
Computer Graphics Volume 18, Number 3 July 1984

C h a p - A SIMD G r a p h i c s P r o c e s s o r

Adam Levinthal
Thomas Porter

Computer Graphics Project
Lucasfilm Ltd.

A B S T R A C T

Special purpose processing systems designed for specific
applications can provide extremely high performance at
moderate cost. One such processor is presented for exe-
cuting graphics and image processing algorithms as the
basis of a digital film printer. Pixels in the system con-
tain four parallel components: RGB for full color and
an alpha channel for retaining transparency informa-
tion. The data path of the processor contains four arith-
metic elements connected through a crossbar network to
a tessellated scratchpad memory. The single instruction,
multiple data stream (SIMD) processor executes instruc-
tions on four pixel components in parallel. The instruc-
tion control unit (ICU) maintains an activity stack for
tracking block-structured code, using data-dependent
activity flags for conditional disabling subsets of the
AI~s . Nested loops and if-then-else constructs can be
programmed directly, with the ICU disabling and reena-
bling ALUs on the basis of their individual status bits.

CR Categories and Subject Descriptors: B.2.1 [Ar i th-
m e t i c and logic s t ruc tu re s] : design styles - - paral-
lel; B.3.2 [m e m o r y s t ruc tu re s] : design styles - -
interleaved memories; C.1.2 [processor arch i t ec -
tures]: Multiple data stream architectures - - SIMD.
1.3.1 [compu te r graphics] : Hardware architectures
- - Raster display devices. 1.4.0 [Image Process ing] :
General - - Image displays.

General Terms: Design

Additional Key Words and Phrases: digital film printers,
compositing, computer graphics, parallel processing,
SIMD architecture, tesselation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made Or distributed for direct
commercial advantage, the ACM copyright .notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-138-5/84/007/0077 $00.75

1. I n t r o d u c t i o n

The Lucasfilm Pixar project is producing high-
performance machines for film-quality image creation.
The first machine to be completed is a digital film printer
that provides digital processing capabilities for special-
effects film production. The system, called the Lucasfilm
Compositor, is a digital realization of a conventional opti-
cal film printer under computer control [2].

A laser printing/scanning system replaces the projectors
and process camera of an optical printer. A high-speed
digital processor brings digital signal processing tech-
niques to bear on each frame, extending the range of
capabilities of a conventional optical film printer. These
include:

• Merging multiple images to form a single image, han-
dling partially transparent objects and edges;

• Creation of mattes for live-action blue screen shots;

• Hand touchups and simple creation of garbage
mattes;

• Filtering to provide for diffusion, tinting, highlight-
ing, defocusing, and edge enhancement;

• Color correction to account for non-linearities and
crosstalk between the dye layers of color film;

• Rotation and perspective transformation of frames to
correct for original camera misalignment or to simu-
late complex camera moves.

The Compositor is designed to execute a number of key
algorithms at an average rate of one microsecond per
pixel. This performance allows for interactive use on lim-
ited resolution images, as well as acceptable performance
for production work on high resolution, movie-quality
images.

The heart of the system is the Channel Processor (Chap),
a programmable pixel processor for performing all the
computation and controlling the flow of pixels in the
Compositor. The Chap is based on a four operand vector
data pipeline operating with a single instruction
sequencer. This design was adopted to take advantage of
the four component data structure used to represent digi-
tal images in the Compositor.

77

~SIGGRAPH'84

2. 4 - C h a n n e l P i c tures

Pixels contain 'four components. Frame buffers and disk
files contain red, green, and blue color channels as well as
an alpha or matte channel. The matte channel is used to
specify transparency so that elements which do not cover
an entire frame can be stored separately for later compo-
siting. An alpha of 0 is interpreted to mean full tran-
sparency; an alpha of 1 indicates full coverage.

As presented in [7], the color channels are stored pre-
multiplied by the alpha channel in the sense that half
coverage of a pixel by a yellow object is stored as
(.5,.5,0,.5), not (1,1,0,.5). This choice puts each channel
on equal footing: so that most algorithms that process
RGBA pictures can treat the alpha channel with precisely
the same instructions as the color channels.

