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1.1 Motivation

Suppose we come across the following problem:

Input. G = (V,E,W ), with |E| >> |V |.

Output. H = (V,E′,W ′), with |E′| ≈ |V |.

In words, our problem is:

Given a dense weighted graph G = (V,E,W ), how to find a weighted graph H = (V,E′,W ′) on the same
vertex set such that H is similar to G?

By now, the problem is not specific at all, as we haven’t figured out the meaning of similar. Here are two
possible answers:

Answer 1. We want the similarity to be cut-preserving, which is for every S ⊆ V ,∑
i∈S,j /∈S

wij ≈
∑

i∈S,j /∈S

w′ij .

Answer 2. We want the similarity to be spectral-preserving,, which is

(1− ε)LG � LH � (1 + ε)LG.

Here L is for the Laplacian of a graph, and the notation � is from the following definition:

Definition 1.1 (Loewner Order)

For symmetric n× n matrices A and B, we say A � B, if B −A is positive semidefinite, i.e.

∀x ∈ Rn, xTAx ≤ xTBx.

Exercise. Show that spectral-preserving implies cut-preserving.

The exercise above implies we can focus on the study of Answer 2 and forget about Answer 1.

1.2 Random Edge Sampling

The very basic idea is to take a random sampling of the edges of E with respect to G. If we can sample it
well such that (E′,W ′) is attained as the mean (expectation), and if we can also prove some kind of tight
concentration, then we may claim that our random algorithm is successful.
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Let’s say we take each edge ei from E with probability pi (picking edges independently seems reasonable).
Definitely,

∑m
i=1 pi = 1 and pi ≥ 0, where |E| = m. Since E(sample) = (E,W ) is wanted, we return w′i = wi

ei
when ei gets picked.

Suppose we have a bunch, say k, of samples. Then a natural thing to do is to take the average of the k
Laplacians as the Laplacian of G′. Now our concern is how well G′ can approximate G. Definitely, we need
some concentration results, and the following Ahlswede-Winter theorem is the right thing:

Theorem 1.2 (Ahlswede-Winter)

Let Y1, Y2, · · · , Yk be a sequence of i.i.d random variables with outcomes being a set Ω of symmetric semidef-
inite n× n matrices. If E(Yi) = Z and Yi � µZ for every i and every possible Yi from Ω, then

P

(
(1− ε)Z �

k∑
i=1

Yi
k
� (1 + ε)Z

)
≥ 1− 2ne

ε2k
4µ .

We shall use Eij for the matrix with a 1 at (i, j) entry and 0’s everywhere else. Let’s see some examples:

Example 1. Set Z = In (n × n identity matrix). Pick i ∈ {1, 2, · · · , n} uniformly at random and return
Y = nEi, then

E(Y ) = E1 + · · ·+ En = In = Z.

It is easily seen that the best dominating constant µ = n, as nIn exactly dominates nEi. Thus, by Ahlswede-
Winter theorem,

P := P

(
(1− ε)Z �

k∑
i=1

Yi
k
� (1 + ε)Z

)
≥ 1− 2ne

ε2k
4n .

If we ask for P ≥ 1 − 2
n , then k = c′n log n works, where c′ = 8

ε2 . Thus, taking a series of ∼ n logn
ε2 samples

is plausible.

Example 2. Set Z = LG for some graph G. Take Hij = He := Eii + Ejj − Eij − Eji, which is the
unit Laplacian for a single edge. Then L =

∑
e∈E(G) weHe and we assume we = 1 hence the graph is

unit-weighted.

Now let’s try picking each edge uniformly at random and return mHe as Y , where m is the number of edges
in G. Then E(Y ) = LG, by linearity.

Exercise. Show that He ≤ µLG if and only if µ ≥ ERe, here ER is for the effective resistance.

According to the exercise above, we see that µ = e suffices as we assumed G to be unit-weighted. Thus, by
the same analysis as in Example 1, we conclude that k = Oε(m logm) works. Note that we generate our
graph G′ with Θ(m logm) edges, which is reasonably sparse.

In fact, we see that Example 2 is basically the general case, modulo the actual weights of our graph. For
a weighted graph, a first observation is that picking edges uniformly at random is probably not good.

Suppose we choose edge e with probability pe, then we return Y = we
pe
He such that E(Y ) = LG. Now we

need µ such that we
pe
He � µLG, which is equivalent to

µ ≥ weERe
pe

(*)

for every e ∈ E, by the Exercise.

Now the following result of Foster gives us the correct pe to optimize µ:
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Theorem 1.3 (Foster)

In a simple weighted graph G = (V,E,W ), ∑
e∈E

weERe = n− 1,

where we is the weight of edge e and ERe is the effective resistance corresponding to edge e.

If G is a unit-weighted tree, then Foster’s theorem is obviously true. The proof will be given later.

Due to Foster’s theorem, we choose pe = weERe
n−1 to optimize µ. Then (∗) shows µ ≥ n − 1, hence µ = n

works for our purposes. Ahlswede-Winter theorem implies that an Oε(n log n)-sampling gives us a good
concentration, hence a likely graph sparsifier. We sum it up as below:

Theorem 1.4 (Spectral Sparsifier)

If H is obtained from G by sampling proportional to ERe Oε(n log n) times, then with high probability,

(1− ε)LG � LH � (1 + ε)LG.

1.3 Questions

So far we have the following questions:

Question 1. Can we find spectral graph sparsifiers with linear many edges?

Question 2. Can we find O(n log n) spectral graph sparsifiers with a quick algorithm?

Question 3. Do we need the exact effective resistances for each edge?

Question 4. How to prove Ahlswede-Winter theorem?

Question 5. How to prove Foster’s theorem?

In fact, the answers for Question 1 and Question 2 are both YES. But we will not go into the discussion
for these topics in the class.

For Question 4 and Question 5, we shall prove both of the theorems later.

Finally, we conclude this lecture by answering Question 3. The answer is NO.

Suppose Re ≥ ERe for every e ∈ E(G), and set t =
∑
e∈E weRe. Then our probabilities become p′e = weRe

t ,
and Foster’s theorem implies t ≥ n− 1. We pick e with probability p′e, and generate Y = we

p′e
He = t

He
He if

e get picked. Clearly, E(Y ) = G, and we need µ such that

t

Re
He � µLG

for every e. This is equivalent to

ERe ≤ µ
Re
t

for every e, by Exercise, hence µ = t works for our purposes.

By Ahlswede-Winter theorem, we need Oε(t log t) samples for the concentration, which is reasonable as we
replaced n by t. As long as Re’s are chosen closed to ERe enough, we only lose a little bit.


