The Conjugate Gradient Method
15-867: The Animation of Natural Phenomena

R We often see linear systems (Ax=b), which are
i

* sparse,

We could solved this with
Guassian Elimination, for
example, but a much better idea
is the Conjugate Gradient
method, which only requires
matrix multiplies.
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Using this generalized dot product (<x,y>,), we can
create a basis P which is orthonormal under the dot
product:

M PIAP=1I
but, recall that we wanted to solve the following
equation:

2 Ax=b

the first step is to multiply (2) by P’
3) PTAx=P'b

the create a new variable y such that

4 x=Py

« symmetric, and
» positive definite.
An example is the linearized implicit update step.
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Substituting (1) and (4) into (3) we get:
) PTAPy=y=P'b
which allows us to solve for x

6 Xx=Py=PPb

The key to the conjugate gradient method is to
build up a sequence of bases P,, P,, ... one vector
at a time (orthonormalizing each new vector to

ensure PiTA P.=1), and solve for successive
approximations to x,, X,, ... —x by using
equation (6):xi=Pl.Pin



