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Last time
GPUs contain a collection of programmable processing cores: responsible for 
carrying out data-parallel stages of the graphics pipeline (vertex, fragment, 
primitive processing)
- Many processing cores
- SIMD execution
- Hardware support for large-scale multi-threading
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Last time: processing data

Now: moving data to processors
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Recall: “CPU-style” core

ALU

Fetch/Decode

Execution
Context

OOO exec logic

Branch predictor

Data cache
(a big one: several MB)



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

“CPU-style” memory hierarchy

CPU cores run efficiently when data is resident in cache
(caches reduce latency, provide high bandwidth)

ALU

Fetch/Decode

Execution
contexts

OOO exec logic

Branch predictor
25 GB/sec

to memory

L1 cache
(32 KB)

L2 cache
(256 KB)

L3 cache
(8 MB)

shared across cores

Processing Core (several per chip)
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“GPU-style” memory hierarchy (data from NVIDIA GF100: “Fermi”)

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Execution
contexts
(128 KB)

Texture cache
(12 KB, read-only)

Scratchpad
or

L1 cache
(64 KB)

L2 cache
(768 KB)

shared across cores

~150-200 GB/sec
to memory

Processing Core (many per chip)

More cores, more ALUs, no large traditional cache hierarchy (use threads to tolerate latency)
Require high-bandwidth connection to memory
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Thought experiment
Task: element-wise multiplication of two vectors A and B

1. Load input A[i]
2. Load input B[i]
3. Load input C[i]
4. Compute A[i] × B[i] + C[i]
5. Store result into D[i] =

A

B

D

C
+

×

Less than 1% efficiency… but 6x faster than CPU!

Four memory operations (16 bytes) for every MUL-ADD
Radeon HD 5870 can do 1600 MUL-ADDs per clock
Need ~20 TB/sec of bandwidth to keep functional units busy
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Bandwidth limited!
If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for 
application developers on throughput-optimized systems.
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Bandwidth is a critical resource

▪ A high-end GPU (e.g., Radeon HD 5870) has...
- Over twenty times (2.7 TFLOPS) the compute performance of quad-core CPU
- No large cache hierarchy to absorb memory requests

▪ GPU memory systems are designed for throughput
- Wide memory bus (150-200 GB/sec)
- Still, this is only six-to-eight times the bandwidth available to CPU
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Bandwidth is a critical resource
▪ Use available bandwidth well

▪  Fetch data from memory less often (share/reuse data)

▪ Request data less often (instead, do more math: it’s “free”)
– “arithmetic intensity” : ratio of math to data access
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Using available bandwidth well

384 bit memory bus

Memory (DDR5)

Memory controller

Memory request queue

sampler	
  mySamp;
Texture2D<float3>	
  myTex;
float3	
  lightDir;

float4	
  diffuseShader(float3	
  norm,	
  float2	
  uv)
{
	
  	
  float3	
  kd;
	
  	
  kd	
  =	
  myTex.Sample(mySamp,	
  uv);
	
  	
  kd	
  *=	
  clamp(	
  dot(lightDir,	
  norm),	
  0.0,	
  1.0);
	
  	
  return	
  float4(kd,	
  1.0);	
  	
  	
  
}

Processors generate memory requests
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Bandwidth is a critical resource
▪ Use available bandwidth well

– GPUs feature sophisticated memory request reordering logic
– Repack/reorder/interleave many buffered memory requests to maximize memory 

utilization

▪  Fetch data from memory less often (share/reuse data)
– Intra-fragment reuse
– Cross-fragment reuse
– Compression

▪ Request data less often (instead, do more math: it’s “free”)
– “arithmetic intensity” : ratio of math to data access
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Scratchpad for reuse known at compile-time

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Execution
contexts
(128 KB)

Texture cache
(12 KB, read only)

Scratchpad
or

L1 cache
(64 KB)

Processing Core (many per chip)

Load-data into scratchpad (LD addr -> scratchpad addr)
Many fragments reuse data loaded into scratchpad once ***

*** Not in OpenGL/Direct3D shader programming model (under the hood optimization)
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Bandwidth is a critical resource
▪ Use available bandwidth well

– GPUs feature sophisticated memory request reordering logic
– Repack/reorder/interleave many buffered memory requests to maximize memory 

utilization

▪  Fetch data from memory less often (share/reuse data)
– Intra-fragment reuse
– Cross-fragment reuse
– Compression

▪ Request data less often (instead, do more math: it’s “free”)
– “arithmetic intensity” : ratio of math to data access
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Shading often has high arithmetic intensity
sampler	
  mySamp;

Texture2D<float3>	
  myTex;

float3	
  ks;

float	
  	
  shinyExp;

float3	
  lightDir;

float3	
  viewDir;

float4	
  phongShader(float3	
  norm,	
  float2	
  uv)

{

	
  	
  float	
  result;

	
  	
  float3	
  kd;

	
  	
  kd	
  =	
  myTex.Sample(mySamp,	
  uv);

	
  	
  float	
  spec	
  =	
  dot(viewDir,	
  2	
  *	
  dot(-­‐lightDir,	
  norm)	
  *	
  norm	
  +	
  lightDir);

	
  	
  result	
  =	
  kd	
  *	
  clamp(dot(lightDir,	
  norm),	
  0.0,	
  1.0);

	
  	
  result	
  +=	
  ks	
  *	
  exp(spec,	
  shinyExp);	
  

	
  	
  return	
  float4(result,	
  1.0);	
  	
  	
  

}

3 scalar "oat operations + 1 exp()
8 "oat3 operations + 1 clamp()
1 texture access (highlighted in red)

Vertex processing often has higher arithmetic intensity than 
fragment processing (less use of texturing)

Image credit: http://caig.cs.nctu.edu.tw/course/CG2007 
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Summary: workloads that run efficiently on a GPU’s 
programmable cores ...

▪ Have thousands of independent pieces of work
– Utilizes many ALUs on many cores
– Have much more parallel work than numbers of GPU ALUs, enabling large-scale 

interleaving as a mechanism to hide memory latency

▪ Are amenable to instruction stream sharing
– Maps to SIMD execution well

▪ Are compute-heavy: the ratio of math operations to memory access is high
– Not limited by memory bandwidth
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Modern GPU: heterogeneous many-core
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Pixel Blend
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Rasterizer

Work Scheduler
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(shared by all processors)On-chip storage for inter-stage queues

Fetch/Decode

Execution
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L1 texture 
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Texture 
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Logic

Homogeneous collection of throughput-optimized programmable processing cores
Augmented by #xed-function logic
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Readings
▪ E. Lindholm et al., NVIDIA Tesla: A Uni!ed Graphics and Computing Architecture. IEEE 

Micro, March 2008

(note: parts about non-graphics computing beginning on p49 not required)

▪ Not required, but recommended background on the origin of the modern 
programmable processor:
– E. Lindholm et al., A User Programmable Vertex Engine. SIGGRAPH 2001
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Projects
▪ Project proposals due Friday (11:59pm)

– Email documents to Kayvon
– I will review through them over the weekend

▪ Relevant literature surveys are due following Friday


