
Lecture 8:
The GPU Memory Hierarchy

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Last time
GPUs contain a collection of programmable processing cores: responsible for 
carrying out data-parallel stages of the graphics pipeline (vertex, fragment, 
primitive processing)
- Many processing cores
- SIMD execution
- Hardware support for large-scale multi-threading



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Last time: processing data

Now: moving data to processors



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Recall: “CPU-style” core

ALU

Fetch/Decode

Execution
Context

OOO exec logic

Branch predictor

Data cache
(a big one: several MB)



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

“CPU-style” memory hierarchy

CPU cores run efficiently when data is resident in cache
(caches reduce latency, provide high bandwidth)

ALU

Fetch/Decode

Execution
contexts

OOO exec logic

Branch predictor
25 GB/sec

to memory

L1 cache
(32 KB)

L2 cache
(256 KB)

L3 cache
(8 MB)

shared across cores

Processing Core (several per chip)



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

“GPU-style” memory hierarchy (data from NVIDIA GF100: “Fermi”)

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Execution
contexts
(128 KB)

Texture cache
(12 KB, read-only)

Scratchpad
or

L1 cache
(64 KB)

L2 cache
(768 KB)

shared across cores

~150-200 GB/sec
to memory

Processing Core (many per chip)

More cores, more ALUs, no large traditional cache hierarchy (use threads to tolerate latency)
Require high-bandwidth connection to memory



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Thought experiment
Task: element-wise multiplication of two vectors A and B

1. Load input A[i]
2. Load input B[i]
3. Load input C[i]
4. Compute A[i] × B[i] + C[i]
5. Store result into D[i] =

A

B

D

C
+

×

Less than 1% efficiency… but 6x faster than CPU!

Four memory operations (16 bytes) for every MUL-ADD
Radeon HD 5870 can do 1600 MUL-ADDs per clock
Need ~20 TB/sec of bandwidth to keep functional units busy



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Bandwidth limited!
If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for 
application developers on throughput-optimized systems.



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Bandwidth is a critical resource

▪ A high-end GPU (e.g., Radeon HD 5870) has...
- Over twenty times (2.7 TFLOPS) the compute performance of quad-core CPU
- No large cache hierarchy to absorb memory requests

▪ GPU memory systems are designed for throughput
- Wide memory bus (150-200 GB/sec)
- Still, this is only six-to-eight times the bandwidth available to CPU



Kayvon Fatahalian, Graphics and Imaging Architectures  
(CMU 15-869, Fall 2011)

Bandwidth is a critical resource
▪ Use available bandwidth well

▪  Fetch data from memory less often (share/reuse data)

▪ Request data less often (instead, do more math: it’s “free”)
– “arithmetic intensity” : ratio of math to data access



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Using available bandwidth well

384 bit memory bus

Memory (DDR5)

Memory controller

Memory request queue

sampler	  mySamp;
Texture2D<float3>	  myTex;
float3	  lightDir;

float4	  diffuseShader(float3	  norm,	  float2	  uv)
{
	  	  float3	  kd;
	  	  kd	  =	  myTex.Sample(mySamp,	  uv);
	  	  kd	  *=	  clamp(	  dot(lightDir,	  norm),	  0.0,	  1.0);
	  	  return	  float4(kd,	  1.0);	  	  	  
}

Processors generate memory requests



Kayvon Fatahalian, Graphics and Imaging Architectures  
(CMU 15-869, Fall 2011)

Bandwidth is a critical resource
▪ Use available bandwidth well

– GPUs feature sophisticated memory request reordering logic
– Repack/reorder/interleave many buffered memory requests to maximize memory 

utilization

▪  Fetch data from memory less often (share/reuse data)
– Intra-fragment reuse
– Cross-fragment reuse
– Compression

▪ Request data less often (instead, do more math: it’s “free”)
– “arithmetic intensity” : ratio of math to data access



