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A B S T R A C T  

Special purpose processing systems designed for specific 
applications can provide extremely high performance at 
moderate cost. One such processor is presented for exe- 
cuting graphics and image processing algorithms as the 
basis of  a digital film printer. Pixels in the system con- 
tain four parallel components: RGB for full color and 
an alpha channel for retaining transparency informa- 
tion. The data path of  the processor contains four arith- 
metic elements connected through a crossbar network to 
a tessellated scratchpad memory. The single instruction, 
multiple data stream (SIMD) processor executes instruc- 
tions on four pixel components in parallel. The instruc- 
tion control unit (ICU) maintains an activity stack for 
tracking block-structured code, using data-dependent 
activity flags for conditional disabling subsets of  the 
AI~s .  Nested loops and if-then-else constructs can be 
programmed directly, with the ICU disabling and reena- 
bling ALUs on the basis of  their individual status bits. 
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m e t i c  and  logic s t ruc tu re s ] :  design styles - -  paral- 
lel; B.3.2 [ m e m o r y  s t ruc tu re s ] :  design styles - -  
interleaved memories; C.1.2 [processor  arch i t ec -  
tures]: Multiple data stream architectures - -  SIMD. 
1.3.1 [ compu te r  graphics] :  Hardware architectures 
- -  Raster display devices. 1.4.0 [ Image Process ing] :  
General - -  Image displays. 

General Terms: Design 

Additional Key Words and Phrases: digital film printers, 
compositing, computer graphics, parallel processing, 
SIMD architecture, tesselation. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made Or distributed for direct 
commercial advantage, the ACM copyright .notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1984 ACM 0-89791-138-5/84/007/0077 $00.75 

1. I n t r o d u c t i o n  

The Lucasfilm Pixar project is producing high- 
performance machines for film-quality image creation. 
The first machine to be completed is a digital film printer 
that provides digital processing capabilities for special- 
effects film production. The system, called the Lucasfilm 
Compositor, is a digital realization of a conventional opti- 
cal film printer under computer control [2]. 

A laser printing/scanning system replaces the projectors 
and process camera of an optical printer. A high-speed 
digital processor brings digital signal processing tech- 
niques to bear on each frame, extending the range of 
capabilities of a conventional optical film printer. These 
include: 

• Merging multiple images to form a single image, han- 
dling partially transparent objects and edges; 

• Creation of mattes for live-action blue screen shots; 

• Hand touchups and simple creation of garbage 
mattes; 

• Filtering to provide for diffusion, tinting, highlight- 
ing, defocusing, and edge enhancement; 

• Color correction to account for non-linearities and 
crosstalk between the dye layers of color film; 

• Rotation and perspective transformation of frames to 
correct for original camera misalignment or to simu- 
late complex camera moves. 

The Compositor is designed to execute a number of key 
algorithms at an average rate of one microsecond per 
pixel. This performance allows for interactive use on lim- 
ited resolution images, as well as acceptable performance 
for production work on high resolution, movie-quality 
images. 

The heart of the system is the Channel Processor (Chap), 
a programmable pixel processor for performing all the 
computation and controlling the flow of pixels in the 
Compositor. The Chap is based on a four operand vector 
data pipeline operating with a single instruction 
sequencer. This design was adopted to take advantage of 
the four component data structure used to represent digi- 
tal images in the Compositor. 
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2. 4 - C h a n n e l  P i c tures  

Pixels contain 'four components. Frame buffers and disk 
files contain red, green, and blue color channels as well as 
an alpha or matte channel. The matte channel is used to 
specify transparency so that elements which do not cover 
an entire frame can be stored separately for later compo- 
siting. An alpha of 0 is interpreted to mean full tran- 
sparency; an alpha of 1 indicates full coverage. 

As presented in [7], the color channels are stored pre- 
multiplied by the alpha channel in the sense that  half 
coverage of a pixel by a yellow object is stored as 
(.5,.5,0,.5), not (1,1,0,.5). This choice puts each channel 
on equal footing: so that  most algorithms that process 
RGBA pictures can treat  the alpha channel with precisely 
the same instructions as the color channels. 

