
Lecture 10:
Shading Languages

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Review: role of shading languages
▪ Renderer handles surface visibility tasks

- Examples: clip, cull, rasterizer, z-buffering

- Highly optimized implementations on canonical data structures
(triangles, fragments, and pixels)

▪ Impractical for rendering system to constrain application to use a
single parametric model for surface de"nitions, lighting, and shading

- Applications de"ne these behaviors procedurally

- Shading language is the interface between application-de"ned
surface, lighting, material re#ectance functions and the renderer

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Some history: shade trees

*
+

*

+

Material:
specular re#ection coeff

Material: diffuse re#ection coefficient (note multi-texturing)

Diffuse re#ectance Specular re#ectance

*

[Cook 84]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Aside: more advanced light/surface interaction

▪ Account for internal scattering

▪ Light exists surface from different location of location of incidence

- Very important to matter translucent materials like skin, foliage, marble

BRDF
BSSRDF

[Wann Jensen et al. 2001]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Renderman shading language
▪ High-level, domain-speci"c language

- Domain: describing propagation of light through scene

[Hanrahan and Lawson 90]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

What are the key RSL abstractions?
▪ Shaders

- Surfaces

- Lights

- A few more types (but will not address them today)

▪ Light shader illuminate construct

▪ Surface shader illuminance loop (integrate light)

▪ Texturing primitives

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Renderman shading language [Hanrahan and Lawson 90]

▪ Separate surface shaders from light source shaders
▪ Light source shaders describe distribution of energy from a light

▪ Surface shaders

- De"ne surface re#ectance distribution function (BRDF)

- Integrate light from light sources

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Recall: rendering equation [Kajiya 86]

x

x’

i(x,x’)

Surface shader

Light shader computes i(x’,x’’)
(accessed as L in RSL surface
shader illuminance loop)

i(x’’,x’)

x’’

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Shading objects in RSL

Surface shader object

compiled code
(plastic material)

current transforms

bound parameters
kd = 0.5
ks = 0.3

Light shader objects
(bound to surface)

compiled code
(spotlight)

current transforms

bound parameters
intensity =0.75

color = (1.0, 1.0, 0.5)
position = (5,5,10)
axis = (1.0, 1.0, 0)

angle = 35

compiled code
(point light)

current transforms

bound parameters
position = (5,5,5)

intensity =0.75
color = (1.0, 1.0, 0.5)

compiled code
(point light)

current transforms

bound parameters
position = (20,20,100)

intensity =0.5
color = (0.0, 0.0, 1.0)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Light shaders

Ps
L

illuminate	 (light_pos,	 axis,	 angle)
{
	 	 Cl	 =	 my_light_color	 /	 (L	 .	 L)
}

light_pos

axis angle

Example: Attenuating spot-light (no area fall off)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Surface shaders

illuminance	 (position,	 axis,	 angle)
{
	 	 	 	 	
}

Example: Computing diffuse re#ectance

surface	 diffuseMaterial(color	 Kd)
{
	 	 Ci	 =	 0;

	 	 //	 integrate	 light	 over	 hemisphere
	 	 illuminance	 (P,	 Nn,	 PI/2)
	 	 {
	 	 	 	 	 Ci	 +=	 Kd	 *	 Cl	 *	 (Nn	 .	 normalize(L));
	 	 }
} L = Vector from light position (recall light_pos

argument to light shader’s illuminate) to
surface position being shaded (see P argument to
illuminance)

Cl = Value computed by light shader

Surface shader computes Ci

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

RSL design retrospective
(switching to notes by Pat Hanrahan)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Cg
(Class discussion)