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Scratchpad for reuse known at compile-time

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Execution
contexts
(128 KB)

Texture cache
(12 KB, read only)

Scratchpad
or

L1 cache
(64 KB)

Processing Core (many per chip)

Load-data into scratchpad (LD addr -> scratchpad addr)
Many fragments reuse data loaded into scratchpad once ***

*** Not in OpenGL/Direct3D shader programming model (under the hood optimization)



Kayvon Fatahalian, Graphics and Imaging Architectures  
(CMU 15-869, Fall 2011)

Bandwidth is a critical resource
▪ Use available bandwidth well

– GPUs feature sophisticated memory request reordering logic
– Repack/reorder/interleave many buffered memory requests to maximize memory 

utilization

▪  Fetch data from memory less often (share/reuse data)
– Intra-fragment reuse
– Cross-fragment reuse
– Compression

▪ Request data less often (instead, do more math: it’s “free”)
– “arithmetic intensity” : ratio of math to data access



Kayvon Fatahalian, Graphics and Imaging Architectures  
(CMU 15-869, Fall 2011)

Shading often has high arithmetic intensity
sampler	  mySamp;

Texture2D<float3>	  myTex;

float3	  ks;

float	  	  shinyExp;

float3	  lightDir;

float3	  viewDir;

float4	  phongShader(float3	  norm,	  float2	  uv)

{

	  	  float	  result;

	  	  float3	  kd;

	  	  kd	  =	  myTex.Sample(mySamp,	  uv);

	  	  float	  spec	  =	  dot(viewDir,	  2	  *	  dot(-‐lightDir,	  norm)	  *	  norm	  +	  lightDir);

	  	  result	  =	  kd	  *	  clamp(dot(lightDir,	  norm),	  0.0,	  1.0);

	  	  result	  +=	  ks	  *	  exp(spec,	  shinyExp);	  

	  	  return	  float4(result,	  1.0);	  	  	  

}

3 scalar "oat operations + 1 exp()
8 "oat3 operations + 1 clamp()
1 texture access (highlighted in red)

Vertex processing often has higher arithmetic intensity than 
fragment processing (less use of texturing)

Image credit: http://caig.cs.nctu.edu.tw/course/CG2007 



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Summary: workloads that run efficiently on a GPU’s 
programmable cores ...

▪ Have thousands of independent pieces of work
– Utilizes many ALUs on many cores
– Have much more parallel work than numbers of GPU ALUs, enabling large-scale 

interleaving as a mechanism to hide memory latency

▪ Are amenable to instruction stream sharing
– Maps to SIMD execution well

▪ Are compute-heavy: the ratio of math operations to memory access is high
– Not limited by memory bandwidth



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Modern GPU: heterogeneous many-core

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Command 
Processor

ZTest /
Pixel Blend

ZTest /
Pixel Blend

ZTest /
Pixel Blend

ZTest /
Pixel Blend

ZTest /
Pixel Blend

ZTest /
Pixel Blend

Tri Setup /
Rasterizer

Work Scheduler

L2 cache
(shared by all processors)On-chip storage for inter-stage queues

Fetch/Decode

Execution
contexts

Scratchpad/
L1 cache

L1 texture 
cache

Texture 
Filtering 

Logic

Homogeneous collection of throughput-optimized programmable processing cores
Augmented by #xed-function logic



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Readings
▪ E. Lindholm et al., NVIDIA Tesla: A Uni!ed Graphics and Computing Architecture. IEEE 

Micro, March 2008

(note: parts about non-graphics computing beginning on p49 not required)

▪ Not required, but recommended background on the origin of the modern 
programmable processor:
– E. Lindholm et al., A User Programmable Vertex Engine. SIGGRAPH 2001



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Projects
▪ Project proposals due Friday (11:59pm)

– Email documents to Kayvon
– I will review through them over the weekend

▪ Relevant literature surveys are due following Friday


