
Project 1: Particle System
The Animation of Natural Phenomena

Due 10/18

In this project you will implement a particle system with constraints. You must implement
at least the required features. You must also record a video artifact of your system in
action. The class will vote on the best artifacts, and the top three winners will receive
extra credit. Additionally, you may implement some of the listed extensions (or invent
your own!) for extra credit.

Be sure to check out great previous submissions from 2008, and 2010!

Skeleton Code:

You have been provided with some skeleton code which you may use to jump-start your
coding. Basically, the only thing the code does is move three particles around randomly,
and draw some (nominal) constraints and spring between them. This code does little
more than implement basic window management and graphics, but this stuff is very
annoying to do alone.

Required Features:

Your code must implement the following features:

• A generalized force structure. This is described in the slides. (If youʼre using the
skeleton code, you should replace delete_this_dummy_spring with a std::vector
of forces.) You must implement two subclass forces:

• GravityForce. Acts like gravity.
• SpringForce. A damped spring between two particle. Skeleton rendering code is

already provided.
• A generalized constraint structure. This is also described in the slides. (If youʼre

using the skeleton code, you should replace delete_this_dummy_rod and
delete_this_dummy_wire with a std::vector of forces.) You must implement at
least the following two subclasses:

• RodConstraint. Constrains two particles to be a fixed distance apart. (Rendering
code included in the skeleton.)

" " C(x1, y1, x2, y2) = (x1 - x2)2 + (y1 - y2)2 - r2

• CircularWireConstraint. Constrains a particle to be a fixed distance from some
point:

" " C(x, y) = (x - xc)2 + (y - yc)2! - r2

1

http://graphics.cs.cmu.edu/courses/15-869/
http://graphics.cs.cmu.edu/courses/15-869/
http://www.cs.cmu.edu/~15869-f10/
http://www.cs.cmu.edu/~15869-f10/

• Mouse interaction. When the user clicks and drags the mouse, a spring force should
be applied between the mouse position and the given particle to make your system
interactive.

• Several Numerical Integration Schemes (Simulators). The integration scheme
should be selectable at runtime with keystrokes or some other interaction paradigm.
You will find this easiest if you implement a pluggable integration architecture as
described in the slides. The minimum integration schemes are:

• Euler
• Runge-Kutta 2
• Runge-Kutta 4

Optional Features:

You demo must be able to turn each of these features on and off individually so they
can be verified.

• ★ Verlet Integrator. See here.
• ★ Leapfrog Integrator. Evaluates position and velocity at different times. See here

for more details.
• ★ Symplectic Integrator. As described in class. Compute the positions explicitly and

velocities implicitly. (No need for a solver.)
• ★★ Collisions with the Walls. Particles should bounce off the walls and floor.
• ★★ Collisions with other Particles. Particles bounce off each other.
• ★★★ Angular Springs. Pulls a triplet of particles so that their subtending angle

approaches some rest angle.
• ★★★★ Angular Constraints. Like angular springs, but the angle is actually

constrained.
• ★★★ 3D. Implement and render this algorithm in 3D.
• ★★★ 2D Cloth. Create a rectangular network of particles with appropriate springs

holding it together. Which spring configurations work best, which donʼt work?
• ★★★★ Implicit Integration. In order to implement the linear solver, you can use the

linearSolver.* code in the skeleton code. (Note that it must be added to the makefile
before you can use it.) See the course notes here.

• ★★★★ 3D Cloth.
• ★★★★★ 3D Cloth with collisions
• ★★★★★★ Hair with collisions.

2

http://en.wikipedia.org/wiki/Verlet_integration
http://en.wikipedia.org/wiki/Verlet_integration
http://einstein.drexel.edu/courses/Comp_Phys/Integrators/leapfrog/
http://einstein.drexel.edu/courses/Comp_Phys/Integrators/leapfrog/

Deliverables:

Code. At 11:59:59 on the due date, you must submit zip file or tarball of the code that
builds on the instructional Linux system. The code must be mailed to me at
treuille@cs.cmu.edu with “Project 1 Submission” in the subject line. The code must be
directly included in the e-mail (no Dropbox or USendIt).

Readme. The code should include a readme.txt stating how to run your program, listing
any special features or instructions, and clearly identifying parts of assignment which
were not completed, if any.

