. 1990).

Anti-Hebbian Rule for Synaptic Modification

An anti-Hebbian rule is one in which synaptic weights are decreased
as a result of concurrent presynaptic and postsynaptic activity. As noted
by Brown et al. (1990), the term anti-Hebbian is not used consistently
in the literature. In addition, the terms “inverse-Hebbian” (Artola et al.
1990) and “reverse-Hebbian” (Donegan et al. 1989) have been used
recently to describe synaptic depression resulting from concurrent pre-
synaptic and postsynaptic activity. One form of synaptic plasticity that
is generally consistent with the anti-Hebbian rule is LTD at the synapses
from parallel fibers to Purkinje cells in the cerebellar cortex (for recent
reviews of cerebellar LTD, see Ito 1989a, b, 1991, 1992; Siegelbaum and
Kandel 1991). A similar form of anti-Hebbian synaptic depression re-
cently has been observed in regions of the neocortex (Bindman et al.
1988; Hirsch and Crepel 1990). Stimulation of parallel fibers in conjunc-
tion with strong postsynaptic depolarizations, which elicit dendritic
Ca?* spikes, induces LTD at the stimulated synapses (Crepel and Jaillard
1991; Hirano 1990b; see also Crepel and Krupa 1988; Linden and Connor
1991; Linden et al. 1991). The induction of LTD is believed to require
the concurrent increase in postsynaptic levels of Ca®* (Sakurai 1990; see
also Hirsh and Crepel 1992) and the activation of glutamate receptors
(Kano and Kato 1987; Linden et al. 1991), which mediate parallel fiber
to Purkinje cell transmission (Hirano 1990c; Hirano and Hagiwara 1988;
Konnerth et al. 1990). These two events initiate a sequence of enzymatic
reactions (for reviews see Siegelbaum and Kandel 1991; Ito 1991, 1992),
the end result of which is to desensitize those glutamate receptors activated
by the parallel fiber stimulation, which in turn depresses the efficacy
of parallel fiber transmission. In addition to LTD, LTP of parallel fibers
can be induced by either stimulating the parallel fibers alone, or stimu-
lating them in conjunction with postsynaptic hyperpolarizations or with
weak depolarizations, which elicit Na* but not Ca®* spikes (Crepel and
Jaillard 1991; Hirano 1990a, b; Sakurai 1987). Thus, parallel fiber syn-
apses can undergo either potentiation or depression and the determin-
ing factor is believed to be the level of Ca** in the postsynaptic cells:
High levels of Ca?* induce LTD, whereas low levels of Ca?* allow for
LTP. Interestingly, this is in contrast to plasticity in the CA1 region of
the hippocampus, where high levels of postsynaptic Ca?* are necessary
for LTP and low levels are believed to induce LTD. There have been
various attempts to model aspects of the cerebellar circuitry and to
include mathematical expressions for plasticity at parallel fiber to Purkinje
cell synapses (Chapeau-Blondeau and Chauvet 1991; Chauvet 1986;
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Changes in Synaptic Weight Predicted by the Covariance Learning Rule

Figure 4.7 In the circuit shown, postsynaptic neuron B is innervated by two presynaptic
neurons, A and C. The changes in synaptic weights predicted by the covariance rule,
equation 4.16 (Sejnowski 1977), are illustrated during three phases of stimulation. During
phase a, activity in cell A is negatively correlated with postsynaptic activity and its
synaptic weight wy , decreases (y, =17 and yp = 25), whereas activity in cell Cis posi-
tively correlated with the postsynaptic cell (y- = 25 and y, = 25), and its synaptic weight
wy - potentiates. During phase b, the activity in cell A is positively correlated with the
postsynaptic cell, and its synaptic weight potentiates (y, = 27 and y, = 25), whereas
activity of cell C is uncorrelated with the postsynaptic cell, and there is no change in its
synaptic weight (y~ = 20 and y, = 25). During phase ¢, the activities in both presynaptic
cells are uncorrelated with activity in the postsynaptic cell, and there is no change in either
of their synaptic weights (y, = 20, y. = 20, and y = 20). In all three phases, £=0.003,
¥4 =20, =20, and ¥ = 20; initial values of both wg , and wy ~=1).

