How PhotoRealistic
RenderMan Works

. and What You Can
Do about It

© Pixar Animation Studios

History

pixar's PhotoRealistic RenderMan renderer is an implementation of a scanline ren-
dering algorithm known as the REYES architecture. REYES was developed in the
mid-1980s by the Computer Graphics Research Group at Lucasfilm (now Pixar) with
the specific goal of creating a rendering algorithm that would be applicable to cre-
ating special effects for motion pictures. The algorithm was first described by Cook
et al. in their 1987 Siggraph paper “The REYES Image Rendering Architecture.” They
developed this novel rendering algorithm because they felt that the other algo-

rithms generally in use at the time (polygon z-buffer algorithms, polygon scanline

algorithms, and ray tracers) had various flaws and constraints that really limited

their use in this venue.
Images used in motion picture special effects need to be photorealistic — that

is, appear of such high quality that the audience would believe they were filmed
with a real camera. All of the image artifacts that computer graphics researchers
had to live with up to this point were unacceptable if the images were going to fool
& 4 the critical eyes of the movie-going masses. In particular, REYES was designed to
E overcome the following problems with existing rendering algorithms:

| 135

6 How photoRealistic RenderMan Worls

Vast visual complexity: Photographs of the real world contain millions of ob-
jects, and every object has minute details that make it look real. CG images must
contain the same complexity if they are 10 blend seamlessly with live camera
work.

Motion blur: Photographs of moving objects naturally exhibit a blur due to the
camera shutter being open for a period of time while the object moves through
the field of view. Decades of stop-motion special effects failed to take this into
account, and the audience noticed.

Speed and memory Jimitations: Motion pictures contain over 100,000 frames
and are filmed in a matter of days or weeks. Fast computers are expensive, and
there is never enough memory (particularly in retrospect). Implementability on
gpecial-purpose hardware was a clear necessity.

The resulting design brought together existing work on curved surface primi-
tives and scanline algorithms with revolutionary new work in flexible shading and
stochastic antialiasing to create a renderer that could produce images that truly
looked like photographs. [t was first used in @ film titled Young Sherlock Holmes in
1985, drew rave reviews for its use in The Abyss in 1989, and in 1993 was given an
Academy Award for contributions to the film industry.

Basic Geometric Pipeline

The REYES algorithm is a geometric pipeline, not entirely unlike those found in
modern-day hardware graphics engines. What sets it apart is the specific types
of geometric operations that occur in the pipeline, and the way that, as the data
gtreams through the system, it gains and retains enough geometric and appearance
fidelity that the final result will have very high image quality. Figure 6.1 shows the
basic block diagram of the architecture.

The first step, of course, is loading the scene description from the modeler.
Typically, the scene description is in a RIB file, loaded from disk. In that case, the.
RIB file is read by a RIB parser, which calls the appropriate RI routine for each line
of the RIB file. Notice that since the RIB file is a simple metafile of the RI APL 1
is extremely easy 10 parse. The only minor complexity arises from the handling
parameter list data, which is dependent on the parameter type declarations
appear earlier in the RIB file. Alternatively, a program that is linked to the rendet
can call the RI API directly, in which case the parser is simply bypassed.)

The second step is the processing of the RenderMan Interface calls themselve
This stage of the pipeline maintains the hierarchical graphics state machine. R i
fall into two classes: attributes or options that manipulate the graphics stat& I
chine, and geometric primitives whose attributes are defined by the then-
version of the graphics state machine. The hierarchical graphics state mal

Basic Geometric Pipeline

modelling
application

visible points

composite
& filter

Figure 6.1 The REYES rendering pipeline.

ed data structure within the RI layer- Whenever a geomet- o |
he-stack set of attributes is attached |

the current top-of-t
proceeds into the main REYES geometric processing

is kept in a stack-bas
ric primitive arrives,
to the primitive before it
engine.

6 How photoRealistic RenderMan works

138
| 6.2.1 splitting Loop
The first thing that

: computes a camera-spa
e. RenderMan does not €0

riving primitives is bound them. The renderer

d bounding box that is guaranteed to contain
ntain any unbounded primitives (such
st RenderMan primitives

REYES does tO ar
ce axis-aligne

¥
. the entire primitiv
- as infinite planes), SO this is generally straightforward. Mo
vex-hull property; which means that the primitive is entirely contained
g that don't have

ertices themselves. Primitive

have the cont
are converted 10 equivalent primitives

within the VO
. this property (such
that do (such as Bez

lume outlined by the v
as Catmull-Rom patches)

ier patches}. _
ked to see if the primitive is actually on-screen.

' Next, the bounding box is chec
n in the graphics state gives us the viewing volume, a 3D
n the case of

The camera descriptio
| yolume of space that contains everything that the camera can see. |
¢ is a rectangular pyramid, bounded on the sides by the
alled the screen space

: perspective projec }
perspective projection of the screen window (sometimes C

i viewport in graphics texts) and rruncated at front and back by the near and far
i clipping planes; for an orthographic projection this is a simple rectangular box. It
b is important to note at this point that REYES does not do any global illumination ot
global intervisibility calculations of any kind. For this reason, any primitive that is
A not at least partially within the viewing yolume cannot contribute 10 the image in
i any way and therefore is immediately culled (trivially rejected). Also, any one-sided
are determined to be entirely back facing can be culled at this stage,

