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1 Notation

The following notation conventions are used in these notes:

• Capital letters represent matrices and bold lower-case letters represent vectors.
For a matrix A, aij denotes the element in row i and column j; for the vector
x, xi denotes the ith entry in the vector.

• Various special matrices are represented by the following conventions: The
adjacency matrix is denoted A; the degree matrix is denoted D; the Laplacian
D − A is denoted L. The Laplacian can be written as:∑
(u,v)∈E

au,v(xu−xv)
2 =

∑
(u,v)∈E

au,v(x
2
u +x2

v)−au,vxuxv = xT Dx−xT Ax = xT Lx

The Laplacian is sometimes referred to as the difference Laplacian; the sum-
Laplacian will be the matrix D + A = 2 D − L, which will be denoted as
P .

• The notion of Laplacian can be extended to graphs with positive edge weights.
In particular, let edge (i, j) have weight wij. The adjacency matrix is modified
so that entry Aij = wij. The degree of a vertex is defined as the sum of the
weights of the incident edges. The definitions for D, L, and P are as above
with respect to these changes. We will refer to P in the weighted case as the
sum-Laplacian.

• The vector that has all entries equal to one is denoted as ~1.

• ∆ represents the maximum degree of a graph. If the graph has weighted edges,
the generalized definition of degree given above applies.

• We are also given a mass at each vertex mi ≥ di where di is the degree of vi.
Let M be the masses as a diagonal matrix, the mass matrix. It is well know
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that the eigen-pairs to the system Ax = λMx are the fundamental modes
of vibration of a spring-mass system where the edge weights are the spring
constants and the mi are the masses.

• mass(Vi) denotes the mass of the vertex set Vi, that is, mass(Vi) =
∑

v∈Vi
mv.

• Let S denote the set of edges forming an edge separator separating the vertices
into sets V1 and V2. Then

φ(S) =
cut(S)

min(mass(V1), mass(V2))

is called the cut quotient for S where cut(S) =
∑

(i,j)∈S wij.

• A vector x can be thought of as assigning values to the vertices of a graph G.
Assume x has k > 1 distinct values t1 < t2 < . . . < tk, and consider any cut
that separates the vertices with values less than or equal to ti (i < k) from
those with greater values. Such a cut is called a threshold cut based on x.

• By using the generalized Rayleigh quotient xT Lx
xT Dx

the bound on φ is tightened

to ≤
√

2 xT Lx
xT Mx

.

2 Background Notes

The proof below was formulated by Steve Guattery and Gary Miller. Minor modi-
fications to integrate the normalized Laplacian where made by Dave Tolliver. It is
a different proof of a result from Spielman and Teng’s paper Spectral Partitioning
Works: Planar Graphs and Finite Element Meshes, which is currently available as a
preprint.

This proof is a generalization of Mohar’s proof from Isoperimetric Numbers of
Graphs (Journal of Combinatorial Theory, Series B v.47, pp 274–291 (1989)). In
particular, the proof has been extended to apply to vectors other than the second
eigenvector of the Laplacian at the cost of loosening the bound slightly for certain
vectors. It also applies to graphs with positive edge weights.
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3 The Proof

Theorem 3.1. Let G be a connected graph with positive edge weights on n vertices
with Laplacian L and M ≥ D a mass matrix. For any vector x such that xT M~1 = 0,
let φ∗ be the smallest cut quotient over the cut quotients of all threshold cuts based
on x. Then

φ∗ ≤
√

2
xT Lx

xT Mx
.

Proof: Assume w.l.o.g. that the vertices of the graph are numbered such that
the entries of x occur in non-increasing order: for i < j, xi ≥ xj. Let P be the
sum-Laplacian as described above.

