Particle Fluids

Adrien Treuille

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

Particle Model

Properties

- Position X
- Velocity v
- Mass m
 - Density ρ

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

Fluid Behavior

Gravity

Resistance to Compression

Viscosity

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

$$m\dot{\mathbf{v}} = \mathbf{f}$$

$$\rho \dot{\mathbf{v}} = \mathbf{f}$$

$$\rho \dot{\mathbf{v}} = \mathbf{f}$$

Gravity

Resistance to Compression

Viscosity

$$ho\dot{\mathbf{v}} = \mathbf{f}_{\mathrm{gravity}} + \mathbf{f}_{\mathrm{pressure}} + \mathbf{f}_{\mathrm{viscosity}}$$

Gravity

Resistance to Compression

Viscosity

$$ho\dot{\mathbf{v}} = \mathbf{f}_{\mathrm{gravity}} + \mathbf{f}_{\mathrm{pressure}} + \mathbf{f}_{\mathrm{viscosity}}$$

Gravity

Resistance to Compression

Viscosity

Gravity

$$\mathbf{f}_{\mathrm{gravity}} = \rho \mathbf{g}$$

$$ho\dot{\mathbf{v}} = \mathbf{f}_{\mathrm{gravity}} + \mathbf{f}_{\mathrm{pressure}} + \mathbf{f}_{\mathrm{viscosity}}$$

Gravity

Resistance to Compression

Viscosity

Pressure

Viscosity

 How do we drive the fluid velocity to be like its neighbors?

• Use a spring!

$$\mathbf{f}_{ ext{viscosity}} \propto \mathbf{v}_{ ext{neighborhood}} - \mathbf{v}$$

• What is this?

Viscosity

$$\mathbf{v}(x - \Delta x) \longrightarrow \mathbf{v}(x) \longrightarrow \mathbf{v}(x + \Delta x)$$

$$\mathbf{v}_{\text{neighborhood}}^{(1D)} \approx \frac{1}{2}\mathbf{v}(x - \Delta x) + \frac{1}{2}\mathbf{v}(x + \Delta x)$$

$$\mathbf{v}_{\text{neighborhood}}^{(2D)} \approx \frac{1}{4}\mathbf{v}(x - \Delta x) + \frac{1}{4}\mathbf{v}(x + \Delta x) + \frac{1}{4}\mathbf{v}(x - \Delta y) + \frac{1}{4}\mathbf{v}(x + \Delta y)$$

$$\mathbf{f}_{ ext{viscosity}} \propto \mathbf{v}_{ ext{neighborhood}} - \mathbf{v}_{ ext{viscosity}}$$

• What is this?

Viscosity

By Substitution...

$$f_{ ext{viscosity}} \propto \frac{1}{2} \mathbf{v}(x - \Delta x) + \frac{1}{2} \mathbf{v}(x + \Delta x) - \mathbf{v}$$

$$f_{\text{viscosity}} \propto \mathbf{v}(x - \Delta x) + \mathbf{v}(x + \Delta x) - 2\mathbf{v}$$

Taking Limits...

$$f_{\text{viscosity}} = \mu \nabla^2 \mathbf{v}$$

Navier-Stokes

$$\rho \dot{\mathbf{v}} = \rho \mathbf{g} - \nabla p + \mu \nabla^2 \mathbf{v}$$

Gravity

Resistance to Compression

Viscosity

Navier-Stokes

$$\rho \dot{\mathbf{v}} = \rho \mathbf{g} - \nabla p + \mu \nabla^2 \mathbf{v}$$

How do we evaluate these quantities using a particle system?

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

Kernel Functions

$$W(\mathbf{r})$$
 or $W(\mathbf{r},h)$

- Properties:
 - Symmetric:
 - Finite Support:
 - Flat at center:
 - Normalized:

$$W(\mathbf{x}) = W(-\mathbf{x})$$

$$W(\mathbf{x}) = 0 \ \forall ||x|| > h$$

$$\nabla W(0) = 0$$

$$\nabla W(0) = 0$$
$$\int W(\mathbf{x}) d\mathbf{x} = 1$$

Kernel

KernelGradient LengthLaplacian

Interpolation

For a physical quantity A:

$$A_{S}(\mathbf{r}) = \sum_{j} m_{j} \frac{A_{j}}{\rho_{j}} W(\mathbf{r} - \mathbf{r}_{j}, h),$$
 kernel density kernel width

Example, density:

$$\rho_S(\mathbf{r}) = \sum_j m_j \frac{\rho_j}{\rho_j} W(\mathbf{r} - \mathbf{r}_j, h)$$

What About

Function:

$$A_{S}(\mathbf{r}) = \sum_{j} m_{j} \frac{A_{j}}{\rho_{j}} W(\mathbf{r} - \mathbf{r}_{j}, h),$$

Gradient:

$$\nabla A_S(\mathbf{r}) = \sum_j m_j \frac{A_j}{\rho_j} \nabla W(\mathbf{r} - \mathbf{r}_j, h)$$

Laplacian:

$$\nabla^2 A_S(\mathbf{r}) = \sum_j m_j \frac{A_j}{\rho_j} \nabla^2 W(\mathbf{r} - \mathbf{r}_j, h).$$

For One Particle:

$$p_j = \kappa(\rho_j - \overline{\rho})$$

pressure force = $-\nabla p(\mathbf{r})$

Spatial Pressure Evaluation:

But wait... is this symmetric?