primitives that
B because they also cannot contribute to the image.
g : If the primitive is (at least partially) on-screen, its size is tested. If it 18 deemed
b “ro0 large” on-screen, according to a metric described later, it is split into smaller
N imitives. For most parametric primitives, this means cutting the primitive in
two (or possibly four) along the central parametric line(s). For primitives that are
containers of simpler primitives, such as polyhedra, splitting may mean roughly %
dividing into two containers each with fewer members. In either case, the idea is t0
create subprimitives that are simpler and smaller on-screen and more likely 10 be
“gmall enough” when they are examined. This technique is often called * divide and
conquer.” 3
The resulting subprimitives are then dropped independently into the top of the:
loop, in no particular order, to be themselves bound, cull-tested, and size-testedss
Eventually, the progeny of the original primitive will pass the size test and G
move on to the next phase called dicing. Dicing converts the gmall primitive ints
a common data format called a grid. A grid is a tessellation of the primitive int
rectangular array of quadrilateral facets known as micropolygons (se€ Figure 6:2)
(Because of the geometry of the grid, each facet is actually a tiny bilinear patch,
put we call it 2 micropolygon nonetheless.) The vertices of these facets are th
points that will be shaded later, so the facets themselves must be very Salsis
order for the renderer to create the highly detailed, visually complex shadin
we have come (0 expect. Generally, the facets will be on the order of one pi

area. All primitives, regardless of original type, are converted into grids that't

agpri ==

7

i

Basic Geometric Pipeline

Micropolygon grid

Bicubic subpatch

Figure 6.2 A primitive that is small enough will be diced into a grid
of tiny bilinear facets known as micropolygons.

e same to the remainder of the rendering pipeline. At this stage, each
the primitive's attributes, and any primitive vertex variables that
he primitive have been correctly interpolated onto every vertex in

s have not yet been shaded. |

essentially th
grid retains all of
were attached to t
the grid, but the vertice

Shading
The grid is then passed into the shading sy
the displacement shader, which may move grid vertices and/or recompute shading
normals. Then the surface shader is evaluated.In a typical surface shader, there are
calls to diffuse or 411uminance somewhere in the code. These routines require the .
evaluation of all of the light shaders attached to the object. The light shaders run L
as “coroutines” of the surface shader the first ime that they are needed, but their {
results are cached and reused if they are accessed again (for example, in a subse- ’l
quent specular call). When the surface shader finishes, it has computed the color {
|

and opacity of every grid vertex. Finally, valuated, mak-

the atmosphere shader is €
ing adjustments to the vertex color and opacity to simulate fog or other volumetric
effects. The end result of all of these evaluations i

s that the grid now has final color

and opacity assigned 10 each vertex, and the vertices themselves might be in differ- Ml
ent places than when originally diced. The other attributes of the original primitive - ! I
are now mostly superfluous. :
The details of the method that the shading syste

o each grid vertex are of very little consequenc
al importance to the users of PRMa

th the material in Chapters 7 an
before spending too much time worrying

stem to be shaded. PRMan first evaluates

m uses to assign color and i
opacity t e to the REYES pipeline itself P
but, of course, are of centr n. However, readers '.]I
who are not very familiar wi ‘

want to review those chapters
details.

PRMan's shading system is an interpreter for the RenderMan Shading Language,

1o file previously created by the Shading

which reads the byte-codes in the .s
Language compiler (Hanrahan and Lawson, 1990). Notice that the data structure
that the interpreter operates on, a grid, is a bunch of large rectangular arrays of

floating-point numbers. For this reason, it may not be surprising that the interpreter

d 11 will probably LI

about these ' \
|
|
|

actually executes as
unit. Such vector pipe

the operator on all grid vertices.
alternative, which woul
on the second grid vertex, an
efficiency. We are able to make
that appear in modern process
strong locality of referen
one data value, not nverti

redundant calculations that w

6 How PhotoRealistic RenderMan Works

a virtual SIMD (single instruction, multiple data) vector math

lines were typical in 1980s-vintage supercomputers.

eads shader instructions one at 2 time and executes

It is important to contrast this scheme with the

shader on the first grid vertex, then run it

d so on. The advantages of the breadth-first solution is
near-optimal use of the pipelined floating-point units
ors, and we have excellent cache performance due to
ce. In addition, for uni form variables, the grid has exactly
ices values. As a result, the interpreter is able to compute
xactly once on each grid, saving significantly over the
ould be necessary in a depth-first implementation.

vy. When a conditional or loop instruction is reached,
the protected block.

However, life is never all gra
the results may require that not all points on the grid enter
Because of this, the SIMD controller has run flags, which identify which grid vertices
are “active” and which are “inactive” for the current instruction. For any instruction
where the run-flag vector has at least one bit on, the instruction is executed, but
only on those grid vertices that require it. Other operators such as else, break, and
continue manipulate the run flags to ensure that the SIMD execution accurately
simulates the depth-first execution.
Another advantage of the SIMD execution model is that neighborhood infor-
mation is availabte for most grid vertices (except those on the grid edges), which
means that differentials can be computed. These differentials, the difference be-
tween values at adjacent grid vertices, substitute for derivatives in all of the Shading
Language operators that require derivative information. Those operators, known
generically as ared operators, include Du, calcul atenormal, texture, and their re-
Jated functions. Notice that grid vertices on edges (actually on two edges, not all
four) have no neighbors, so their differential information is estimated. PRMan ver-
mated this poorly, which led to bad grid artifacts in second-
better differential estimator that
till possible to confuse it at

The run-time interpreter r

run the entire

operations on uniform data e

sion 3.8 and lower esti
derivative calculations. PRMan version 3.9 has a
makes many of these artifacts disappear, but it is s

inflection points.

Texturing |
ally used in photorealistic scené

The number and size of texture maps that are typic

are so large that it is impractical to keep more than a small portion of them i
memory at one time. For example, a typical frame in a full-screen CGI animatio
might access texture maps approaching 10 Gb in total size. Fortunately, becaus
this data is not all needed at the highest possible resolution in the same fram&s
mip-maps can be used to limit this to 200 Mb of texture data actually read. Howeve
even this is more memory than can or needs to be dedicated to such transient dat

PRMan has a very sophisticated texture caching system that cycles texture dat
as necessary, and keeps the total in-core mMemory devoted to texture 10 under

6.2.5

cic Geometric Pipeline 141

\Mb in all but extreme cases. The proprietary texture file format is organized into

oD tiles of texture data that are strategically stored for fast access by the texture
. cache, which optimizes both cache hit rates and disk I/0 performance.

