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Beyond Points and Springs

You can make just about anything out of point
masses and springs, in principle

In practice, you can make anything you want
as long as it’s jello

Constraints will buy us:
— Rigid links instead of goopy springs
— Ways to make interesting contraptions



A bead on a wire

e Desired Behavior:

— The bead can slide freely
along the circle

— It can never come off,
however hard we pull

e Question:

— How does the bead move
under applied forces?



Penalty Constraints

- = | * Why not use a spring to hold the
I bead on the wire?

e Problem:

- _
g ’ — Weak springs = goopy
O constraints

— Strong springs = neptune
express!

o A classic stiff system



Now for the Algebra ...

Fortunately, there’s a general recipe for
calculating the constraint force

First, a single constrained particle

Then, generalize to constrained particle
systems



Representing Constraints

I. Implicit:
Cx)=[x|-r=0

11-circle




Maintaining Constraints Differentially

e Start with legal position
and velocity.

e Use constraint forces to
ensure legal curvature.

C =0 legal position

¢ =0 legal velocity

& =0 legal curvature




Constraint Gradient

Implicit:

Cx)=|x|-r=0

Differentiating C gives
a normal vector.

This is the direction
our constraint force

will point in.



Constraint Forces

AN

|

Constraint force: gradient
vector times a scalar A

Just one unknown to solve
for

Assumption: constraint is
passive —no energy gain or

. loss
-circle




Constraint Force Derivation

C(x(1)) £ - AN
¢=N-k
a e
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20 Constraint force is AN.

: 0
Notation: N =—C,]‘£? =
0x 0x0t




Example: Point-on-circle

C=|x|-r - Write down the constraint
N 0C equation.

Tox x| ¢ | Take the derivatives.
N = 0-C _ 1| XX Substitute into generic

oxot |x/|° XX / template, simplify.

Nx Nf | (xx)?
N'N NN _|™ xx

-m(x-x) -xf




Tinkertoys

 Now we know how to simulate a bead on a wire.

 Next: a constrained particle system.

— E.g. constrain particle/particle distance to make
rigid links.

e Same idea, but...



: 3n X 3n diagonal mass

s =%

: M-inverse (element- wise

Compact Particle System Notation

q=WQ

3n-long state vector.

3n-long force vector.
matrix.

reciprocal)




- Solving for the Constraint Force -
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Bead on a Wire

General Case



Force Must be a Linear Combination
of Constraint Graidntes

| Bead on aWire General Case



Final Solution for the A Multipliers
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Particle System Constraint Equations

Matrix equation for A
[J WJT}}\ — _Jq _ [JW}Q More Notation

Constrained Acceleration

q=WQ+J\

Derivation: just like bead-on-wire.




Drift and Feedback

e In principle, clamping C at zero is enough

e Two problems:

— Constraints might not be met initially

— Numerical errors can accumulate
A feedback term handles both problems:

C=- aC- ISC, instead of

C=0

a. and 3 are magic constants.




How do you implement all this?

* We have a global matrix equation.

* We want to build models on the fly, just like
masses and springs.

 Approach:

— Each constraint adds its own piece to
the equation.



Matrix Block
Structure

Each constraint
contributes one or more
blocks to the matrix.

Sparsity: many empty
blocks.

Modularity: let each
constraint compute its
own blocks.

Constraint and particle
indices determine block
locations.



Global and Local



Constraint Structure

Each constraint ) >
must know how dC  0C 0°C  0°C

to compute these g g x| 0x, fl 0x10t 0X,0t

X
Distance Constraint
- C = ‘Xl = Xz‘ -

m



Constrained Particle Systems
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Added Stuff




. .l Modified Deriv Eval Loop

nog ---u
Clear Force Apply forces

Accumulators

Added Step

clc Clp

Compute and apply
Return to solver Constraint Forces

X

\
f




Constraint Force Eval
 After computing ordinary forces:

— Loop over constraints, assemble
global matrices and vectors.

— Call matrix solver to get A, multiply
by J' to get constraint force.

— Add constraint force to particle
force accumulators.



Impress your Friends

The requirement that constraints not add or
remove energy is called the Principle of

Virtual Work.

The A\’s are called Lagrange Multipliers.

The derivative matrix, J, is called the
Jacobian Matrix.