$$-\nabla p(\mathbf{r}) = \sum_{j} p_{j} \nabla W(\mathbf{r} - \mathbf{r}_{j})$$

$$-\nabla p(\mathbf{r}) = \sum_{j} p_{j} \nabla W(\mathbf{r} - \mathbf{r}_{j})$$

$$f_A =$$

$$-\nabla p(\mathbf{r}) = \sum_{j} p_{j} \nabla W(\mathbf{r} - \mathbf{r}_{j})$$

$$f_A = -p_A \nabla W(0)$$

$$-\nabla p(\mathbf{r}) = \sum_{j} p_{j} \nabla W(\mathbf{r} - \mathbf{r}_{j})$$

$$f_A = -p_A \nabla W(0) - p_B \nabla W(-d_1)$$

$$-\nabla p(\mathbf{r}) = \sum_{j} p_{j} \nabla W(\mathbf{r} - \mathbf{r}_{j})$$

 $f_A = -p_A \nabla W(0) - p_B \nabla W(-d_1) - p_C \nabla W(-d_1-d_2)$

$$-\nabla p(\mathbf{r}) = \sum_{j} p_{j} \nabla W(\mathbf{r} - \mathbf{r}_{j})$$

$$f_A = -p_A \nabla W(0) - p_B \nabla W(-d_1) - p_C \nabla W(-d_1-d_2)$$

$$f_B = -p_A \nabla W(d_1) - p_B \nabla W(0) - p_C \nabla W(-d_2)$$

$$f_C = -p_A \nabla W(d_1 + d_2) - p_B \nabla W(d_2) - p_C \nabla W(0)$$

$$-\nabla p(\mathbf{r}) = \sum_{j} p_{j} \nabla W(\mathbf{r} - \mathbf{r}_{j})$$

$$f_A = -p_A + (0) - p_B \nabla W(-d_1) - p_C \nabla W + (-d_2)$$

$$f_B = -p_A \nabla W(d_1) - p_P \nabla W(-d_2)$$

$$f_C = -p_A V + (d_2) - p_B \nabla W(d_2) - p_C + (0)$$

$$-\nabla p(\mathbf{r}) = \sum_{j} p_{j} \nabla W(\mathbf{r} - \mathbf{r}_{j})$$

$$f_A = -p_A = -p_B \nabla W(-d_1) - p_C \nabla W = -d_2$$

$$f_B = -p_A \nabla W(d_1) - p_B \nabla W(-d_2)$$

$$f_C = -p_A V + (1+d_2) - p_B \nabla W(d_2) - p_C + (0)$$

$$g_1 = -\nabla W(-d_1)$$
 $g_2 = -\nabla W(-d_2)$

$$-\nabla p(\mathbf{r}) = \sum_{j} p_{j} \nabla W(\mathbf{r} - \mathbf{r}_{j})$$

$$f_A = p_B g_1$$

$$f_B = -p_A g_1 + p_C g_2$$

$$f_C = -p_B g_2$$

$$\neq 0$$

$$g_1 = -\nabla W(-d_1) \quad g_2 = -\nabla W(-d_2)$$

$$-\nabla p(\mathbf{r}_i) = \sum_{j} \frac{p_i + p_j}{2} \nabla W(\mathbf{r}_i - \mathbf{r}_j)$$

$$f_A = \frac{1}{2}(p_A + p_B)g_1$$

$$f_B = -\frac{1}{2}(p_A + p_B)g_1 + \frac{1}{2}(p_B + p_C)g_2$$

$$= 0$$

$$f_C = -\frac{1}{2}(p_B + p_C)g_2$$

$$g_1 = -\nabla W(-d_1) \quad g_2 = -\nabla W(-d_2)$$

$$\mathbf{f}_{i}^{\text{viscosity}} = \mu \nabla^{2} \mathbf{v}(\mathbf{r}_{a}) = \mu \sum_{j} m_{j} \frac{\mathbf{v}_{j}}{\rho_{j}} \nabla^{2} W(\mathbf{r}_{i} - \mathbf{r}_{j}, h).$$

Symmetrization:

$$\mathbf{f}_{i}^{\text{viscosity}} = \mu \sum_{j} m_{j} \frac{\mathbf{v}_{j} - \mathbf{v}_{i}}{\mathbf{\rho}_{j}} \nabla^{2} W(\mathbf{r}_{i} - \mathbf{r}_{j}, h).$$

Spring that pulls the particle towards the velocity of it's neighbors.

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

Rendering

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

Example

Comparison

SPH

Grid-based

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

- Smoothed Particle Hydrodynamics (SPH)
 Basics
- Fluid Behavior
- The Navier-Stokes Equations
- SPH Simulation
- Rendering
- Results
- Questions

Questions

- Which phenomena does the grid-based method capture better? Why?
- Which phenomena does SPH capture better? Why?
- Which do neither capture? (How could we?)
- How could we turn our SPH simulator into a grid-based simulator?

-SPH simulation

- seems to represent turbulent flows a little better (g3)
 - small groups of particles (g2)
 - "rough" flows (g2)
 - sprays, splashes (g1) (g4)
- better for splashing (g2)
- better for water (g2)
- flow is kind of bumpy
 - does not settle to an attractive rest state (g1)

- grid-based simulation

- seems to be much smoother (g3)
- fewer "damping" artifacts (g3)
 - the surface seems to "settle down" more slowly (g3)
- the grid based method "looses less detail" (g3)
- worse for splashing (g2)
- good for "smoother fluids" (g2) (g1) (g4)
 - easier to render (?) (g4)
- allow for larger timesteps (g2)
- must be confined to a boundary (g2)

- neither

- bubbles (g2) (g1)

- possible

- how could we combine the two?! (g1) (g4)
 - use grid based methods to get a continuous surface, but use SPH to get small particles, etc.