The Conjugate Gradient Method

15-867: The Animation of Natural Phenomena

We often see linear systems (Ax=b), which are

- sparse,
- symmetric, and
- positive definite.

An example is the linearized implicit update step.

We could solved this with Guassian Elimination, for example, but a much better idea is the Conjugate Gradient method, which only requires matrix multiplies.

The ordinary dot product

<x,y> = x^Ty is symmetric, positive definite, and linear in both it's arguments.

...and so is this generalized dot product:

 $\langle x,y \rangle_A = x^T Ay$ (You can check!)

Using this generalized dot product $(\langle x,y\rangle_A)$, we can create a basis P which is orthonormal under the dot product:

$$(1) \quad P^T A P = I$$

but, recall that we wanted to solve the following equation:

$$(2) \quad Ax = b$$

the first step is to multiply (2) by P^T

$$(3) \quad P^T A x = P^T b$$

the create a new variable y such that

$$(4) \quad X = Py$$

Substituting (1) and (4) into (3) we get:

(5)
$$P^TAPy = y = P^Tb$$

which allows us to solve for x

(6)
$$x = Py = PP^Tb$$

The key to the conjugate gradient method is to build up a sequence of bases P_1, P_2, \ldots one vector at a time (orthonormalizing each new vector to ensure $P_i^T A P_i = I$), and solve for successive approximations to $x_1, x_2, \ldots \rightarrow x$ by using equation (6): $x_i = P_i P_i^T b$