Shadows are implemented using shadow maps that are sampled with percentage
closer filtering (Reeves, Salesin, and Cook 1987). In this scheme, grid vertices are
projected into the view of the shadow-casting light source, using shadow camera
viewing information stored in the map. They are determined to be in shadow if they
are farther away than the value in the shadow map at the appropriate pixel. In order
to antialias this depth comparison, given that averaging depths is a nonsensical
operation (because it implies that there is geometry in some halfway place where it
doesn’t actually exist), several depths from the shadow map in neighboring pixels
are stochastically sampled, and the shadowing result is the percentage of the tests

that succeeded.

Hiding
After shading, the shaded grid is sent to the hidden-surface evaluation routine.

First, the grid is busted into individual micropolygons. Each micropolygon then goes

through a miniature version of the main primitive loop. It is bounded, checked for

being on-screen, and backface culled if appropriate. Next, the bound determines
in which pixels this micropolygon might appear. In each such pixel, a stochastic
sampling algorithm tests the micropolygon to see if it covers any of the several
predetermined point-sample locations of that pixel. For any samples that are cov-
ered, the color and opacity of the micropolygon, as well as its depth, are recorded
as a visible point. Depending on the shading interpolation method chosen for that
primitive, the visible-point color may be a Gouraud interpolation of the four micro-
polygon corner colors, or it may simply be a copy of one of the corners. Each sample
location keeps a list of visible points, sorted by depth. Of course, keeping more than
just the frontmost element of the list is only necessary if there is transparency in-
volved.

Once all the primitives that cover a pixel h
lists for each sample can be composited tog
colors and opacities blended together using the reconstruction filter to generate
final pixel colors. Because good reconstruction kernels span multiple pixels, the
final color of each pixel depends on the samples not merely in that pixel, but in
neighboring pixels as well. The pixels are sent 1o the display system to be put into

a file or onto a frame buffer.

ave been processed, the visible-point
ether and the resulting final sample

Motion Blur and Depth of Field

Interestingly, very few changes need to be made to the basic REYES rendering
pipeline to support several of the most interesting and unique features of PRMan.
One of the most often used advanced features is motion blur. Any primitive may be
motion blurred either by a moving transformation or by a moving deformation (or

142

6 How PhotoRealistic RenderMan Works

the primitive is defined as a single set of control points
tion matrices; in the latter case, the primitive actually
ntrol points. In either case, the moving primitive when
diced becomes a moving grid, with positional data for the beginning and ending of
the motion path, and eventually a set of moving micropolygons.

The only significant change to the main rendering pipeline necessary to support
this type of motion is that bounding box computations must include the entire
motion path of the object. The hidden-surface algorithm modifications necessary
to handle motion blur are implemented using the stochastic sampling algorithm
first described by Cook et al. in 1984. The hidden-surface algorithm’s point-sample
locations are each augmented with a unique sample time. As each micropolygon
is sampled, it is translated along its motion path to the position required for each

sample’s time.
PRMan only shades moving primitives

ports linear motion of primitives between
that shaded micropolygons do not change C
s the image. This is incorre

colored streaks acros
lighting, as micropolygons will “drag” shadows oOr
them. In practice, this artifact is rarely noticed due

so blurry anyway.
Depth of field is handled in a very simil
and the known focusing equations make it easy to determine how large the circle of

confusion is for each primitive in the scene based on its depth. That value increases
the bounding box for the primitive and for its micropolygons. stochastically chosen

lens positions are determined for each point sample, and the samples are appro-
priately jittered on the lens in order to determine which blurry micropolygons they

see.

both). In the former case,
with multiple transforma
contains multiple sets of co

at the start of their motion and only sup-
their start and stop positions. This means
ey leave constant-

olor over time, and th
ct, particularly with respect 10

specular highlights around with
to the fact that such objects are

ar way. The specified lens parameters

shading before Hiding

ipeline has a feature that few other renderers share:

done before the hidden-surface algorithm is run. I 8

normal scanline renderers, polygons are depth-sorted, the visible polygons ar€ &
identified, and those polygons are clipped to create “spans” that cover portions =8
of a scanline. The end points of those spans are shaded and then painted into
pixels. In ray tracing renderers, pixel sample positions are turned into rays, and the =
objects that are hit by (and therefore visible from) these rays are the only things th
are shaded. Radiosity renderers often resolve colors independently of a particl
viewpoint but nonetheless compute object inter visibility as a prerequisite to ener.
transfer. Hardware 2-buffer algorithms do usually shade before hiding, as RE¥
does; however, they generally only compute frue shading at polygon vertices, nOt

the interiors of polygons.
One of the significant advantages of sha

shading is possible. This is because the final

Notice that this geometric p
the shading calculations are

ding before hiding is that displace
locations of the yertices are not NeeC

Enhanced Geometric Pipeline 143

by the hider until after shading has completed, and therefore the shader is free to
move the points around without the hider ever knowing. In other algorithms, if the
shader moved the vertices after the hider had resolved surfaces, it would invalidate
the hider’s results.

The biggest disadvantage of shading before hiding is that objects are shaded
pbefore it is known whether they will eventually be hidden from view. If the scene
has a large depth complexity, large amounts of geometry might be shaded and
then subsequently covered over by objects closer to the camera. That would be a
large waste of compute time. In fact, it is very common for this to occur in z-buffer
renderings of complicated scenes. This disadvantage is addressed in the enhanced
algorithm described in Section 6.3.2.

Memory Considerations

In this pipeline, each stage of processing converts a primitive into a finer and more
detailed version. Its representation in memory gets larger as itis split, diced, busted,
and sampled. However, notice also that every primitive is processed independently
and has no interaction with other primitives in the system. Even sibling subprimi-
tives are handled completely independently. For this reason, the geometric database
can be streamed through the pipeline just as a geometric database is streamed
through typical z-buffer hardware. There is no long-term storage oOr buffering of
a global database (except for the queue of split primitives waiting to be bounded,
which is rarely large), and therefore there is almost no memory used by the algo-
rithm. With a single exception: the visible point lists.