We start with two facts about quadratic terms of Laplacians and sum-Laplacians.
In the expressions below, let z be any real vector. First, the following fact is well
known:

zT Lz =
∑

(i,j)∈E(G)

wij (zi − zj)
2 (1)

Second,

(
zT Lz

) (
zT Pz

)
=

 ∑
(i,j)∈E(G)

wij (zi − zj)
2

  ∑
(i,j)∈E(G)

wij (zi + zj)
2


=

 ∑
(i,j)∈E(G)

(√
wij |zi − zj|

)2

  ∑
(i,j)∈E(G)

(√
wij |zi + zj|

)2


≥

 ∑
(i,j)∈E(G)

wij |z2
i − z2

j |

2

, (2)

the third line follows from the Cauchy-Schwarz inequality.
It is useful to give a high-level outline of the proof here before proceeding: we

have just shown that the product
(
xT Lx

) (
xT Px

)
provides a connection between

xT Lx (which is expressed in terms of a weighted sum of squares of differences across
edges) and a weighted sum of differences of the squares of the values at the ends
of edges. The second sum telescopes, and can be neatly divided up in terms of
subintervals of the the interval from xi to xj. This will allow us to break an edge
up into a number of pieces corresponding to the number of thresholds (and hence
cuts) that it crosses. We will rewrite the last sum in (2) as a weighted sum of
cut quotients to prove the theorem. However, two issues must be addressed: First,
the weighted sum will involve cut quotients, which use the volume of the smaller
shore of the cut as a denominator. Second, any edge that crosses zero is a potential
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problem for the application of telescoping. In the argument below, we break the
contribution of an edge into (positive) contributions for subintervals. For an edge
(i, j) crossing the zero point, the sum of the contributions could be bigger than the
difference wij |x2

i − x2
j |. This could violate the inequalities used to show the upper

bound. Therefore it is useful to make two changes: We shift the values of x so
that minβ{xβ|

∑β
i=1 mi ≥ 1

2
mass(G)} takes valuation xβ = 0; and we modify G by

breaking any edge that crosses the zero point into two parts, one part from xi to a
vertex with value zero, and one part from the zero vertex to xj; each of these parts
is assigned weight wij. The next section shows that these changes don’t affect the
preceding upper bound much.

Let G′ be the graph modified as specified in the previous paragraph; G′ has
Laplacian L′. Note that G′ may have larger degree at Vβ but yβ = 0. Thus, yT D′y ≤
yT My. Let z be any nonzero vector such that zi ≥ zj for all i < j and zβ = 0. Then
with respect to equation (1), zT L′z and zT Lz differ only in the terms for edges that
go from some vertex i < β to some vertex j > β. Note that for each such edge we
have

(zi − zj)
2 = z2

i + z2
j − 2zizj > z2

i + z2
j = (zi − 0)2 + (0− zj)

2,

where the inequality holds because zi and zj have opposite signs by our restriction on
the ordering of z (the edge weight has been factored out of each expression). Thus
we have that

zT L′z

zT Mz
≤ zT Lz

zT Mz
(3)

for any such vector.
Now consider the shifted version of x: Let y = x + α~1 where α = −xβ. We have

the following:

yT Ly

yT My
=

(x + α~1)T L(x + α~1)

(x + α~1)T M(x + α~1)
=

xT Lx

xT Mx + 2αxT M~1 + α2
∑

mi

<
xT Lx

xT Mx
,

where the second equality follows from the restriction that xT M~1 = 0 by hypothesis
and from the fact that ~1 is the (simple) zero eigenvalue for any Laplacian. Since y
meets the restrictions on z in the preceding paragraph, we can combine this result
with inequality (3) to get

yT L′y ≤ xT Lx

xT Mx
· yT My. (4)

The analysis for P ′ is easier for the sum-Laplacian of G′:

yT P ′y

yT My
=

yT (2D′ − L′)y

yT My
<

yT (2D′)y

yT My
≤ 2.
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The first inequality follows from the fact that L′ is positive semidefinite, and that y
is not a multiple of the “all ones” vector, the only zero eigenvalue of L′. The last
inequality follows from the fact that yT D′y ≤ yT My

Combining inequalities (2,and (4), we get

2 · xT Lx

xT Mx
·
(
yT My

)2 ≥ (yT P ′y) (yT L′y) ≥

 ∑
(i,j)∈E(G′)

wij |y2
i − y2

j |

2

.