Chapter 4 Learning Rules from Neurobiology



94

Desmond and Moore 1988; Houk et al. 1990; Moore and Blazis 1989;
Moore et al. 1989). Although the role that the cerebellum might play in
motor learning is unclear (Bloedel et al. 1991; Donegan et al. 1989;
Greenough and Anderson 1991; Thompson 1986, 1989; Wagner and
Donegan 1989; Yeo 1991), these theoretical studies predict that the cerebellar
circuitry and its related synaptic plasticity, in principle, can perform
complex information processing and contribute to motor learning.

Covariance Rule for Synaptic Modification
Stent (1973) offered an extension to the Hebbian rule:

When the presynaptic axon of cell A repeatedly and persistently fails
to excite the postsynaptic cell B while cell B is firing under the influence
of other presynaptic axons, metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is decreased.

This rule further specifies that synaptic depression results from “an
asynchronous activity pattern of the two cells”; not simply the disuse
of the presynaptic axon. Aspects of this generalization of the Hebbian
rule can be found in a learning rule that is referred to as the “covariance
rule” (Sejnowski 1977; Sejnowski and Stanton 1990; see also Chauvet
1986; Cooper 1986; Dayan and Willshaw 1991; Reilly and Cooper 1990;
Rubner and Schulten 1990). According to the covariance rule, changes
in synaptic weight are proportional to the covariance between the firing
rates of the presynaptic and postsynaptic cells:

where 7, and ¥ as before measure the sustained levels of activity in
the presynaptic and postsynaptic cells, respectively. Thus, synaptic weight
should increase if the pre- and postsynaptic activities are positively
correlated, decrease if they are negatively correlated, and remain un-
changed if they are uncorrelated. Figure 4.7 illustrates a numerical example
showing how the synaptic weights of two presynaptic cells, A and C,
can be governed by the covariance rule during three phases of stimu-
lation. During the first phase (phase a in figure 4.7), activity in cell A
is negatively correlated with postsynaptic activity and its synaptic weight
(wp,4) decreases. In contrast, the activity in cell C is positively correlated
with the postsynaptic cell, and its synaptic weight (wp ) potentiates.
During the second phase (phase b), the activity in cell A is positively
correlated with the postsynaptic cell, and its synaptic weight potenti-
ates. During this phase, activity of cell C is uncorrelated with the postsyn-
aptic cell, and there is no change in its synaptic weight. Finally, in
phase c, the activities in both presynaptic cells are uncorrelated with
activity in the postsynaptic cell, and there is no change in either of their
synaptic weights. Thus, the covariance rule overcomes a limitation inherent
with nondecremental learning rules such as equation 4.12 and allows
the weight of a synapse to be used throughout its dynamic range. In
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addition, the covariance rule solves the problem of automatic growth
in synaptic weight resulting from random coincidence of presynaptic
and postsynaptic activity.