The SIMD architecture was originally considered based on 
the fact that  many algorithms execute identical operations 
on all four components of each pixel. This is true of 
many key algorithms in the digital film printing process, 
including color correction of images, scaling and transla- 
tion to align images, and merging of images during the 
compositing operation. Some algorithms however do not 
perform identical operations on each component. In pa.r- 
ticular, the matte algorithm [6] computes a final alpha 
value based on the initial values of the RGB component 
at each pixel. 

The crossbar connection between memory and processors 
in the Chap architecture was introduced to support 
different possible approaches to pixel processing. Using 
the crossbar mechanism, Chap programs can be struc- 
tured to access the four components of a single pixel, or 
the same component of four consecutive pixels. 

2.1.  12-bi t  C h a n n e l s  

For film applications, 8-bit linear intensity values are 
insufficient. Consequently, in the prototype system, the 
frame buffer memory banks are configured with 12 bits 
per channel. The Chap internal scratchpad memory and 
registers are 16 bits wide to maintain extra precision for 
intermediate products. The frame buffer memory will 
support up to 16 bits per channel, and it is anticipated 
that this precision will be required in future applications. 

The 12-bit values stored in frame buffer memory are 
skewed slightly upon access as shown in table 1. 

12 Bit Value Sign extended Value Range 
10xxxxxxxxxx 000010xxxxxxxxxxx (1.5, 1.0] 
01xxxxxxxxxx 000001xxxxxxxxxxx (1.0, 0.5] 
00xxxxxxxxxx 000000xxxxxxxxxxx (0.5, 0.0] 
llxxxxxxxxxx 111111xxxxxxxxxxx (0.0,-0.5] 

Table 1 

This skewing means that  sign extension is performed 
based on the uppermost two bits of the 12 bit com- 
ponents, instead of simply copying the most significant bit 
directly. This format was chosen in order to represent 
values in the range (1.5,-.5], providing 11 bits of fraction 
and suffÉcient range for underfiow and overflow. As 

importantly, this representation assures an accurate 
representation of unity. 

All of the algorithms critical to compositor operation can 
be handled with integer arithmetic; in fact, 16-bit integers 
are sufficient for most general image processing work, 
though 32 bits are needed for the accumulation of inter- 
mediate products in digital filtering. 

3. C o m p o s i t o r  O v e r v i e w  

Figure 1 shows the communication channels inside the 
Compositor. 

Yapbus 

Figure 1: Compositor Communications Channels 

The Chap communicates through three separate data  
paths: 

• The Pbus, or Processor Access Bus, is the common data 
bus between the processors and framebuffer memory. The 
extremely high data rates on the Pbus (240 Mbytes/sec) 
allow multiple processors to operate in parallel on com- 
mon framebuffer data. The Chap hardware DMA con- 
troller allows data to be transferred between processor 
memory and framebuffer memory with minimal processor 
overhead. 

• The Yapbus (Yet Another Pixar Bus) is a high 
bandwidth (80 Mbytes/sec) data channel operating as a 
local area network between compositor system com- 
ponents. In particular, the Yapbus provides the data 
channel to the laser printer/scanner system. 

• The Sysbus, or System bus, is a low bandwidth (2 
Mbytes/sec) control interface between the host computer 
and compositor subsystems. Operating parameters, 
microcode instructions, and diagnostic commands are 
transferred to the Chap through the system bus interface. 

The high bandwidth I /O channels of the compositor sys- 
tem contribute to the Chap processor's ability to operate 
as a high performance, general purpose, image processor. 
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4. Processor  Arch i tec ture  
The Chap is a microcoded four operand parallel vector 
processor. It operates as a single instruction, multiple 
data stream (S1MD) processor, executing each instruction 
on four operands at the same time. The processor per- 
forms arithmetic operations, operand addressing, I /O  
operations, and program sequencing in parallel with a 
highly horizontal instruction word. This parallelism, 
along with extensive pipelining, allows the Chap to 
achieve performance approaching 64 MIPS.t 

The Chap processor block diagram is shown in Figure 2. 