As stated earlier, no visible-point list can be processed until it is known that
all of the primitives that cover its pixel have, in fact, been processed. Because the
streaming version of REYES cannot know that any given pixel is done until the
Jast primitive is rendered, it must store all the visible-point lists for the entire
image until the very end. The visible-point lists therefore contain a point-sampled
representation of the entire geometric database and consequently are quite large.
Strike that. They are absolutely huge—many gigabytes for a typical high-resolution
film frame. Monstrously humongous. As a result, the algorithm simply would not
be usable if implemented in this way. Memory-sensitive enhancements are required
to make the algorithm practical.

Enhanced Geometric Pipeline

The original REYES paper recognized that the memory issue was a problem, even
more so in 1985 than it is now. So it provided a mechanism for limiting memory use,
and other mechanisms have been added since, which together make the algorithm
much leaner than most other algorithms.

144

6.3.1

6 How PhotoRealistic RenderMan Works

Bucketing

In order to alleviate the visible-point memory
recognizes that the key to limiting the overall size of the visible-point memory is

to know that certain pixels are done pefore having to process the entire database.
Those pixels can then be finished and freed early. This is accomplished by dividing
the image into small rectangular pixel regions, known as buckets, which will be
processed one by one to completion before significant amounts of work occur on

other buckets.
The most important difference in the pi
based on which b

also sorts the primitives

problem, a modified REYES algorithm

peline is in the bounding step, which now
uckets they affect (that is, which buckets

the bounding box overlaps). If a primitive is not visible in the current bucket of
interest, it is put onto a list for the first bucket where it will matter and is thereby

held in its most compact form until truly needed.
ay. Buckets are processed one

After this, the algorithm proceeds in the obvious W
at a time. Objects are removed from the list for the current bucket and either split or
diced. Split primitives might be added back to the list or might be added to the lists

of future buckets, depending on their bounding boxes. Diced primitives go through
the normal shading pipeline and are busted. During busting, the micropolygons
are bound and similarly bucket-sorted. Micropolygons that are not in the current

bucket of interest are not sampled until the appropriate bucket is being processed.
Figure 6.3 shows four primitives whose disposition is different. Primitive A will be
diced, shaded, and sampled in the current bucket. Primitive B needs to be split,
and half will return to the current bucket while half will be handled in a future
bucket. Primitive C is in the current bucket because its bounding box touches it (as
shown), but once split, you can see that both child primitives will fall into future =
buckets. Primitive D will be diced and shaded in the current bucket, but some of = "
the micropolygons generated will be held for sampling until the next bucket is
processed. :
Eventually, there are no more primitives in the ¢
they all have either been sampled or transferred to future buckets. At that point,

all of the visible-point lists in that bucket can be resolved and the pixels for that
bucket displayed. This is why PhotoRealistic RenderMan creates output pixels
little blocks, rather than in scanlines like many algorithms. Each block is & buck
The algorithm does not require that the buckets be processed in a particular ord:
but in practice the implementation still uses a scanline-style order, processi
buckets one horizontal row at a time, left to right across the row, and rows fIQ
top to bottom down the image.
The major effect of this pipeline change is the utilization of memory. The €
database is now read into memory and sorted into buckets before any signi
amount of rendering is done. The vast majority of the geometric database is §
in the relatively compact form of per-bucket lists full of high-level geomelrl i
itives. Some memory is also used for per-bucket lists of micropolygons that
already been diced and shaded but are not relevant to the current bu t

urrent bucket's list, because

Enhanced Geometric Pipeline

Completed buckets

Future buckets

Figure 6.3 When the renderer processes the primitives that are on the list for the
currrent bucket, their size and positions determine their fates.

visible-point lists have been reduced to only those that are part of the current
bucket, a small fraction of the lists required for an entire image. Thus W€ have
traded visible-point list memory for geometric database memory, and in all but the
most pathological cases, this trade-off wins by orders of magnitude.

Occlusion Culling

As described sO far, the REYES algorithm processes primitives in arbitrary order
within a bucket. In the preceding discussion, we mentioned that this might put
a primitive through the dicmg/shading/hiding pipeline that will eventually turn
out to be obscured by a later primitive that is in front of it. If the dicing and
shading of these objects takes a lot of computation time (which it generally does
ina photorealistic rendering with visually complex shaders), this time is wasted. As
stated, this problem is not unique to REYES (it happens 10 nearly every z-buffer
algorithm), but it is still annoying. The enhanced REYES algorithm significantly
reduces this inefficiency by a process Known as occlusion culling.

The primitive bound-and-sort routine is changed to also sort each bucket's prim-
itives by depth. This way, objects close to the camera are taken from the sorted list
and processed first, while farther objects are processed later. simultaneously, the
hider keeps track of a simple hierarchical data structure that describes how much of
the bucket has been cOVe red by opaque objects and at what depths. Once the bucket
is completely covered by opague objects, any primitive that is entirely behind that
covering is occluded. Because it cannot be visible, it can be culled before the ex-
pensive dicing and shading occurs (in the case of procedural primitives, before they

6 How PhotoRealistic RenderMan works

146

are even loaded into the database). BY processing primitives in front-to-back order,
we maximize the probability that at least some objects will be occluded and culled.
This optimization provides a two- to ten-times speedup in the rendering tmes of

typical high-resolution film frames.

6.3.3 Network parallel Rendering
In the enhanced REYES algorithm, most of the computation—dicing, shading, hid-
ing, and filtering—takes place once the primitives have been sorted into buckets.

Moreover, except for a few details discussed later, those bucket calculations are gen-

erally independent of each other. For this reason, buckets can often be processed
independently, and this implies that there is an opportunity to exploit parallelism.
PRMan does this by implementing a large-grain multiprocessor parallelism scheme

known as NetRenderMan.
allelism-control

with NetRenderMan, 2 par
tiple independent

the form of bucket requests t0 mul
Server processes handle all of the calculation necessary to create the pixels for

the requested bucket, then make themselves available for additional buckets. Serial
sections of the code (particularly in database sorting and redundant work due to
latency cut the overall mul-

primitives that overlap multiple buckets) and network
0 appm)dmately 70-80% on typical frames, put nevertheless

tiprocessor efficiency t
the algorithm often shows linear speedup through 8-10 processors. Because these
ared data structures, they

processes run , with no shi
can run on multd d in fact on multiple processor

ple machines 01 the network, an
architectures in a heterogeneous netw

client program dispatches work in
rendering server processes.

ork, with no additional loss of efficiency.