Recently, there have been reports of a form of synaptic depression in
the hippocampus that appears to be a good candidate for the covariance
rule (Sejnowski and Stanton 1990; Stanton and Sejnowski 1989; Stanton
et al. 1989, 1991; see, however, Goldman et al. 1990). For example, a
neural analog of the covariance rule was examined by stimulating two
distinct inputs to CA1 pyramidal neurons, a strong input and a weak
input. Stimulation of the strong input induced potentiation in the stimu-
lated synapses without significantly affecting the unstimulated weak
input. Stimulation of the weak input alone did not induce any changes
in the synaptic efficacy of either input. If the weak input was stimulated
out of phase with the strong input, however, depression was induced
in the synapses stimulated by the weak input. This phenomenon was
referred to as associative LTD (Stanton and Sejnowski 1989). Recently,
a similar form of synaptic depression induced by asynchronous presyn-
aptic and postsynaptic activity has been reported at vertebrate neuro-
muscular synapses in culture (Dan and Poo 1992). If the weak and strong
inputs were stimulated in phase (simultaneously), potentiation was induced
in the synapses of the weak input. The voltage of the postsynaptic cell
may be an important determinant of this form of synaptic depression
(Sejnowski and Stanton 1990). If stimulation of weak input was paired
with intracellular depolarization of the postsynaptic cell, potentiation
was induced in the synapses of the weak input. This is the Hebbian rule
for synaptic potentiation. If stimulation of weak input was paired with
hyperpolarization of the postsynaptic cell, however, depression was
induced. A similar form of synaptic depression that results from pairing
presynaptic activity with postsynaptic hyperpolarization recently has
been observed in the dentate gyrus area of the hippocampus (Xie et al.
1992) and the visual cortex (Friedlander et al. 1993). Thus, there is
evidence of a form of synaptic plasticity that is governed by the cova-
riance rule, in that identical presynaptic stimulations of the weak input
can produce either potentiation or depression depending on the phase
relationship between presynaptic and postsynaptic activity.

Bidirectional/Variable Threshold Rule for Synaptic Modification

Bienenstock et al. (1982; see also Bear et al. 1987; Clothiaux et al. 1991;
Cooper 1986; Cooper et al. 1979, 1985, 1990; Intrator and Cooper 1992)
proposed a rule for synaptic modification that, in theory, might underlie
the self-organization and learning in neural networks. This modification
rule, sometimes referred to as the Bienenstock, Cooper, and Munro
(BCM) rule, is predicated on the notion that individual synapses are
capable of bidirectional modifications (both depression and potentia-
tion) and whether the synaptic strength increases or decreases depends
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upon the magnitude of the postsynaptic response as compared to a
variable threshold 6. A general mathematical expression for this rule is:

Awg 4 (1) = PyaH), O(1) yA®), 4.17)

where ¢ is a scalar function of the postsynaptic activity that changes sign
at a threshold 6 and where yp and y,4 again represent activity in the
postsynaptic and presynaptic cells, respectively. The precise form of ¢
is not critical as long as it has certain general characteristics:

p=0fory; =0, ¢ <0 for yg < 6; (4.18a)
¢=0foryg =6, ¢ >0 foryg > 6. (4.18b)

An arbitrary function that satisfies these general features is illustrated
in figure 4.8 for two different values of the modification threshold 6. The
two essential features of this rule are: first, ¢ changes sign at 8 and
second, the value of € is not fixed. Thus, this rule predicts that a given
presynaptic conditioning stimulus can produce such categorically dif-
ferent responses as potentiation, no change or depression depending on
the magnitude of the postsynaptic response that the input elicits and on
the current value of 6. For example, if the current threshold for synaptic
modification is low (figure 4.8A, (1)), then a given presynaptic input
that elicits the postsynaptic response indicated by the dotted line in
figure 4.8A would induce synaptic potentiation; ¢ is positive. If the
current threshold for synaptic modification is high (figure 4.8B, 6)),
however, then the same presynaptic input and the same postsynaptic
response (dotted line in figure 4.8B) would induce synaptic depression;
¢ is negative.