I Memory 
Bank 0 

I 
I 

I 
ALU 0 

H H  omo- _ Bank I Bank 2 Bank 3 

I I I Control 
Crossbar ~ Unit 

 LU1H  LU2 H ALU3 

Figure 2: Chap Block Diagram 

Four arithmetic elements (processors) are connected 
through a crossbar network to four Scratchpad memories. 
The processor data path is optimized for 16 bit integer 
arithmetic. All processor and memory operations are con- 
trolled by a single microcoded control unit. During each 
micro-cycle, all four processors receive the same instruc- 
tion. Special condition code and memory control logic 
allows individual processor and memory operations to be 
conditionally inhibited during certain program segments. 

The instruction control unit is designed to support com- 
mon program control constructs such as 
while(Ioopvariable), iJ~condition), ij~condition)/else, etc. 
Scalar (uniprocessor) support is provided in the data path 
to allow any of the processors to access non-vector parts 
of the machine. 

4.1. Processor  Elements  
Each processor element is of the form shown in Figure 3, 
with a 16-bit arithmetic unit and 16-bit multiplier. 

F r o m  R e a d  Crossbar  T o  Wri te  Crossbar  

Buffer <9 - l 

Figure 3: Chap Processing Element 

Sbus 

The multiplier and ALU can operate in parallel for cer- 
tain operations such as multiply/accumulate. Data is 

~f This figure represents the peak rate for data moves in the Chap, where four 
operaaxds are transfered every 62ns. The chap can perform multiples or ALU 
operations, as well as multiply accumulates, at a sustained 32 MIPS. 

loaded into the multiplier over the Mbus, and data is 
loaded into the ALU over the Abus. Each arithmetic ele- 
ment can read and write the scalar (control) parts of the 
machine over the Sbus. 

The arithmetic-logic units are bipolar 'bit slice' devices 
with 32 working registers, an accumulator, and a status 
register. Although a single multiplexed I /O port is used 
to load and store from the ALUs, internal latches allow 
reading external operands and writing results to external 
destinations (memory to memory, for example) in the 
same ALU instruction. 

The multipliers are designed to multiply component 
values by alpha values and components by coefficients, 
producing component values as the product. In order to 
produce properly aligned and rounded component values 
in the top 16 bits of the product, multiplicands must be 
shifted up to three places. This is accomplished by shifter 
circuitry external to the multiplier inputs. The multiplier 
product is a full 32 bit number; However, the bus struc- 
ture allows access to only 16 bits of the product in any 
instruction. 

4.2.  Scratchpad M e m o r y  
Four scratchpad memories provide 64K 16 bit words of 
general purpose memory for program data storage. The 
address calculation unit uses a register file containing 
pointer values to specify data elements in Scratchpad 
memory. Programs use these pointer to reference four 
operands (pixel data) or one operand (e.g., filter 
coefficients) during each access to Scratchpad. An arbi- 
trary offset can be added to a pointer value at each 
instruction to allow sequential access of memory. 

A single pointer value can be used to access four operands 
by ordering data in memory using a special processor- 
memory connection network. This network, called the 
memory crossbar allows tessellated access to the 
Scratchpad memory [8]. A number of tessellated access 
formats appropriate for graphics processing support are 
built into the crossbar network. The access format is 
specified in the Chap instruction word as in Table 2. 

n format 
00 pixel 
01 component 
10 broadcast 
11 indexed 

Table 2 

Pixel access is the normal access mode to scratchpad pixel 
data. Each access references a full pixel in parallel, with 
the red component going to the red processor, green to 
the green processor, etc. 

Component access, where each processor works on a 
separate pixel, references a single component from four 
consecutive pixels in parallel. This format is provided to 
support vector processing in algorithms that do not 
operate on all components of a single pixel in parallel. 
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Broadcast access allows each of four processors to receive 
a single memory element. This is useful for operations 
where one scratchpad coefficient is sent to all four multi- 
pliers. 