6.4 Rendering Attributes and Options

with this background, it is easy 10 understand certain previously obscure rendering

attributes and options, and why they affect memory and/or rendering time, and
also why certain types of geometric models render faster or slower than others.

shading Rate

In the RenderMan Interface, t

with which the primitive mus
pixels) in order to adequately capture jts color vari
ShadingRate of 1.0 specifies one shading sample per pixel, or roughly Pho
shading style.In the REYES algorithm, this constraint translates into micropoly.
size. During the dicing phase, an estimate of the raster space size of the primit
is made, and this number is divided by the shading rate to determine the num
of micropolygons that must make up the grid. However, the dicing tessellatl

he ShadingRate of an object refers to the frequenty

t be shaded (actually measured by sample ared
ations. For example, a typl

Figure 6.4 Adaptive parametric subdivision leads to adjacent grids that are
different sizes parametrically and micropolygons that approximate the desired
shading rate.

always done in such a manner as to create (within a single grid) micropolygons that
are of identically sized rectangles in the parametfric space of the primitive. For this
reason, it is not possible for the resulting micropolygons in a grid to all be exactly
the same size in raster space, and therefore they will only approximate the shading
rate requested of the object. Some will be slightly larger, others slightly smaller than
desired.

Notice, too, that any adjacent sibling primitive will be independently estimated,
and therefore the number of micropolygons that are required for it may easily be
different (even if the sibling primitive is the same size in parametric space). In
fact, this is by design, as the REYES algorithm fundamentally takes advantage of
adaptive subdivision to create micropolygons that are approximately equal in size in
raster space independent of their size in parametric space (see Figure 6.4). That way,
objects farther away from the camera will create a smaller number of equally sized
micropolygons, instead of creating a sea of inefficient nanopolygons. Conversely,
objects very close to the camera will create a large number of micropolygons, in
order to cover the screen with sufficient shading samples to capture the visual detail
that is required of the close-up view. For this reason, it is very common for two
adjacent grids to have different numbers of micropolygons along their common
edge, and this difference in micropolygon size across an edge is the source of some
shading artifacts that are described in Section 6.5.4.

In most other rendering algorithms, a shading calculation occurs at every hidden-
surface sample, so raising the antialiasing rate increases the number of shading
samples as well. Because the vast majority of calculations in a modern renderer are
in the shading and hidden-surface calculations, increasing PixelSamples therefore
has a direct linear effect on rendering time. In REYES, these two calculations are
decoupled, because shading rate affects only micropolygon dicing, not hidden-
surface evaluation. Antialiasing can be increased without spending any additional
time shading, so raising the number of pixel samples in a REYES image will make

148

6.4.2

6 How PhotoRealistic RenderMan works

ther algorithms (often in the
ors). Conversely, adjusting
endering time in iMages

ng time than ino
of multiplicative fact
large impact onT

ler impact on renderi
entage points instead
tiplicative rate will have a
the calculation.

a much smal
range of perc

the shading mul
where shading dominates

-

Bucket Size and Maximum Grid Size

The bucket size 0
bucket and inverse

most obvious effect o
visible-point lists. gmaller buckets ar
is devoted 10 visible-point lists. Less obviously, sm
metric database into larger numbers of shorter, sorted primitiv
consequential decrease in sorting time. However, this small effect is usu

by the increase in certain per-bucket overhead.
The maximum grid size option controls dicing by imposing
the number of micropolygons that may occur in a single grid. Larger grids are more
officient to shade because they maximize vector pipelining. However, larger grids
also increase the amount of memory that can be devoted to shader global and local
yariable registers (which are allocated in rectangular arrays the size of a grid)- More
interestingly, however, the maximum grid size creates a loose UPPer bound on the
pixel area that a grid may COVer on-screen—a grid is unlikely to be much larger
than the product of the maximurm grid size and the shading rate of the grid. This is
because grids that are larger than a bucket
fall outside of the current

jmportant in relation to the bucket size
will tend to create large numbers of micropolygons that
Micropolygons that linger

bucket and that must be stored in lists for future buckets.

in such lists can use d lot of memory-.

In the past, when memory was at a premium, i
to optimize the bucket size and maximum grid size
visible-point and micropolygon list memory consumption.
is rare that these data structures are sufficiently large to conc
are perfectly acceptable. The default values for bucket size,
and maximum grid size, 256 micropolygons per grid, work well

most extreme gituations.

the number of pixels that make up a
Jy controls the number of buckets that make up an image. The
f this control is 10 regulate the amount of mermory devoted to
e more memory efficient because less memory
aller buckets partition the geo-
e lists, with some

ally offset

ption obviously controls

an upper limit on

t was often extremely important
to limit the potentially large
On modern computers, it
ern us, and large limits
16 x 16 pixel buckets,

Transparency

partially transparent objec
they can have tWo effects 0
objects clearly affect the merm
the mathematical constraints 0
possible to composite together the variou
in the visible-point list of a sample unti
that an opague layer can immediately trun

ts cause no difficulty 1o the algorithm generally; hOWev
tation. First, {ranspare

n the efficiency of the implemen

ory consumption of the visible-point lists. Due
£ the compositing algebra used by PRMan, it is
s partially transp

| the sample is €
cate a list, but in the prese

ntirely complete. Not
nce of 1a

except under the ;.

arent layers that are helc

.