The SIMD architecture was originally considered based on
the fact that many algorithms execute identical operations
on all four components of each pixel. This is true of
many key algorithms in the digital film printing process,
including color correction of images, scaling and transla-
tion to align images, and merging of images during the
compositing operation. Some algorithms however do not
perform identical operations on each component. In pa.r-
ticular, the matte algorithm [6] computes a final alpha
value based on the initial values of the RGB component
at each pixel.

The crossbar connection between memory and processors
in the Chap architecture was introduced to support
different possible approaches to pixel processing. Using
the crossbar mechanism, Chap programs can be struc-
tured to access the four components of a single pixel, or
the same component of four consecutive pixels.

2.1. 12-bi t C h a n n e l s

For film applications, 8-bit linear intensity values are
insufficient. Consequently, in the prototype system, the
frame buffer memory banks are configured with 12 bits
per channel. The Chap internal scratchpad memory and
registers are 16 bits wide to maintain extra precision for
intermediate products. The frame buffer memory will
support up to 16 bits per channel, and it is anticipated
that this precision will be required in future applications.

The 12-bit values stored in frame buffer memory are
skewed slightly upon access as shown in table 1.

12 Bit Value Sign extended Value Range
10xxxxxxxxxx 000010xxxxxxxxxxx (1.5, 1.0]
01xxxxxxxxxx 000001xxxxxxxxxxx (1.0, 0.5]
00xxxxxxxxxx 000000xxxxxxxxxxx (0.5, 0.0]
llxxxxxxxxxx 111111xxxxxxxxxxx (0.0,-0.5]

Table 1

This skewing means that sign extension is performed
based on the uppermost two bits of the 12 bit com-
ponents, instead of simply copying the most significant bit
directly. This format was chosen in order to represent
values in the range (1.5,-.5], providing 11 bits of fraction
and suffÉcient range for underfiow and overflow. As

importantly, this representation assures an accurate
representation of unity.

All of the algorithms critical to compositor operation can
be handled with integer arithmetic; in fact, 16-bit integers
are sufficient for most general image processing work,
though 32 bits are needed for the accumulation of inter-
mediate products in digital filtering.

3. C o m p o s i t o r O v e r v i e w

Figure 1 shows the communication channels inside the
Compositor.

Yapbus

Figure 1: Compositor Communications Channels

The Chap communicates through three separate data
paths:

• The Pbus, or Processor Access Bus, is the common data
bus between the processors and framebuffer memory. The
extremely high data rates on the Pbus (240 Mbytes/sec)
allow multiple processors to operate in parallel on com-
mon framebuffer data. The Chap hardware DMA con-
troller allows data to be transferred between processor
memory and framebuffer memory with minimal processor
overhead.

• The Yapbus (Yet Another Pixar Bus) is a high
bandwidth (80 Mbytes/sec) data channel operating as a
local area network between compositor system com-
ponents. In particular, the Yapbus provides the data
channel to the laser printer/scanner system.

• The Sysbus, or System bus, is a low bandwidth (2
Mbytes/sec) control interface between the host computer
and compositor subsystems. Operating parameters,
microcode instructions, and diagnostic commands are
transferred to the Chap through the system bus interface.

The high bandwidth I /O channels of the compositor sys-
tem contribute to the Chap processor's ability to operate
as a high performance, general purpose, image processor.

78

Computer Graphics Volume 18, Number 3 July 1984

4. Processor Arch i tec ture
The Chap is a microcoded four operand parallel vector
processor. It operates as a single instruction, multiple
data stream (S1MD) processor, executing each instruction
on four operands at the same time. The processor per-
forms arithmetic operations, operand addressing, I /O
operations, and program sequencing in parallel with a
highly horizontal instruction word. This parallelism,
along with extensive pipelining, allows the Chap to
achieve performance approaching 64 MIPS.t

The Chap processor block diagram is shown in Figure 2.