Recent experiments that examined synaptic plasticity in slices of visual
cortex have provided support for some of the essential features of this
rule. Artola et al. (1990; see also Reiter and Stryker 1988; Singer et al.
1990) found that identical presynaptic conditioning stimuli can lead to
either no change, depression or potentiation of the activated synapses
and that the critical determinant of the nature of synaptic modification
appeared to be the level of postsynaptic depolarization or activity. Thus,
presynaptic activity that was paired with postsynaptic hyperpolariza-
tion led to no change of synaptic efficacy, whereas presynaptic activity
that was paired with moderate postsynaptic depolarizations led to synaptic
depression, and presynaptic activity that was paired with stronger
postsynaptic depolarizations led to synaptic potentiation. The molec-
ular mechanism for the modification threshold 6 is believed to involve
the level of Ca2* in the postsynaptic cell (Cooper et al. 1990; Kimura et
al. 1990; Singer 1983, 1987, 1990). Moderate postsynaptic depolarizations
are believed to activate voltage-dependent Ca* channels resulting in
moderate increases in postsynaptic Ca?* levels, which in turn lead to
synaptic depression (see Brocher et al. 1992). Stronger postsynaptic
depolarizations are believed to activate Ca?* influx through both volt-
age-dependent Ca®* channels and NMDA receptors, which results in
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The Modification Function ¢ (yy, ) Shown for Two Values of ¢

Figure 4.8 ¢ is a theoretical function relating synaptic weight change to postsynaptic
activity yp. The sign of ¢ changes at 8, such that ¢ is negative (synaptic depression) for
¥ < 6,and ¢is positive (synaptic potentiation) for yp > 6. The value of @is variable. (A) Plot
of ¢ for a low modification threshold, (). (B) Plot of ¢ for a high modification threshold,
B(3)- Thus, a presynaptic conditioning stimulus that produces the same level of postsyn-
aptic activity (dotted lines) would produce synaptic potentiation if @has a low value (6y)),
but would produce synaptic depression if 8 has a high value, (8z)). (Modified from
Bienenstock et al. 1982, and from Yang and Faber 1991.)

greater levels of postsynaptic Ca?* and synaptic potentiation (see Artola
and Singer 1990; Artola et al. 1990; Bear et al. 1990; Singer et al. 1990).

In the original formulation of this learning rule (equation 4.17), it was
proposed that 6 vary as a nonlinear function of the average output (/)
of the postsynaptic cell (Bienenstock et al. 1982; see also Clothiaux et
al. 1991):

0 = F(7p) = (Vp)? . (4.19)

It should be noted that Bienenstock et al. (1982; see also Singer 1983,
1987) proposed that 8 may also be influenced by global signals, such as
modulatory systems; i.e., 8 = F(¥p, y)). Recent experiments have illus-
trated that modulatory transmitters can have a permissive role for the
induction of synaptic plasticity in the visual cortex (Greuel et al. 1988;
Singer 1990). Recently Yang and Faber (1991) suggested as an alternative
to equation 4.19 that the modification threshold 6 might vary as a
function of the initial level of synaptic efficacy: 8 = F(wg 4). For example,
potentiation of the synaptic inputs to the Mauthner cell of the goldfish
can be induced by conjunctive presynaptic and postsynaptic activity
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(Yang et al. 1990). If the synaptic efficacy is first elevated, however, the
conditioning stimulus, which usually induces potentiation, produces
synaptic depression instead (Yang and Faber 1991). Thus, the sign of the
synaptic modification was changed by varying the level of synaptic
efficacy. These results suggest the hypothesis that the modification
threshold 6 is increased for synapses with an initial efficacy that is
elevated. Additional support for the hypothesis that 8 may vary as a
function of prior synaptic activity recently has been observed in the
hippocampus (Huang et al. 1992).

The nature of the function that controls the modification threshold can
have important implications for information processing and storage
within single cells. Since ¥y reflects postsynaptic activity, the value of
6 would be the same for all presynaptic neurons that converge onto the
cell. In contrast, if 8 were a function of presynaptic efficacy, then each
synapse could have a different value of 6. For example, consider a
postsynaptic neuron, B, with one strong synaptic input, wp ¢, and one
weak synaptic input, wg 4. If @ were a function of g, then the stronger
synapse could maintain ¥p, hence 6, at a high level for both synapses,
and thus could prevent the weaker synapse from potentiating. In con-
trast, if @ were a function of synaptic efficacy, then the value of 6 should
be less for the weaker synapse and greater for the stronger synapse.