Rendering Attributes and Options 149

amounts of transparency, many potentially visible layers must be kept around.
Second, and more jmportantly, transp arent layers do not contribute to the occlusion
culling of future primitives, which means that more primitives are diced and shaded
than usual. Although this should be obvious (since those primitives are probably
going to be seen through the transparent foreground), it is often quite surprising to
gee the renderer slow down as much as it does when the usually extremmely efficient
occlusion culling is essentially disabled by transparent foreground layers.

Displacement Bounds

Displacement ghaders can move grid vertices, and there is no built-in constraint on
the distance that they can be moved. However, recall that shading happens halfway
through the rendering pipeline, with bounding, splitting, and dicing happening
prior to the evaluation of those displacements. In fact, the renderer relies heavily
on its ability to accurately yet tightly bound primitives soO that they can be placed
into the correct bucket. If a displacement pushes a grid vertex outside of its original
bounding box, it will likely mean that the grid is also in the wrong bucket. Typically,
this results in a large hole in the object corresponding to the bucket where the grid
«should have been considered, but wasn't.” '

This is avoided by supplying the renderer a bound on the size of the displace-
ment generated by the shader. From the shader writer’s point of view, this number
represents the worst-case displacement magnitude—-the largest distance that any
vertex might travel, given the calculations inherent in the displacement shader it-
self. From the renderer's point of view, this number represents the padding that
must be given to every bounding box calculation prior to shading, to protect against
vertices leaving their boxes. The renderer grows the primitive bounding box by this
value, which means that the primitive is diced and shaded in a bucket earlier than it
would normally be processed. This often leads 10 micropolygons that are created
long before their buckets need them, which then hang around in bucket micro-
polygon lists wasting mermory, or primitives that are shaded before it is discovered
that they are offscreen. Because of these computational and memory inefficiencies
of the expanded bounds, it is jmportant that the displacement bounds be as tight
as possible, 10 limit the damage.

Extreme Displacement

Sometimes the renderer is stuck with large displacement bounds, either because
the object really does displace a large distance or because the camera is looking
extremely closely at the object and the displacements appear very large on-screen.
In extreme Cases, the renderer can lose huge amounts of memory to micropolygon
lists that contain most of the geometric database. In cases such as these, & better
option is available. Notice that the problem with the displacement bound is that it
is a worst-case estimate over the primitive as a whole, whereas the small portion
of the primitive represented by a single small grid usually does not contain the

i

'ﬂ 150 6 How PhotoRealistic RenderMan Works
lt worst-case displacement and actually could get away with a much smaller (tighter)
} bound. The solution to this dilemma is tO actually run the shader to evaluate the
i true displacement magnitude for each grid on a grid-by-grid basis and then store
_f those values with the grid as the exact displacement bound. The disadvantage of
4 this technique is that it requires the primitive 1O be shaded twice, once solely to
:'; determine the displacement magnitude and then again later to generate the color
when the grid is processed normally in its new bucket. Thus, it is a simple space-
time trade-off.

| This technique is enabled by the ext remedisplacement attribute, which specifies
] a threshold raster distance. If the projected raster size of the displacement bound
for a primitive exceeds the extreme displacement limit for that primitive, the extra
| shading calculations are done to ensure economy of memory. If it does not, then
.i:'!l the extra time is not spent, under the assumption that for such a small distance the
b memory usage is transient enough to be inconsequential.

R 6.4.6 Motion-Factor

When objects move quickly across the screen, they become blurry. Such objects
are indistinct both because their features are spread out over a large region and
b because their speed makes it difficult for our eyes to track them. As a result, it is
:::_ not necessary to shade them with particularly high fidelity, as the detail will just be
Jost in the motion blur. Moreover, every micropolygon of the primitive will have a
very large bounding box (corresponding to the length of the streak), which means
that fine tessellations will lead to large numbers of micropolygons that linger a long
time in memory as they are sampled by the many buckets along their path.

The solution to this problem is to enlarge the shading rate of primitives if they
move rapidly. Itis possible for the modeler to do this, of course, but it is often easier
for the renderer to determine the speed of the model and then scale the shading
rates of each primitive consistently. The attribute that controls this calculation
is a Geometri cApproximation flag known as motionfactor. For obscure reasons,
motionfactor gives a magnification factor on shading rate per every 16 pixels of
blurring. Experience has shown that a motion-factor of 1.0 is appropriate for a large
range of images.

The same argument applies equally to depth of field blur, and in the current
implementation, motion factor (despite its name) also operates on primitives with)

large depth of field blurs as well.

Rendering Artifacts

Just as an in-depth understanding of the REYES pipeline helps you understand
reason for, and utility of, various rendering options and attributes, it also hel
you understand the causes and solutions for various types of geometric rendering
artifacts that can occur while using PhotoRealistic RenderMan.

Rendering Artifacts

Eye Splits

Sometimes PhotoRealistic RenderMan will print the error message “camnot split
primitive at eye plane,” usually after appearing 10 stall for quite a while. This
error message is a result of perhaps the worst single algorithmic limitation of the
modified REYES algorithm: in order to correctly estimate the shading rate required
for a primitive, the primitive must first be projected into raster space in order to
evaluate its size. Additionally, recall that the first step in the geometric pipeline
is to bound the primitive and sort it into buckets based on its position in raster
space, which requires the same projection. The problem is that the mathematics of
perspective projection only works for positions that are in front of the camera. It
is not possible 10 project points that are behind the camera. For this reason, the
renderer must divide the primitive into areas that are in front of and areas that are
behind the camera.

Most rendering algorithms, if they require this projection at all, would clip the
primitive against the near clipping plane (hence the name) and throw away the
bad regions. However, the entire REYES geometric and shading pipelines require
subprimitives that are rectangular in parametric space, which can be split and diced
cleanly. Clipping does not create such primitives and cannot be used. Instead, REYES
simply splits the primitive hoping that portions of the smaller subprimitives will be
easier to classify and resolve.