Demo. After the due date, if you like, you may schedule a meeting with Jeehyung to
demo your project to show of any special features.

Artifact. You must submit a video of your system in action. Videos can be implemented
in several ways. Usually the starting point is to dump frames (by hitting ʻdʼ in the
skeleton implementation). These frames can be coalesced into a movie using several
software packages (ImageMagick and ffmpeg on Linux, Quicktime Pro on Mac, and
VirtualDub on Windows). Alternatively, you can use one of the new screen capture
programs that are all the rage these days.

3

mailto:treuille@cs.cmu.edu
mailto:treuille@cs.cmu.edu

Further explanation of J and ∂J / ∂t (also known as J):

∂J / ∂t is the time derivative of the gradient matrix J of your constraints. For example if
you had constraint:

" C(x,y) = sin(x) + cos(y) - 1

then the gradient matrix would be:

" J = [cos(x), -sin(y)]

and its time derivative would be:

" ∂J / ∂t = [-sin(x) ∂x / ∂t, -cos(x) ∂y / ∂t].

x1

x2

x4

C
1

C2

C3

x3

C4

�

⇧⇧⇧⇤

dc1
dx1
dc2
dx1

dc2
dx2
dc3
dx2

dc3
dx4

dc4
dx1

dc4
dx3

⇥

⌃⌃⌃⌅

�

⇧⇧⇧⇧⇤

dc1
dx1

T dc2
dx1

T dc4
dx1

T

dc2
dx2

T dc3
dx2

T

dc4
dx3

T

dc3
dx4

T

⇥

⌃⌃⌃⌃⌅

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

1/w1

1/w1

1/w2

1/w2

1/w3

1/w3

1/w4

1/w4

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

J
Each dc/dx entry in this
matrix is a row vector.

JT

Each dc/dxT entry in this
matrix is a column vector.

W
Each entry in this matrix is

a scalar.

This example has four particles and four constraints.

(That they be the same number is a coincidence.)

The matrix product JWJT can be computed by first

multiplying by JT, then multiplying by the inverse

mass matrix W, then finally multiplying by J. This

gives you the right hand side of the equation:

Note that none of these matrices need be computed

explicitly. Instead, compute the J and JT matrices by

iterating over the constraints and performing

multiplies only for affected particles. Compute the

inverse mass matrix by diving by the mass of each

particle. This entire procedure can be wrapped into an

implicit_matrix, then solved using the linear solver

provided with the code package.

JWJT � = J̇q̇� JWQ� ksC� kdĊ

4

Analytic or Numerical Derivatives:

Derivatives (i.e. gradients) should be computed analytically, not numerically. So there's
no ε step approximaton. For example, your constraint abstract base class could have
an abstract function of the form:

gradient(double dCdX[3]) = 0;

You should return the exact derivative. For example if your constraint is that the particle
lie on a plane C(X) = dot(x, n) - p then the derivative would be dCdX(x) = n:

void PlaneConstraint::gradient(double dCdX[3]) {
! dCdX[0] = this->n[0];
! dCdX[1] = this->n[1];
! dCdX[2] = this->n[2];
}

Note that the constraint class is computing the exact derivative. This information would
then be used as in the following pseudocode:

double dCdX[3];
for (int constraint_index = 0 ; constraint_index <
nconstraints ; ++constraint_index) {
! OneParticleConstraint * c = constraints[constraint_index];
! c->gradient(dCdX);
! constraint_jacobian->add_gradient(
! ! constraint_index,
! ! c->get_particle_index(),
! ! dCdX);!
}

Note that this is just an example, and many variations are possible, including replace
the 3-length double arrays with gfx vector classes, etc.

How to “Pin” Particles:

If you are trying to "pin" a particle to be at point (a, b), you can just flag the particle
rather than using constraints. Then at each timestep, set the particle's position to (a, b)
and it's velocity and forces both to (0, 0). It can be shown that this is exactly equivalent
to the pair of constraints:

" C1(x) = x - a
" C2(x) = x - b

5

You should especially not use the bead on a wire constraint with radius r=0, because
this constraint will have a gradient discontinuity precisely where's it's satisfied, which is
a bad thing, numerically.

(Note that if you do this, you can’t apply any other constraints to this particle, but why
would you want to?)

6

