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SG1

Differential Constraints

Beyond Points and Springs

• You can make just about anything out of point 
masses and springs, in principle

• In practice, you can make anything you want 
as long as it’s jello

• Constraints will buy us:

– Rigid links instead of goopy springs

– Ways to make interesting contraptions

A bead on a wire

• Desired Behavior:

–The bead can slide freely 
along the circle

– It can never come off, 
however hard we pull

• Question:

–How does the bead move 
under applied forces?

Penalty Constraints

• Why not use a spring to hold the 
bead on the wire?

• Problem:

– Weak springs ⇒ goopy 
constraints

– Strong springs ⇒ neptune
express!

• A classic stiff system
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The basic trick (f = mv version)

• 1st order world.

• Legal velocity: tangent to 
circle (N·v = 0)

• Project applied force f onto 
tangent: f’ = f + fc

• Added normal-direction 
force fc: constraint force

• No tug-of-war, no stiffness

N f

fc

f’

f c =  - 
f ⋅N

N⋅N
N f ′ =  f + f c

f = ma • Same idea, but…

• Curvature (κ) has to match.

• κ depends on both a and v: 

– the faster you’re going, the 
faster you have to turn

• Calculate fc to yield a legal 
combination of a and v

• Not as simple! 

f

v

κ

fc
f’

N

Now for the Algebra …

• Fortunately,  there’s a general recipe for 
calculating the constraint force

• First, a single constrained particle

• Then, generalize to constrained particle 
systems

Representing Constraints

x = r cos θ,sin θ

I. Implicit:

II. Parametric:

C(x) = x  - r = 0

Point-on-circle
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Maintaining Constraints Differentially

• Start with legal position 
and velocity.

• Use constraint forces to 
ensure legal curvature.

0   legal position

0   legal velocity

0   legal curvature

C

C

C

=

=

=

&

&&

0C =

0C =&&

0C =&

Constraint Gradient

Implicit:

C(x) = x  - r = 0

Differentiating C gives 
a normal vector.

This is the direction 
our constraint force 
will point in.

Point-on-circle

C
N

x

∂
=
∂

C(x) = x  - r = 0

Constraint Forces

Constraint force: gradient 
vector times a scalar λ

Just one unknown to solve 
for

Assumption:  constraint is 
passive—no energy gain or 
loss  

Point-on-circle

cf Nλ=

Constraint Force Derivation

Set C = 0,  solve for λ:¨

Constraint force is λN.2

Notation: ,
C C

N N
x x t

∂ ∂
= =
∂ ∂ ∂

&

( )

C N x

C N x
t

N x N x

= ⋅

∂
= ⋅
∂

= ⋅ + ⋅

& &

&&

& & &&

cf f
x

m

+
=&&

cf Nλ=( )( )C x t

N x N f
m
N N N N

λ
⋅ ⋅

= − −
⋅ ⋅

& &
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Example: Point-on-circle

Write down the constraint 
equation.

Take the derivatives.

Substitute into generic 
template, simplify.

C = x - r

N = 
∂C

∂x
 = x

x

N = 
∂2C

∂x∂t
 = 1

x
 x - 

x⋅x
x⋅x

x

λ = -m
N⋅x

N⋅N
 - 

N⋅f

N⋅N
 = m

( )x⋅x 2

x⋅x
 - m( )x⋅x   - x⋅f   1

x
  

Drift and Feedback

• In principle, clamping     at zero is enough

• Two problems: 

– Constraints might not be met initially

– Numerical errors can accumulate

• A feedback term handles both problems:

C = - αC - βC,  instead of

C = 0

C

α and β are magic constants.

Tinkertoys

• Now we know how to simulate a bead on a wire.

• Next: a constrained particle system.

–E.g. constrain particle/particle distance to make 
rigid links.

• Same idea, but…

Constrained particle systems

• Particle system: a point in state space.

• Multiple constraints:

– each is a function Ci(x1,x2,…)

– Legal state: Ci= 0, ∀ i.

– Simultaneous projection.

– Constraint force:  linear combination of 
constraint gradients.

• Matrix equation.
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Compact Particle System Notation

q: 3n-long state vector.

Q: 3n-long force vector.

M: 3n x 3n diagonal mass 
matrix.

W: M-inverse (element- wise 
reciprocal)

q  = x1,x2, ,xn

Q  = f1,f2, ,fn

M = 

m1

m1

m1

mn

mn

mn

 

 W  = M-1

 

 q = WQ 

Particle System Constraint Equations

 
 C = C1,C2, ,Cm  

λ = λ1,λ2, ,λm

J = 
∂C

∂q

J = 
∂2C

∂q∂t

 q = W Q + JTλ  

Matrix equation for λ

Constrained Acceleration

More Notation

Derivation: just like bead-on-wire.

 JWJT λ = -Jq - JW Q 

How do you implement all this?

• We  have a global matrix equation.

• We want to build models on the fly, just like 
masses and springs.

• Approach:

– Each constraint adds its own piece to 
the equation.

Matrix Block 
Structure

C

x i

x j

J

• Each constraint 
contributes one or more 
blocks to the matrix.

• Sparsity: many empty 
blocks.

• Modularity:  let each 
constraint compute its 
own blocks.

• Constraint and particle 
indices determine block 
locations.

∂C

∂x i

∂C

∂x j
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Solving for the Constraint Force

Bead on a Wire General Case



Force Must be a Linear Combination 
of Constraint Graidntes

Bead on a Wire General Case



Final Solution for the λ Multipliers

Bead on a Wire General Case
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Global and Local

C 

 λ  fc 

x

v

f
m

x

v

f
m

Constraint

Global Stuff

J J&

C&

Constraint Structure

x

v

f

m

x

v

f
m

p2

p1

C = x1 - x2  - r

 
∂C

∂x1

, 
∂C

∂x2

  
∂2C

∂x1∂t
, 
∂2C

∂x2∂t
 

 C  C 

Distance Constraint

Each constraint
must know how
to compute these

Constrained Particle Systems

x

v

f

m

x

v

f

m

…

x

v

f

m

particles n time forces nforces

… FFF F F

consts nconsts

CCCCC …

Added Stuff

Modified Deriv Eval Loop

… FFF F F

Clear Force
Accumulators

Apply forces

x

v

f

m

x

v

f

m

…

x

v

f

m

x

v

f
m

x

v

f
m

…

x

v

f
m

Return to solver

1

2

4
CCCCC …

Compute and apply
Constraint Forces

3

Added Step
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SG7

Constraint Force Eval

• After computing ordinary forces:

– Loop over constraints, assemble 

global matrices and vectors.

– Call matrix solver to get λ, multiply 

by     to get constraint force.

– Add constraint force to particle 

force accumulators.

JT

Impress your Friends

• The requirement that constraints not add or 

remove energy is called the Principle of 

Virtual Work.

• The λ’s are called Lagrange Multipliers.

• The derivative matrix, J, is called the

Jacobian Matrix.    

A whole other way to do it.

x = r cos θ,sin θ

I. Implicit:

II. Parametric:

C(x) = x  - r = 0

Point-on-circle

θ

x

Parametric Constraints

x = r cos θ,sin θ

Point-on-circle

θ

x

• Constraint is always 
met exactly.

• One DOF: θ.

• Solve for   .θ

Parametric:
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