Figure 6.5 shows the situation. Notice that primitives that lie entirely forward of
the eye plane are projectable, so can be accepted. Primitives that lie entirely behind
the near clipping plane can be trivially culled. It is only primitives that span both
planes that cannot be classified and are split. The region between the planes can
be called the “safety zone.” If a split line lies entirely within this zone (in 3D, of
course), both children of the bad primitive are classifiable, which is the situation we
are hoping for. If the split line straddles a plane, at least we will shave some of the
bad primitive away and the remaining job, we hope, is slightly easier. REYES splits
as smartly as it can, attempting 10 classify subprimitives.

Unhappily, there are geometric situations where the splitting simply doesn’t
work in a reasonable number of steps. “Reasonable” is defined as a small integer
because each split doubles the number of subprimitives, so even 10 attempts create
510 — 1024 primitives. If, after splitting the maximum permitted number of times,
the primifive still cannot be classified, REYES gives up and throws the primitive
away and prints the “Cannot split” message. If that primitive was supposed to be
visible, the lost section will leave a hole in the image.

primitives that have large displacement bounds, or are moving rapidly toward the
camera, will exacerbate the eye-splitting problem because the parametric splitting
process will do very little to reduce the bounding box. Indeed, for primitives for
which the camera is inside the displacement bound of part of the surface, or
primitives whose motion path actually goes through the camera, splitting can never
succeed.

In order to reduce the artifacts due to eye-split culling, the key is to give the ren-
derer the largest possible safety zone. Place the near clipping plane as far forward

6 How PhotoRealistic RenderMan Works

k Eye plane Near clipping plane

]
-

1
]
|
]
I
i P 1
g Camera position &
:
]
Ll
|
1]
1
]
1
1

Spans planes, >~
requires split

e L
Near ‘__‘___________——————I———_____-'
clippable R Projectable

I]
: Safety zone '

Figure 6.5 The geomeltric relationship of the near and
ﬁ‘ eye planes gives rise to three categories of primitives: the
cullable, the projectable, and the “spanners,” which require

splitting.

as is possible without otherwise affecting the image. The near clipping plane can be
made with cameras that have rea-

i placed surprisingly far forward for most shots
sonable fields of view. If you don’t nor_mally set the clipping plane, set it to some
small but reasonable value immediately—the default value of 1le-10is just about

as bad as you could get! The pumber of splitting jterations that will be permitted
can be controlled with a rendering option, and if you permit a few more, you can
sometimes help handling of large but otherwise simple primitives. Beware, how-
ever, of the displacement and motion cases, because upping the limit will just let
the renderer waste exponentially more time before it gives up.

Also, make sure that displacement bounds for primitives near the camera (for

example, the ground plane) are as tight as possible and that the shader is coded &
so that the displacement itself is as small as possible. If you place the camera S0
close to some primitive that the displacement bound is a significant portion of the

image size, there will be no end of trouble with both eye splits and displacem

stretching (discussed later). In flyovers of the Grand Canyon, the canyon should b
modeled, not implemented as a displacement map of a flat plane!

It will also help to keep the camera as high off the ground as possible withoul
ruining the composition of the shot. REYES simply has lots of trouble with worm’
eye views. And make sure thatno object is flying through the camera (you would
do that in live-action photography, would you?). Generally, if you pretend that
CG camera has a physical lens that keeps objects in the scene at least a CEEt
distance away and respect that border, you will have fewer problems with eye sp!

Rendering Artifacts

Figure 6.6 Tessellation differences result in patch cracks, but
these can be repaired by moving binary-diced vertices.

patch Cracks

Patch cracks are uny holes in the ‘surface of objects that are caused by various
errors in the approximation of primitives by their tessellations (we'll use the term
loosely to include tessellation—created cracks on primitives other than patches).
patch cracks usually appear as scattered pinholes in the surface, although they can
sometimes appear as lines of pinholes or as small slits. Importantly, they always
appear along parametric lines of primitives. They are recognizably different from
other holes created by clipping, culling, or bucketing errors, which are usually
larger, often triangular, and occur in view-dependent places (like on silhouettes Or
aligned with bucket boundaries).

patch cracks occur because when objects are defined by sets of individual prim-
itives, the connectedness of those primitives is only implied by the fact that they
abut, that they have edges that have vertices in common. There is no way in the Ren-
derMan Interface to explicitly state that separate primitives have edges that should
be “glued together.” Therefore, as the primitives g0 through the geometric pipeline
independently, there is a chance that the mathematical operations that occur on
one version of the edge will deviate from those on the other version of the edge,
and the vertices will diverge. If they do, a crack occurs between them.

The deviations can happen in several ways. One is the tessellation of the edge by
adjacent grids being done with micropolygons of different sizes. Figure 6.6 shows
that such tessellations naturally create intermediate grid vertices that do not match,
and there are tiny holes between the grids. For many years, PRMan has had a switch
that eliminated most occurrences of this type of crack. Known as pinary dicing, it
requires that every grid have tessellations that create a power-of-two number of
micropolygons along each edge. Although these micropolygons are smaller than
are required by shading rate alone, binary dicing ensures that adjacent grids have
tessellations that are powers-of-two multiples of each other (generally, a single
factor of two). Thus, alternating vertices will coincide, and the extra vertices on
one side are easily found and “pasted” to the other surface.

Another way that patch cracks can happen is when the displacement shader
that operates on grid vertices gets different results on one grid from another. If
a common vertex displaces differently on two grids, the displacement literally rips

6.5.3

6 How PhotoRealistic RenderMan Works

the surface apart, leaving a crack between. One common reason for such differing
results is displacement mapping using texture filter sizes that are mismatched (see
Section 6.5.4). The texture call then returns a slightly different value on the two
grids, and one grid displaces to a different height than the other. Another common
reason is displacement occurring along slightly different vectors. For example, the
results of calculatenormal are almost guaranteed to be different on the left edge
of one grid and on the right edge of the adjacent grid. If displacement occurs along
these differing vectors, the vertices will obviously go to different places, opening
a crack. Unfortunately, only careful coding of displacement shaders can eliminate
this type of cracking. ‘

Notice that patch cracks cannot happen on the interiors of grids. Because grid
micropolygons explicitly share vertices, it is not possible for such neighbor micro-
polygons to have cracks between them. For this reason, patch cracks will only
occur along boundaries of grids, and therefore along parametric edges. In PRMan
versions prior to 3.9, patch cracks could occur on any grid edge, including those
that resulted from splitting a patch into subpatches. Later versions of PRMan have
a crack-avoidance algorithm that glues all such subpatches together. Therefore,
modern versions of PRMan will only exhibit patch cracks along boundaries of
original primitives, not along arbitrary grid boundaries.