Indexed access uses a computed value from each proces- 
sor as an index into a scratchpad table, indexed access is 
useful for color mapping applications, where each com- 
ponent is mapped from a different table. 

Table 3 shows the tessellated nature of the scratchpad 
memory. The memory is actually four memory banks 
(So,SI,S2,S3) partitioned in such a fashion as to optimize 
either Pixel (Rp,Gp ,Bp,tip) or Component 
(Cp,Cp+l,C~+2,Cp+a) access, where p is the effective pixel 
address and C is some particular component. Notice that 
neither case causes contention by attempting multiple 
accesses to a single bank of memory. 

0 
1 
2 
3 
4 

5. SIMD Control 

So Sl  $2 $3 
Ro Go Bo Ao 
A1 Rl  G1 Bl  
B2 A2 R2 G2 
G3 B3 A3 R3 
R4 G4 B4 A4 

Table 3 

The Chap performs single-instruction, four-component 
processing. This type of architecture has been used 
succesfully in previous arithmetic processors [1][5]. We 
have found that  many image processing problems can be 
solved with identical code for each of the RGBA com- 
ponents of every pixel. 

There are occasion~, however, where the ability to 
suspend some subset of processors over a range of instruc- 
tions is desired. For example, some programs might 
switch to single processor operation to find a coefficient in 
a table and then switch back to four processor operation 
to multiply that coefficient by each component. Clamping 
is a another example; when clamping, we wish to set each 
processor's accumulator to unity only for those accumula- 
tors which exceed unity. We make the comparison to 
unity, suspend if less, set to unity, and resume each pro- 
cessor. 

To support this conditional processing, the Instruction 
Control Unit (|CU) includes not only the standard 
sequencer functions for finding the next instruction, but 
also runner functions for determining which processors 
execute each instruction. Let us review the capabilities of 
the ICU, to illustrate its operation. 

The Chap executes instructions stored in writable instruc- 
tion memory. The first job of the ICU is to decide where 
the next instruction lies. Along with the standard 
sequencer opcode and condition select information, Chap 
ICU instructions specify a Source Processor qualifier. 
Thus, instructions like "jump (opeode) if alpha (processor) 
is zero (condition code)" are possible. The jump address 
may be computed, or included as a literal in the 

instruction word. 

The ICU must also direct the flow of execution for indivi- 
dual processors based on conditions involving their own 
execution. It becomes necessary to suspend some proces- 
sors while others execute a particular program segment. 
Note that  this is somewhat complex'when we consider 
nested if-then-else constructions and procedures. 

To provide a mechanism for controlling individual proces- 
sor activity, The ICU maintains a runflag register and a 
stack that contains runflag vectors at each program level. 
The current runflag indicates which processors are run- 
ning and which are suspended. 

At  conditional test instructions, a four-bit condition vec- 
tor is created, one bit for each processor, corresponding to 
that  processor's condition with regard to the ICU condi- 
tion select field. The logic of the ICU determines the 
current runflag and maintains the runflag stack based on 
this condition vector and immediate runflag bits in the 
instruction word. 

Standard if-then, if-then-else, and while-do programming 
constructs are translated into runner instructions as 
shown in table 4. 

action C construct assembler 
push { push 
pop. } done, fi 

push; R &---- C if 0 { if e then 
R = (!R) & SO } else { else 

R &---- C while 0 { while e do 

Table 4 

R refers to the current runflag register; SO is at the top 
of  the run flag stack; C is the new condition run flag. 

The complete set of 16 conditional ICU instructions 
expands on these five runner instructions. The complete 
set controls three concurrent stacks: the runflags, return 
addresses, and loop counters. 

Let us consider the C program fragment: 
if (cl) { 

if (c2) { 
do0; 

} else ( 
dol;  

} 
} else ( 

do2; 
} 

Assume that condition cl  generates a runflag of 1110, 
suspending processor 3, and condition c2 generates a 
runflag of 1100. Table 5 shows the state of the current 
runflag R and the top two runflag stack locations after 
each ICU instruction. 
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ICU instruction R SO $1 
calculate c l  1111 . . . . . . . .  

push; R &----cl 1110 1111 .... 
calculate c2 1110 1111 

push; P &----c2 1100 1110 1111 
do0 1100 1110 1111 

R = ( ! R )  & SO 0010 1110 1111 
dol  0010 1110 1111 
pop 1110 1111 

R~--~(!R) & SO 0001 1111 
do2 0001 1111 
pop 1111 . . . . . . . . . .  

