
Projects

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Resources
▪ There is not a good chip simulator for a modern graphics chip (perhaps that’s a project)

▪ “High-Performance Software Rasterization on GPUs”. Laine et al. HPG 2011

- Full software implementation of the graphics pipeline in CUDA. Fastest available. Great baseline.
- Source available on Google Code
- http://research.nvidia.com/publication/high-performance-software-rasterization-gpus
- See current research ideas (next slide) and evaluate in this context

▪ NVIDIA Tegra Development Kits
- Software dev kits may be available for the upcoming Tegra 3 (Kal-El) (we’ll have to ask)

▪ Intel SPMD Program Compiler
- Generates vector instruction streams from sequential C-like language (motivated by graphics

shading languages, but without the graphics-centric concepts)
- Open source (BSD license)
- http://ispc.github.com/
- How fast can a CPU go? Can compiler/runtime techniques e!ectively hide latency on a CPU?

▪ Skim through proceedings of:
- Graphics Hardware (until 2009)

http://ispc.github.com
http://ispc.github.com

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Challenges/themes
▪ Embracing heterogeneity

- Developing algorithms designed for heterogeneous systems
- What simple changes to programmable hardware can be made to accelerate key computations?

▪ Flipping GPU design inside out (major open problem in graphics systems)

- One big di!erence between CPUs and GPUs is what controls what
- GPU: "xed-function stu! drives programmable stu! (outer loops controlled by hardware)
- CPU: programmable stu! drives "xed-function stu!
- GPU approach has worked great, but seems wrong in a hybrid world

▪ Scheduling

- Scheduling the graphics pipeline is hard: relies on a lot of heuristics, domain knowledge
- Could we be more formal? (in the face of dynamic execution?)
- GRAMPS: A programming model for graphics pipelines [Sugerman TOG 2009][Sanchez ASPLOS 10]
- Can we quantify the bene"t of dropping order preservation?

- Multi-core, multi-threaded per core, SIMD within a core: dealing with "ne-grained parallelism at a scale not
present on current CPUs

▪ Designing good abstractions

- We’ve talked about graphics systems as abstract machines (like map-reduce), rather than libraries
- Does it make sense to explore this strategy in other domains? (what are the triangles, fragments, pixels of X?)

▪ Understanding workloads

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Trending real-time graphics topics
▪ Issues related to shrinking triangle size

- Reducing Shading on GPUs Using Quad-Fragment Merging, Fatahalian et al. SIGGRAPH 2010
- Parallel REYES pipeline implementation

▪ Stochastic rasterization for accurate camera simulation (rendering with motion and defocus blur)
- Data-parallel rasterization of micropolygons with motion and defocus blur, Fatahalian et al. HPG 2009
- Clipless dual-space bounds for faster stochastic rasterization, Laine et. al SIGGRAPH 2011
- Decoupled sampling for graphics pipelines, Ragan-Kelley et al. Transactions on Graphics 2011
- Memory system implications when objects start moving around quickly on screen

- In a rasterizer? In a ray tracer?

▪ Better anti-aliasing
- Analytic vs. point-sampling approaches
- Data-dependent reconstruction [Shirley 2010, 2011][Lehtinen 2011]
- Programmable pixel operations stage
- Evaluate quality of screen space vs. object space shading (shade vertices vs. shade fragments)

▪ Feed-forward (traditional) fragment shading vs. deferred shading
- Complex bandwidth vs. storage vs. SIMD e#ciency tradeo!
- See Andrew Lauritzen’s notes
- http://bps10.idav.ucdavis.edu/talks/12-lauritzen_DeferredShading_BPS_SIGGRAPH2010.pdf
- Motion blur/small polygons in a deferred shading system?

▪ Ray tracing on GPUs or multi-cores (or the combination of the two)
- Heterogeneous workload (ray tracing + shading)
- Understanding the E#ciency of Ray Traversal on GPUs. Alia et al. HPG 2009
- Architecture Considerations for Tracing Incoherent Rays, Alia et al HPG 2010
- OptiX: a general purpose ray tracing engine, Parker et al. SIGGRAPH 2010