Activity-Dependent Neuromodulation of Synaptic Efficacy

Activity-dependent neuromodulation is a form of associative synaptic
plasticity in which presynaptic activity in conjunction with the presence
of a modulatory transmitter produces a pairing-specific potentiation (or
depression) of synaptic efficacy. This represents an extension of rule 4
(see figure 4.1) by requiring conjunctive activity in the two pathways.
Thus, activity-dependent neuromodulation can be represented by the
general expression:

AwB,A(t) = F(})"A; ym) ’ (4.20)

which relates changes in the efficacy of the synapse from neuron A to
neuron B to activity in the presynaptic neuron y4 and in a modulatory
neuron y,4. The key feature of this synaptic modification rule is that the
conjunction of presynaptic activity and the presence of the modulatory
transmitter produces a significantly greater change in synaptic efficacy
than a simple summation of the effects that presynaptic activity alone
(rule 1) and the modulatory transmitter alone (rule 4) have on synaptic
efficacy. Activity-dependent neuromodulation has been observed in a
number of excitatory synapses, including projections from the entorhinal
cortex (perforant path) to granule cells in the dentate gyrus of the
hippocampus (Williams et al. 1989), the mossy fiber synapses that arise
from the dentate gyrus and terminate on the CA3 pyramidal neurons
in the hippocampus (Hopkins and Johnston 1984, 1988; Johnston et al.
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1989), Sch/comm projections to CA1 pyramidal neurons in the hippoc-
ampus (O'Dell et al. 1991; Small et al. 1992), crayfish neuromuscular
synapses (Breen and Atwood 1983), and sensorimotor synapses of Aplysia
(Buonomano and Byrne 1990; Hawkins et al. 1983; Small et al. 1989;
Walters and Byrne 1983).

Gluck and Thompson (1987; see also Donegan et al. 1989) suggested
a mathematical formalism to describe the activity-dependent
neuromodulation of sensorimotor synapses in Aplysia:

Awg 4D = €Yp Fyat = D) Ry — Wp 4D — (¥ Y1) @21)

where iy is a measure of activity in a modulatory neuron, F(y,(t - 7))
is a function describing a stimulus “trace” that is produced by presyn-
aptic activity, and (- (yy4(t))) represents a form of nonassociative
homosynaptic depression that is induced by presynaptic activity. The
temporal specificity of the associative interaction between the activities
in the presynaptic neuron, ¥4, and the modulatory neuron, yyy, is gov-
erned by the function F(ys(t - 7). The suggested form of F was the
product of exponentially decaying and rising functions. Thus, immedi-
ately after activation of the presynaptic neuron, the trace function F is
0, but then rises quickly to a peak and then slowly decreases. Equation
4.21 predicts that presynaptic activity (y4 > 0) in the absence of the
modulator (yp; = 0) would result in nonassociative homosynaptic de-
pression, and that activity in the modulatory neuron (yjs > 0) in the
absence of presynaptic activity (y4 = 0) would not alter synaptic weight.
Moreover, the temporal specificity function F predicts that simultaneous
activity in the modulatory and presynaptic neurons would not induce
synaptic potentiation. Rather, activity in the modulatory neuron would
be most effective at inducing potentiation a short time after activity in
the presynaptic neuron, when F reaches its peak.