Sequencer conditions are specified with an any/all 
qualifier as well as the normal true/false qualifier of typi- 
cal instruction sequencers. 

This allows a while loop which runs until all four proces- 
sors are satisfied, suspending individual processors as it 
goes, to he simply stated: 

while any (cl) do 
statement; 

done 

and translates into: 

push 
loop: calculate c l  

R &---- cl; jump out if all disabled 
statement 
jump loop 

out: pop 

The previous example, that of clamping accumulator 
values that  exceed unity, takes the form: 

if any alu positive then 
ace = 1; 

fi 
and translates to: 

t e m p : a c c -  1;  
push; r & =  positive; 
acc --~ 1; 
pop 

The appendix contains code fragments from actual Chap 
programs. Code fragment (1) illustrates the inner loop for 
a scanline linear interpolate of the form: 

Targeto-~Sourceo+ (1-%)Source I 

6. Chap Programming  
The wide Chap instruction word can be split into six 
parts, offering control over the ALUs, multipliers, data 
paths, scratchpad address calculation unit, crossbar tessel- 
lation, and instruction control unit. The assembler [4] 
provides a powerful syntax for maintaining control. The 
runtime monitor [5] provides linking and loading facilities 
to promote modular program development. Pipeline 

delays built into the hardware modules complicate pro- 
gramming, but become a distinct advantage (over un- 
pipelined designs) when writing optimized standard 
modules. Features of the machine and the assembler 
allow the programmer to stretch out the instruction tim- 
ing and overlook the pipeline delays when developing code 
for the first time. 

6.1. C h a p / H o s t  Interface 
A number of features allow the Chap to support host 
interaction during program execution. 

• 16 words of shared memory are used for parameter 
passing. 

• 4096 'virtual register' locations are decoded in the 
Sysbus interface which allow the host to initiate 
Chap processes by reading and writing memory- 
mapped function registers. 

• Interrupt logic allows the Chap to interrupt the host 
under program control. 

7. Conclusion 
We have described a digital processor specifically designed 
to support digital pixel processing, providing parallel vec- 
tor arithmetic with convenient programming language 
support. The SIMD architecture appears well suited to 
the particular algorithms used in the digital film printing 
process. 

8. Acknowledgments  
Particular credit should go to Loren Carpenter, who origi- 
nally suggested the basic four channel SIMI) architecture, 
and contributed to elements of the design throughout the 
project. 

Special thanks is also due to Mark Leather, who shared in 
the final design stages and debugged the prototype design, 
writing much diagnostic software in the process to verify 
the design. 

Rodney Stock should be credited for his role as hardware 
manager, as well as logic designer, on the Pixar system, 
and should be identified as one of the principal architects 
of the Pixar system. 

In addition, the processor working group of Bill Reeves, 
Tom Duff, and Sam Leffler, provided many important cri- 
ticisms and suggestions during the design and review 
phases. 

Sam Leffier should also be credited for his work in provid- 
ing the assembler and monitor that  we use to develop 
Chap code. 

Thanks to Andy Moorer and Curtis Abbott ,  who stressed 
the importance of complete diagnostic support for pro- 
gram debugging, resulting in important improvements to 
the host interface section. 

Thanks also to Tom Noggle for his contribution to the 
design of the Yapbus network. 

81 



@SIGGRAPH'84 

A P P E N D I X  
This section is included to provide a little detail about 
specific issues in generating code for the Chap. 

(1) This code fragment is an example of chas assembly 
code to lerp (linearly interpolate) between two scan 
lines: 

Target o---= Sourceo+( l-alpha o)Source l 

Sourceo, Source 1 and Target o are all stored in scratchpad 
memory. This is an example of assembly code where no 
instruction overlap is attempted. Comments are  delim- 
ited by the C styles/* and */constructs. 