Since only nonnegative values are involved, we can take the square root of the terms
above. Further, since no edges cross the zero point, we can rewrite the summation
to eliminate the absolute value signs. This gives the following:√

2
xT Lx

xT Mx
·
(
yT My

)
≥

∑
(i, j) ∈ E(G′)

i < j ≤ β

wij(y
2
i −y2

j ) +
∑

(i, j) ∈ E(G′)
β ≤ i < j

wij(y
2
j −y2

i ).

(5)
The rest of the proof essentially follows Mohar’s proof; the main distinction is

that Mohar only worked with the positive side of the vector he considered. We
include both sides of the vector.1 We’ll actually only show the proof for the positive
part of the vector, however. The argument for the negative half is symmetric and
left as an exercise.

We need some notation before we can finish the proof. Note that the yi’s may
not be distinct. Assume that there are k distinct values in the subvector consisting of
entries y1 through yβ, and denote them as t1 > t2 > . . . > tk−1 > tk = 0. Let ∂Vi be
the total weight of the edges (k, l) in G′ such that yk ≥ ti and yl < ti; that is, ∂Vi is
the weight of the edges crossing the cut at threshold ti. Let Vi = {j ∈ V (G′) |yj ≥ ti}
(for simplicity of notation below, let V0 = ∅). Finally, let φi be the quotient cut that
separates Vi from the rest of the graph, and let φ∗ be the minimum quotient cut
produced by vector y. The definition for cut quotient thus can be stated as follows:

φi =
∂Vi

mass(Vi)
. (6)

Note that, by the construction of G′ and y, the values for the φi’s and φ∗ are un-
changed if the definitions are applied to G and x.

1Note that when xβ is the minimum or maximum value of x, one of the sums on the right hand
side of (5) will be zero.
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Consider the following calculation:∑
(i, j) ∈ E(G′)

i < j ≤ β

wij (y2
i − y2

j ) =
k−1∑
i=1

∂Vi (t2i − t2i+1) (7)

=
k−1∑
i=1

φi mass(Vi) (t2i − t2i+1) (8)

≥ φ∗
k−1∑
i=1

mass(Vi) (t2i − t2i+1) (9)

= φ∗
k−1∑
i=1

(mass(Vi)−mass(Vi−1)) t2i (10)

= φ∗
β∑

i=1

miy
2
i . (11)

The first step in deriving equation (7) is the application of telescoping: Let yi = tl
and yj = tm. Then y2

i − y2
j =

∑m−1
i=l (t2i − t2i+1). This sum is regrouped with respect

to the differences t2i − t2i+1; each such difference is weighted by a factor equal to the
weight of the edges crossing that threshold. Equality (8) follows by an application
of (6). The inequality (9) then follows from the definition of q∗. Equation (10) is
a reordering of the preceding sum based on noting that t2i occurs in (9) only in the
expressions for |Vi| and |Vi−1|; recall that tk = 0. Finally, |Vi| − |Vi−1| is the number
of vertices with value ti; equation (11) reintroduces the corresponding values from y,
including any zero values with indices less than or equal to β.

As noted before, the argument for the negative half of y is symmetric. Combining
the two results (remember that yβ = 0 and that yT My =

∑n
i=1 miy

2
i . Combining

Equations (5) and (11) we get:√
2

xT Lx

xT Mx
·
(
yT My

)
≥ φ∗yT My (12)

This completes the proof.
�

4 Conclusions

We conjecture that there is a better upper bound on the cut quotient in Theorem 3.1
as a function of the masses. We easily get a better bound in the case when M is a
multiple of D. But what happens for an M that is not a strict multiple of D?
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