Although equation 4.21 captures some features of activity-dependent
neuromodulation, this formalism is an oversimplification of the cellular
mechanisms contributing to this form of associative plasticity at sen-
sorimotor synapses in Aplysia. Many of the biophysical and biochemical
processes that contribute to activity-dependent neuromodulation in Aplysia
have been determined (for reviews, see Abrams and Kandel 1988; Byrne
1987; Byrne and Crow 1991; Byrne et al. 1991a). For example, a key
feature of this associative rule for synaptic plasticity is that the conjunc-
tion of presynaptic activity and the presence of the modulatory trans-
mitter produces a significantly greater potentiation of synaptic efficacy
than either treatment alone. It is generally believed that this feature of
activity-dependent neuromodulation is derived from the dual regula-
tion of the enzyme adenylyl cyclase in the sensory neurons by the
modulatory transmitter serotonin and by intracellular Ca?*/calmodulin
(Abrams and Kandel, 1988; Abrams et al. 1991; Eliot et al. 1989; Ocorr
et al. 1985; Yovell and Abrams 1992; see also Dudai 1987). As illustrated
in figure 4.9, binding of serotonin to its receptor stimulates adenylyl
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Adenylyl Cyclase: A Molecular Basis for the Activity-Dependent Neuromodulation
Learning Rule

Figure 4.9 The enzyme adenylyl cyclase detects the conjunctive activity in a neuron and
the modulatory effects produced in that neuron by a modulatory pathway. (A) Activity
in the modulatory neuron releases the transmitter serotonin (5-HT). Binding of serotonin
toits receptor stimulates adenylyl cyclase and elevates levels of cAMP in the target neuron.
The increased levels of cAMP, in turn, activate cAMP-dependent processes that result in
nonassociative heterosynaptic potentiation. (B) An influx of Ca?* during action potentials
in the target neuron interacts with a Ca?*/calmodulin-sensitive component of adenylyl
cyclase and significantly amplifies the production of cAMP elicited by the modulatory
transmitter, and hence the activation of cAMP-dependent processes.
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cyclase and elevates levels of cAMP in the sensory neurons (figure 4.9A).
The increased levels of cAMP, in turn, activate cAMP-dependent pro-
cesses, such as cAMP-dependent protein kinase A, that modulate a
number of properties of the sensory neurons, including ion channels
and secretory machinery, that contribute to synaptic potentiation. Thus,
the release of the modulatory transmitter alone induces nonassociative
heterosynaptic potentiation (for reviews, see Byrne et al. 1991¢; Kandel
and Schwartz 1982). The influx of Ca?* during presynaptic activity
(figure 4.9B) interacts with a Ca%*/calmodulin-sensitive component of
adenylyl cyclase and amplifies the production of cAMP elicited by the
modulatory transmitter. This dual activation of adenylyl cyclase re-
quires that the Ca* and modulatory transmitter temporally overlap.
Thus, enhanced synthesis of cAMP by conjunctive presynaptic activity
and the modulatory transmitter induces a pairing-specific potentiation
of synaptic efficacy.

Two additional biologically realistic and dynamic models of activity-
dependent neuromodulation have been developed that reflect aspects
of the cellular mechanisms underlying this form of associative synaptic
plasticity in sensory neurons of Aplysia.

Hawkins (1989a, b) developed a relatively simple model of seven
differential equations that describe three phenomena: (1) nonassociative
homosynaptic depression solely as a function of Ca?* channel inactiva-
tion; (2) nonassociative heterosynaptic potentiation as a function of
cAMP-dependent increases in spike duration, and therefore Ca?* current;
and (3) activity-dependent neuromodulation as a function of Ca?*-
dependent enhancement of cAMP synthesis.

Gingrich and Byrne (1984, 1985, 1987) developed a somewhat more
detailed model. Some of the general features of the Gingrich and Byrne
model are illustrated in figure 4.10. The details of this model have been
described previously (Buonomano et al. 1990; Byrne and Gingrich 1989;
Byrne et al. 1989; Gingrich and Byrne 1985, 1987; Gingrich et al. 1988;
Raymond et al. 1992). The model contains differential equations describ-
ing two pools of transmitter, a releasable pool and a storage pool.
During a presynaptic action potential, an influx of Ca?* through voltage-
dependent Ca2* channels causes the release of transmitter. Thus, the
amount of transmitter that is released is a function of both the dynamics
of Ca?* influx and the number of vesicles in the releasable pool. As a
consequence of release, the releasable pool is depleted. In order to offset
depletion, transmitter is delivered (mobilized) from the storage pool to
the releasable pool. The mobilization process is regulated, in part, by
the intracellular concentrations of cAMP and Ca?*. The influx of Ca?*
during simulated action potentials leads to the release of transmitter and
accumulation of intracellular Ca2*. The pool of intracellular Ca®* is divided
into a submembrane compartment and an interior compartment. The
Ga?* within the submembrane compartment regulates the release of
transmitter, whereas the CaZ* within the interior compartment contrib-