I Memory
Bank 0

I
I

I
ALU 0

H H omo- _ Bank I Bank 2 Bank 3

I I I Control
Crossbar ~ Unit

 LU1H LU2 H ALU3

Figure 2: Chap Block Diagram

Four arithmetic elements (processors) are connected
through a crossbar network to four Scratchpad memories.
The processor data path is optimized for 16 bit integer
arithmetic. All processor and memory operations are con-
trolled by a single microcoded control unit. During each
micro-cycle, all four processors receive the same instruc-
tion. Special condition code and memory control logic
allows individual processor and memory operations to be
conditionally inhibited during certain program segments.

The instruction control unit is designed to support com-
mon program control constructs such as
while(Ioopvariable), iJ~condition), ij~condition)/else, etc.
Scalar (uniprocessor) support is provided in the data path
to allow any of the processors to access non-vector parts
of the machine.

4.1. Processor Elements
Each processor element is of the form shown in Figure 3,
with a 16-bit arithmetic unit and 16-bit multiplier.

F r o m R e a d Crossbar T o Wri te Crossbar

Buffer <9 - l

Figure 3: Chap Processing Element

Sbus

The multiplier and ALU can operate in parallel for cer-
tain operations such as multiply/accumulate. Data is

~f This figure represents the peak rate for data moves in the Chap, where four
operaaxds are transfered every 62ns. The chap can perform multiples or ALU
operations, as well as multiply accumulates, at a sustained 32 MIPS.

loaded into the multiplier over the Mbus, and data is
loaded into the ALU over the Abus. Each arithmetic ele-
ment can read and write the scalar (control) parts of the
machine over the Sbus.

The arithmetic-logic units are bipolar 'bit slice' devices
with 32 working registers, an accumulator, and a status
register. Although a single multiplexed I /O port is used
to load and store from the ALUs, internal latches allow
reading external operands and writing results to external
destinations (memory to memory, for example) in the
same ALU instruction.

The multipliers are designed to multiply component
values by alpha values and components by coefficients,
producing component values as the product. In order to
produce properly aligned and rounded component values
in the top 16 bits of the product, multiplicands must be
shifted up to three places. This is accomplished by shifter
circuitry external to the multiplier inputs. The multiplier
product is a full 32 bit number; However, the bus struc-
ture allows access to only 16 bits of the product in any
instruction.

4.2. Scratchpad M e m o r y
Four scratchpad memories provide 64K 16 bit words of
general purpose memory for program data storage. The
address calculation unit uses a register file containing
pointer values to specify data elements in Scratchpad
memory. Programs use these pointer to reference four
operands (pixel data) or one operand (e.g., filter
coefficients) during each access to Scratchpad. An arbi-
trary offset can be added to a pointer value at each
instruction to allow sequential access of memory.

A single pointer value can be used to access four operands
by ordering data in memory using a special processor-
memory connection network. This network, called the
memory crossbar allows tessellated access to the
Scratchpad memory [8]. A number of tessellated access
formats appropriate for graphics processing support are
built into the crossbar network. The access format is
specified in the Chap instruction word as in Table 2.

n format
00 pixel
01 component
10 broadcast
11 indexed

Table 2

Pixel access is the normal access mode to scratchpad pixel
data. Each access references a full pixel in parallel, with
the red component going to the red processor, green to
the green processor, etc.

Component access, where each processor works on a
separate pixel, references a single component from four
consecutive pixels in parallel. This format is provided to
support vector processing in algorithms that do not
operate on all components of a single pixel in parallel.

79

@SIGGRAPH'84
i

Broadcast access allows each of four processors to receive
a single memory element. This is useful for operations
where one scratchpad coefficient is sent to all four multi-
pliers.

Indexed access uses a computed value from each proces-
sor as an index into a scratchpad table, indexed access is
useful for color mapping applications, where each com-
ponent is mapped from a different table.

Table 3 shows the tessellated nature of the scratchpad
memory. The memory is actually four memory banks
(So,SI,S2,S3) partitioned in such a fashion as to optimize
either Pixel (Rp,Gp ,Bp,tip) or Component
(Cp,Cp+l,C~+2,Cp+a) access, where p is the effective pixel
address and C is some particular component. Notice that
neither case causes contention by attempting multiple
accesses to a single bank of memory.