Displacement Stretching

Another problem that displacement shaders might create is stretching of micro-
polygons. This is caused when displacement shaders move the vertices of a micro-
polygon apart, so that it no longer obeys the constraint that it is approximately the
size specified by the shading rate.

In the process of dicing, the renderer estimates the size of the primitive on-
screen and makes a grid that has micropolygons that approximately match the
shading rate. Shading then occurs on the vertices of the grid (the corners of the mi-
cropolygons). Displacement shaders are permitted to move grid vertices, but there
is no constraint on where they are moved. If two adjacent grid vertices are moved
in different directions (wildly or subtly), the area of the micropolygon connecting '
them will change. Generally, this change is so small that the micropolygon is still
safely in the range expected of shading rate. However, if the displacement func tion
has strong high frequencies, adjacent grid vertices might move quite differently. Fo
example, an embossing shader might leave some vertices alone while moving
tices inside the embossed figure quite a distance. The micropolygons whose COTTIE
move very differently will change size radically, and sometimes will be badly b
or twisted (see Figure 6.7). '

Twisted micropolygons have unusual normal vectors, and this alone may
enough to cause shading artifacts. For example, highly specular surfaces are v
sensitive to normal vector orientation, so a micropolygon that is twisted I
unusual direction may catch an unexpected highlight.

Rendering Artifacts

Figure 6.7 Displacement stretching leads to micropolygons that are bent,
twisted, or significantly larger than anticipated.

More common, however, is that the stretching of the micropolygons will it-
self be visible in the final image. An individual flat-shaded micropolygon creates
a constant-colored region in the image. With a standard shading rate of around
a pixel, every pixel gets a different micropolygon and the flat shading is not visi-
ble. But large stretched or long twisted micropolygons will cover many pixels, and
the constant-colored region will be evident. Sometimes this takes the form of alter-
nating dark and light triangles along the face of a displacement «c)iff.” Corners of
micropolygons that are shaded for the top of the plateau hang down, while corners
of micropolygons that are shaded for the valley poke up, interleaved like teeth of a
gear.

The visual artifacts of these problems can be somewhat ameliorated by using
smooth shading interpolation, which will blur the shading discontinuities caused
by the varying normals. However, the geometric problems remain. The primary
solution is to lower the frequency content of the displacement shader so that
adjacent micropolygons cannot have such wildly varying motion (see Chapter 11
on antialiasing shaders for hints). If this cannot be done, the brute-force approach
is to reduce the shading rate 1O values such as 0.25 pixels or smaller so that
even stretched micropolygons stay under one pixel in size. However, this will have
significant performance impact, because shading time is inversely proportional to
shading rate. Fortunately, shading rate is an attribute of individual primitives, SO
the extra expense can be limited to the part of the model that requires it.

Texture Filter Mismatches

As primitives are split, their subprimitives proceed through the rendering pipeline
independently, and when the time comes to dice them, their own individual size
on-screen determines the tessellation rate. As a result, it is often the case that
the adjacent grids resulting from adjacent subprimitives will project to different

i et L e

T e T

e e

6 How PhotoRealistic RenderMan Works

sizes on the screen and as a result will tessellate at different rates during dicing.
Tessellated micropolygons are rectangular in the parametric space of the original
primitive, and all of the micropolygons in a single grid will be the same size in that
parametric space, but due to the differing tessellation rates, the micropolygons that
make up the adjacent grids will have different sizes in parametric space.

One of the artifacts that results from this difference is that filtering calculations
based on parametric size will change discontinuously across a grid boundary. In
Chapter 11 on shader antialiasing, various filtering techniques are discussed that
use parametric size as part of the calculation of filter width. This type of size
discontinuity will result in filtering discontinuities, which can be visible in the
final image. For example, in simple texturing, the texture filter size defaults to the
micropolygon size. The resulting texture can have visible changes in sharpness over
the surface of an otherwise smooth primitive. If the result of a texture call is used
as a displacement magnitude, a displacement crack can result (Section 6.5.2).

Recent versions of PRMan have significantly reduced problems such as these
by the introduction of smooth derivatives. The derivatives and the parametric size
values that are available to shaders now describe a smoothly varying idealized para-
metric size for the micropolygon. That is, the values do not exactly match the true
size of the micropolygon in parametric space, but instead track closely the desired
parametric size given the shading rate requested (in some sense compensating for
the compromises that needed to be made to accommodate binary dicing or other
tessellation constraints at the time of dicing). These smoothly varying parametric
size estimates ameliorate texture filter size mismatches, both in built-in shading
functions and in antialiased procedural textures. Generally, the fact that micropoly-
gons are not exactly the size that they advertise is a small issue, and where it is an
issue, it can be compensated for by minor modifications to the shader.

Conclusion

The REYES rendering architecture is so general and flexible that new primitives,
new graphics algorithms, and new effects features have been added modularly
to the existing structure almost continously for over 15 years. The system has
evolved from an experimental testbed with a seemingly unattainable dream of
handling tens of thousands of primitives into a robust production system that
regularly handles images a hundred times more complex than that. The speed and
memory enhancements that have been added may appear to have been short-termt
requirements, as Moore’s law allows us to run the program on computers that are

faster and have more memory without any additional programming. However, thi

is shortsighted, for our appetite for complexity has scaled, too, as fast or fast
than Moore's law allows. Undoubtedly, in 15 more years, when computers with
terabyte of main memory are common and optical processors chew up 1 billio:
primitives without flinching, we will still be using the REYES architecture to comp :

our holofilms.