Chapter 4 Learning Rules from Neurobiology



102

utes to the regulation of mobilization and to the regulation of cAMP
synthesis (see below). Two fluxes remove Ca?" from the interior com-
partment: one that represents active buffering of Ca** by organelles and
one that represents diffusion of Ca?* into an innermost compartment
that serves as a Ca®" sink.

The Gingrich and Byrne model also includes differential equations
describing the concentration of cAMP and its effects on the release of
transmitter. The modulatory transmitter, 5-HT, activates adenylyl cyclase,
which leads to synthesis of cAMP. Increased levels of cAMP contribute
to an increase in the duration of the action potential, which results in
an increased influx of Ca* during a subsequent action potential in the
sensory neuron, and hence, an increase in the release of transmitter from
the sensory neuron. Empirical results indicate that the activity of adenylyl
cyclase is also regulated by intracellular levels of Ca?* (see above). In
the model, an influx of Ca?* during presynaptic spikes that precede the
modulatory transmitter, primes the cyclase and amplifies the subse-
quent stimulation of cAMP synthesis, which in turn, leads to a pairing-
specific enhancement of synaptic efficacy.

This dynamic model accurately simulates many aspects of empirically
observed synaptic plasticity in sensory neurons of Aplysia. For example,
this model simulates nonassociative homosynaptic depression and
serotonin-induced heterosynaptic potentiation. In the model, this
homosynaptic depression is due to the combined effects of Ca**-current
inactivation and depletion of the releasable pool. Heterosynaptic poten-
tiation is due to the combined effects of transmitter mobilization and
cAMP-mediated broadening of the presynaptic action potential. In addition,
this model simulates features of activity-dependent neuromodulation,
including pairing-specific enhancement of synaptic potentiation and the
requirement for a close temporal association between presynaptic activ-
ity and the presence of modulatory transmitter. In the model,
neuromodulation is a function of the interstimulus interval (ISI) be-
tween presynaptic activity and application of the modulatory transmit-
ter. Activity-dependent neuromodulation is optimal for an ISI of about
200 ms, in which presynaptic activity begins 200 ms before the applica-
tion of the modulatory transmitter, whereas longer ISIs are less effective.
This ISI-dependence of the model is a direct consequence of the kinetics
of the buffering of intracellular Ca?*. Thus, the elevation of intracellular
Ca2* produced by the presynaptic activity serves as a stimulus “trace”
that becomes associated with the closely paired application of the
modulatory transmitter.

CONCLUSIONS
Several general themes have been highlighted in this chapter. First,

many diverse forms of activity-dependent synaptic plasticity exist. Indeed,
individual neurons often express more than one form. Second, the in-
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Figure 4.10 The model contains equations describing two pools of transmitter, a releasable
pool and a storage pool. During a simulated action potential, an influx of Ca®* through
voltage-dependent Ca2* channels causes the release of transmitter. Transmitter is deliv-
ered (mobilized) from a storage pool to the releasable pool. The mobilization process is
regulated, in part, by the intracellular concentrations of cAMP and Ca?*. The modulatory
transmitter 5-HT activates adenylyl cyclase, which leads to increased synthesis of cAMP.
Increased levels of cAMP contribute to an increase in the duration of the action potential,
and hence, an increased influx of Ca2*. In the model, an influx of Ca2* during presynaptic
spike activity that precedes the modulatory transmitter, primes the cyclase and amplifies
the subsequent stimulation of cAMP synthesis. Thus, convergence at adenylyl cyclase of
the Ca?* signal and the modulatory transmitter results in an associative amplification of
the synthesis of cAMP, which in turn leads to a pairing-specific enhancement of synaptic
potentiation. (Modified from Gingrich and Byrne 1987.)