0
1
2
3
4

5. SIMD Control

So Sl $2 $3
Ro Go Bo Ao
A1 Rl G1 Bl
B2 A2 R2 G2
G3 B3 A3 R3
R4 G4 B4 A4

Table 3

The Chap performs single-instruction, four-component
processing. This type of architecture has been used
succesfully in previous arithmetic processors [1][5]. We
have found that many image processing problems can be
solved with identical code for each of the RGBA com-
ponents of every pixel.

There are occasion~, however, where the ability to
suspend some subset of processors over a range of instruc-
tions is desired. For example, some programs might
switch to single processor operation to find a coefficient in
a table and then switch back to four processor operation
to multiply that coefficient by each component. Clamping
is a another example; when clamping, we wish to set each
processor's accumulator to unity only for those accumula-
tors which exceed unity. We make the comparison to
unity, suspend if less, set to unity, and resume each pro-
cessor.

To support this conditional processing, the Instruction
Control Unit (|CU) includes not only the standard
sequencer functions for finding the next instruction, but
also runner functions for determining which processors
execute each instruction. Let us review the capabilities of
the ICU, to illustrate its operation.

The Chap executes instructions stored in writable instruc-
tion memory. The first job of the ICU is to decide where
the next instruction lies. Along with the standard
sequencer opcode and condition select information, Chap
ICU instructions specify a Source Processor qualifier.
Thus, instructions like "jump (opeode) if alpha (processor)
is zero (condition code)" are possible. The jump address
may be computed, or included as a literal in the

instruction word.

The ICU must also direct the flow of execution for indivi-
dual processors based on conditions involving their own
execution. It becomes necessary to suspend some proces-
sors while others execute a particular program segment.
Note that this is somewhat complex'when we consider
nested if-then-else constructions and procedures.

To provide a mechanism for controlling individual proces-
sor activity, The ICU maintains a runflag register and a
stack that contains runflag vectors at each program level.
The current runflag indicates which processors are run-
ning and which are suspended.

At conditional test instructions, a four-bit condition vec-
tor is created, one bit for each processor, corresponding to
that processor's condition with regard to the ICU condi-
tion select field. The logic of the ICU determines the
current runflag and maintains the runflag stack based on
this condition vector and immediate runflag bits in the
instruction word.

Standard if-then, if-then-else, and while-do programming
constructs are translated into runner instructions as
shown in table 4.

action C construct assembler
push { push
pop. } done, fi

push; R &---- C if 0 { if e then
R = (!R) & SO } else { else

R &---- C while 0 { while e do

Table 4

R refers to the current runflag register; SO is at the top
of the run flag stack; C is the new condition run flag.

The complete set of 16 conditional ICU instructions
expands on these five runner instructions. The complete
set controls three concurrent stacks: the runflags, return
addresses, and loop counters.

Let us consider the C program fragment:
if (cl) {

if (c2) {
do0;

} else (
dol;

}
} else (

do2;
}

Assume that condition cl generates a runflag of 1110,
suspending processor 3, and condition c2 generates a
runflag of 1100. Table 5 shows the state of the current
runflag R and the top two runflag stack locations after
each ICU instruction.

80

Computer Graphics Volume 18, Number 3 July 1984

ICU instruction R SO $1
calculate c l 1111

push; R &----cl 1110 1111
calculate c2 1110 1111

push; P &----c2 1100 1110 1111
do0 1100 1110 1111

R = (! R) & SO 0010 1110 1111
dol 0010 1110 1111
pop 1110 1111

R~--~(!R) & SO 0001 1111
do2 0001 1111
pop 1111

Sequencer conditions are specified with an any/all
qualifier as well as the normal true/false qualifier of typi-
cal instruction sequencers.