Lerp: loop X c o u n t  do 
m u l t x  ---- u n i t y  - @s0ptr; round  
{ m u l t y  ---~ ( eomp) ( s lp tr ) ;  round;  

s l p t r  ---- s l p t r  5- p ine } 
{ aec - ~  (s0ptr);  

s0ptr  ~ s0ptr  5- p_inc } 
{ ( tptr)  -~  ace 5- msp;  

tp tr  ~ tp tr  5- p_ine } 
done  

The inner loop can be translated as follows: 

/* the "loop e do" construct pushes the current address + 
I onto the return stack, and loads the loop counter with 
the value e, in this case a literal value of Xeount from the 
immediate field */ 

loop X e o u n t  do 

/* Read from scratchpad in broadcast mode (specified by 
the @ sign) using pointer s0ptr, and subtract it from unity 
(a predefined ALU register) and load the results into the 
multiplier X inputs with the rounding bit set. */ 

m u l t x  ---- u n i t y  - @s0ptr; round  / *  3 t leks  * /  

/* Read from scratchpad in pixel mode (specified by the 0 
around slptr) using pointer slptr, and then load that 
pixel into the multiplier Y inputs shifted up by 2 places 
(specified by the qualifier (¢omp)) with the rounding bit 
set. Furthemore, increment slptr by the value defined by 
p_inc (in this case 4). */ 

{ m u l t y  ---~ ( comp) ( s lp tr ) ;  round; 
s l p t r  ----~ s l p t r  5- p ine } / *  3 t leks  * /  

/* Read from scratchpad in pixel mode using pointer 
sOptr and load them into the ALU accumulators, and 
increment sOptr by p_inc. */ 

{ ace ~-- (s0ptr);  
s0ptr  ~ s0ptr  5- p_inc } / *  4 t icks  * ]  

/* Add the values in the multiplier most significant result 
register (top 16 bits) to the current accumulator, and 
store the results as a pixel in scratchpad at the location 
pointed to by tptr, and then increment tptr by p ine .  */ 

{ ( tptr)  --~ ace 5- msp;  
tp tr  ---- tp tr  5- p ine } / *  2 t icks  * /  

/* The next statement terminates the loop and causes the 
PC to be loaded from the top of the stack without pop- 
ping it. The test for termination is done at the top, and if 
it fails, execution continues at the point after the done 
statement. */ 

done 

(2) The code can be rewritten to take advantage of pipe- 
lined operation, with an increase in performance of 
50% as shown below. The code takes advantage of 
the machine pipelining the details of which are 
beyond the scope of this paper. Suffice to say that 
the duration of each instruction can be specified in 
clock ticks, overriding the default assembler dura- 
tions, and that the first scratchpad read is repeated 
at the bottom of the loop to maintain the pipelining 
around the loop. Also note that whereas the previous 
loop required 16 clock cycles to execute, the following 
loop executes in 8 clock cycles. 

xbar  ---~ @s0ptr; push  
loop: { u n i t y  - ~  u n i t y  - xbar; speeial;  

spad ----- ( comp) ( s lp tr ) ;  l t i c k  } 
{ m u l t x  ~ u n i t y  - latch;  round;  

spad  ---- (s0ptr);  l t l e k  } 
{ m u l t y  ---- xbar; round;  

s l p t r  ---- s l p t r  5- p ine; 1 t ick } 
{ aec ~--- xbar; speeial;  

s0ptr  ---~ s0ptr  5- p inc; I t ick  } 
ace ~ xbar; 1 t ick  

ace ---~ aee 5- rasp; special;  1 t ick  
{ dowhi l e  !le zero; 

spad --~ @s0ptr; tp tr  ----- tp tr  5- p lne; 
ace ---- aec 5- rasp; special;  l t l e k  } 

{ ( tptr)  ~-~ aee 5- latch;  
tp tr  - ~  tp tr  5- p_inc; 1 t ick  } 
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