duction of synaptic plasticity is governed by a complex set of spatial and
temporal rules that can be imposed by the presynaptic neuron, postsyn-
aptic neuron, neighboring synapses, or by modulatory neurons. Third,
in neurons where multiple forms of synaptic plasticity are expressed,
these rules can allow for the selective induction of a particular form of
synaptic modification or for different regions of a single cell to act
independently in the processing and storage of information. Moreover,
these rules can allow for the dissociation of information storage from
information processing within a single neuron.

Finally, two approaches have been used to describe and model syn-
aptic plasticity quantitatively: biologically realistic, dynamic models
and relatively simple, abstract mathematical equations. Each approach
has its advantages and disadvantages. The relatively simple equations
have the advantage of being computationally efficient; thus they can be
readily incorporated into large-scale simulations of neural networks. In
addition, they capture or provide a caricature of many of the more
general features of the plasticity. These equations, however, do not
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incorporate some features of synaptic plasticity that are likely to be
important in neuronal information processing and storage, such the
stimulus specificity for the induction and reversal of synaptic plasticity
or complex spatial and temporal synaptic interactions (nor can they be
readily modified to do so). The more biologically realistic models can
more accurately predict how different forms of plasticity might emerge
and interact within a single synapse, how these different forms of syn-
aptic plasticity can be selectively induced by specific patterns of stimu-
lation, the spatial and temporal interactions among synapses that converge
onto overlapping dendritic regions, and the striking nonlinearities that
characterize synaptic information processing and storage. Unfortunately,
these biologically realistic models tend to be computationally intensive
and thus are slow and cumbersome when used for large-scale simula-
tions of neural networks.

Given the diversity of learning rules described in this chapter, an
obvious question is, What types of learning do they mediate? Are some
types of rules used selectively for some forms of learning (e.g., motor
learning and skills) and other rules used for more cognitive other forms
of learning (for discussion, see Mishkin et al. 1984; Squire 1987)?
Answers to these questions are not yet available, but it seems likely
that the consequences of a learning rule will depend very much on the
circuit into which it is embedded. Indeed, any one learning rule may
mediate different forms of learning. Several qualitative and quantitative
modeling studies have demonstrated this principle (Baxter et al. 1991;
Brindley 1967; Buonomano et al. 1990; Burke 1966; Byrne et al. 1991b;
Gluck and Thompson 1987; Hawkins 1989a, b; Hawkins and Kandel
1984; Morris 1990; Raymond et al. 1992). For example, Gingrich and
Byrne (1987; Byrne and Gingrich 1989; Byrne et al. 1989) illustrated how
a single-cell model that incorporated the activity-dependent
neuromodulation learning rule can simulate several simple featues of
classical (Pavlovian) conditioning. Moreover, when incorporated into a
simple three-cell network, the activity-dependent neuromodulation
learning rule can simulate several higher-order features of classical
conditioning, such blocking and second-order conditioning (Baxter et al.
1991; Buonomano et al. 1990; Byrne et al. 1991b; Gluck and Thompson
1987; Hawkins 1989a, b). Finally, when incorporated into a seven-cell
network which spontaneously generates patterned activity, the activity-
dependent neuromodulation learning rule can simulate many features
of operant (instrumental) conditioning (Baxter et al. 1991; Byrne et al.
1991b; Raymond et al. 1992). Thus, it appears that a full understanding
of the relationship between synaptic plasticity and learning requires
an appreciation of different forms of learning and of the different
neural architectures within which a given type of synaptic plasticity is
embedded.
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