This allows a while loop which runs until all four proces-
sors are satisfied, suspending individual processors as it
goes, to he simply stated:

while any (cl) do
statement;

done

and translates into:

push
loop: calculate c l

R &---- cl; jump out if all disabled
statement
jump loop

out: pop

The previous example, that of clamping accumulator
values that exceed unity, takes the form:

if any alu positive then
ace = 1;

fi
and translates to:

t e m p : a c c - 1;
push; r & = positive;
acc --~ 1;
pop

The appendix contains code fragments from actual Chap
programs. Code fragment (1) illustrates the inner loop for
a scanline linear interpolate of the form:

Targeto-~Sourceo+ (1-%)Source I

6. Chap Programming
The wide Chap instruction word can be split into six
parts, offering control over the ALUs, multipliers, data
paths, scratchpad address calculation unit, crossbar tessel-
lation, and instruction control unit. The assembler [4]
provides a powerful syntax for maintaining control. The
runtime monitor [5] provides linking and loading facilities
to promote modular program development. Pipeline

delays built into the hardware modules complicate pro-
gramming, but become a distinct advantage (over un-
pipelined designs) when writing optimized standard
modules. Features of the machine and the assembler
allow the programmer to stretch out the instruction tim-
ing and overlook the pipeline delays when developing code
for the first time.

6.1. C h a p / H o s t Interface
A number of features allow the Chap to support host
interaction during program execution.

• 16 words of shared memory are used for parameter
passing.

• 4096 'virtual register' locations are decoded in the
Sysbus interface which allow the host to initiate
Chap processes by reading and writing memory-
mapped function registers.

• Interrupt logic allows the Chap to interrupt the host
under program control.

7. Conclusion
We have described a digital processor specifically designed
to support digital pixel processing, providing parallel vec-
tor arithmetic with convenient programming language
support. The SIMD architecture appears well suited to
the particular algorithms used in the digital film printing
process.

8. Acknowledgments
Particular credit should go to Loren Carpenter, who origi-
nally suggested the basic four channel SIMI) architecture,
and contributed to elements of the design throughout the
project.

Special thanks is also due to Mark Leather, who shared in
the final design stages and debugged the prototype design,
writing much diagnostic software in the process to verify
the design.

Rodney Stock should be credited for his role as hardware
manager, as well as logic designer, on the Pixar system,
and should be identified as one of the principal architects
of the Pixar system.

In addition, the processor working group of Bill Reeves,
Tom Duff, and Sam Leffler, provided many important cri-
ticisms and suggestions during the design and review
phases.

Sam Leffier should also be credited for his work in provid-
ing the assembler and monitor that we use to develop
Chap code.

Thanks to Andy Moorer and Curtis Abbott , who stressed
the importance of complete diagnostic support for pro-
gram debugging, resulting in important improvements to
the host interface section.

Thanks also to Tom Noggle for his contribution to the
design of the Yapbus network.

81

@SIGGRAPH'84

A P P E N D I X
This section is included to provide a little detail about
specific issues in generating code for the Chap.

(1) This code fragment is an example of chas assembly
code to lerp (linearly interpolate) between two scan
lines:

Target o---= Sourceo+(l-alpha o)Source l

Sourceo, Source 1 and Target o are all stored in scratchpad
memory. This is an example of assembly code where no
instruction overlap is attempted. Comments are delim-
ited by the C styles/* and */constructs.

Lerp: loop X c o u n t do
m u l t x ---- u n i t y - @s0ptr; round
{ m u l t y ---~ (eomp) (s lp tr) ; round;

s l p t r ---- s l p t r 5- p ine }
{ aec - ~ (s0ptr);

s0ptr ~ s0ptr 5- p_inc }
{ (tptr) -~ ace 5- msp;

tp tr ~ tp tr 5- p_ine }
done

The inner loop can be translated as follows:

/* the "loop e do" construct pushes the current address +
I onto the return stack, and loads the loop counter with
the value e, in this case a literal value of Xeount from the
immediate field */

loop X e o u n t do

/* Read from scratchpad in broadcast mode (specified by
the @ sign) using pointer s0ptr, and subtract it from unity
(a predefined ALU register) and load the results into the
multiplier X inputs with the rounding bit set. */

m u l t x ---- u n i t y - @s0ptr; round / * 3 t leks * /

/* Read from scratchpad in pixel mode (specified by the 0
around slptr) using pointer slptr, and then load that
pixel into the multiplier Y inputs shifted up by 2 places
(specified by the qualifier (¢omp)) with the rounding bit
set. Furthemore, increment slptr by the value defined by
p_inc (in this case 4). */

{ m u l t y ---~ (comp) (s lp tr) ; round;
s l p t r ----~ s l p t r 5- p ine } / * 3 t leks * /

/* Read from scratchpad in pixel mode using pointer
sOptr and load them into the ALU accumulators, and
increment sOptr by p_inc. */

{ ace ~-- (s0ptr);
s0ptr ~ s0ptr 5- p_inc } / * 4 t icks *]

/* Add the values in the multiplier most significant result
register (top 16 bits) to the current accumulator, and
store the results as a pixel in scratchpad at the location
pointed to by tptr, and then increment tptr by p ine . */

{ (tptr) --~ ace 5- msp;
tp tr ---- tp tr 5- p ine } / * 2 t icks * /

/* The next statement terminates the loop and causes the
PC to be loaded from the top of the stack without pop-
ping it. The test for termination is done at the top, and if
it fails, execution continues at the point after the done
statement. */

done

(2) The code can be rewritten to take advantage of pipe-
lined operation, with an increase in performance of
50% as shown below. The code takes advantage of
the machine pipelining the details of which are
beyond the scope of this paper. Suffice to say that
the duration of each instruction can be specified in
clock ticks, overriding the default assembler dura-
tions, and that the first scratchpad read is repeated
at the bottom of the loop to maintain the pipelining
around the loop. Also note that whereas the previous
loop required 16 clock cycles to execute, the following
loop executes in 8 clock cycles.

xbar ---~ @s0ptr; push
loop: { u n i t y - ~ u n i t y - xbar; speeial;

spad ----- (comp) (s lp tr) ; l t i c k }
{ m u l t x ~ u n i t y - latch; round;

spad ---- (s0ptr); l t l e k }
{ m u l t y ---- xbar; round;

s l p t r ---- s l p t r 5- p ine; 1 t ick }
{ aec ~--- xbar; speeial;

s0ptr ---~ s0ptr 5- p inc; I t ick }
ace ~ xbar; 1 t ick

ace ---~ aee 5- rasp; special; 1 t ick
{ dowhi l e !le zero;

spad --~ @s0ptr; tp tr ----- tp tr 5- p lne;
ace ---- aec 5- rasp; special; l t l e k }

{ (tptr) ~-~ aee 5- latch;
tp tr - ~ tp tr 5- p_inc; 1 t ick }

References
[1] Barnes, G., et all, The ILLIAC 1V Computer. IEEE

Transactions on Computers Vol C-17, No 8 (August
1968), pp 746-757.

[2] Fielding, R., The Technique of Special Effects
Cinematography. Hastings House, New York, 1977.

[3] Kubo, M., Taguchi, Y., Agusa, K., Ohno, Y., A
multi-microprocessor system for three dimensional
color graphics. Proc of IFIP 80, 1980.

14] Leffier, S., Chap Assembler Reference Manual.
Technical Memo 98, Computer Division, Lucasfilm
Ltd, December, 1983.

[5] Leffler, S., Chap Runtime Monitor Reference Manual.
Technical Memo 102, Computer Division, Lucasfilm
Ltd, December, 1983.

[6] Porter, T., Matte Box Design. Technical Memo 63,
Computer Division, Lucasfilm Ltd, August 1983.

[7] Porter, T., Duff, T., Compositing Digital Images.
Computer Graphics Vol 18, No 3, 1984, To be pub-
lished

[8] Shapiro, H. D. Theoretical Limitations on the
EffÉcient Use of Parallel Memories. IEEE Transac-
tions on Computers, Vol C-27, No. 5 (May 1978), .

82

