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Abstract

We present a randomized algorithm that, on input a symmetric, weakly diagonally dom-
inant n-by-n matrix A with m non-zero entries and an n-vector b, produces an x̃ such that∥∥x̃ − A†b

∥∥
A
≤ ε

∥∥A†b
∥∥

A
in expected time

m logO(1) n log(1/ε).

The algorithm applies subgraph preconditioners in a recursive fashion. These preconditioners
improve upon the subgraph preconditioners first introduced by Vaidya (1990). For any
symmetric, weakly diagonally-dominant matrix A with non-positive off-diagonal entries and
k ≥ 1, we construct in time m logO(1) n a preconditioner of A with at most

2(n − 1) + (m/k) logO(1) n

non-zero off-diagonal entries such that the finite generalized condition number κf (A, B) is
at most k. If the non-zero structure of the matrix is planar, then the condition number is at
most

O
(
(n/k) logn log log2 n

)
,

and the corresponding linear system solver runs in expected time

O(n log2 n + n logn (log log n)2 log(1/ε)).

Similar bounds are obtained on the running time of algorithms computing approximate
Fiedler vectors.

∗This paper is the last in a sequence of three papers expanding on material that appeared first under the title
“Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems” [ST04].
The second paper, “Spectral Sparsification of Graphs” [ST08c] contains algorithms for constructing sparsifiers
of graphs, which we use in this paper to build preconditioners. The first paper, “A Local Clustering Algorithm
for Massive Graphs and its Application to Nearly-Linear Time Graph Partitioning” [ST08b] contains graph
partitioning algorithms that are used to construct sparsifiers in the second paper.

This material is based upon work supported by the National Science Foundation under Grant Nos. 0325630,
0324914, 0634957, 0635102 and 0707522. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
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1 Introduction

We design an algorithm with nearly optimal asymptotic complexity for solving linear systems
in symmetric, weakly diagonally dominant (SDD0) matrices. The algorithm applies a classical
iterative solver, such as the Preconditioned Conjugate Gradient or the Preconditioned Chebyshev
Method, with a novel preconditioner that we construct and analyze using techniques from graph
theory. Linear systems in these preconditioners may be reduced to systems of smaller size in
linear time by use of a direct method. The smaller linear systems are solved recursively. The
resulting algorithm solves linear systems in SDD0 matrices in time almost linear in their number
of non-zero entries. Our analysis does not make any assumptions about the non-zero structure
of the matrix, and thus may be applied to the solution of the systems in SDD0 matrices that
arise in any application, such as the solution of elliptic partial differential equations by the
finite element method [Str86, BHV04], the solution of maximum flow problems by interior point
algorithms [FG04, DS08], or the solution of learning problems on graphs [BMN04, ZBL+03,
ZGL03].

Graph theory drives the construction of our preconditioners. Our algorithm is best un-
derstood by first examining its behavior on Laplacian matrices—the symmetric matrices with
non-positive off-diagonals and zero row sums. Each n-by-n Laplacian matrix A may be associ-
ated with a weighted graph, in which the weight of the edge between distinct vertices i and j is
−Ai,j (see Figure 1). We precondition the Laplacian matrix A of a graph G by the Laplacian
matrix B of a subgraph H of G that resembles a spanning tree of G plus a few edges. The sub-
graph H is called an ultra-sparsifier of G, and its corresponding Laplacian matrix is a very good
preconditioner for A: The finite generalized condition number κf (A,B) is logO(1) n. Moreover,
it is easy to solve linear equations in B. As the graph H resembles a tree plus a few edges, we
may use partial Cholesky factorization to eliminate most of the rows and columns of B while
incurring only a linear amount fill. We then solve the reduced system recursively.
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Figure 1: A Laplacian matrix and its corresponding weighted graph.

The technical meat of this paper lies in the construction of ultra-sparsifiers for Laplacian
matrices, which appears in Sections 7 through 10. In the remainder of the introduction, we
formally define ultra-sparsifiers, and the sparsifiers from which they are built. In Section 2,
we survey the contributions upon which we build, and mention other related work. We devote
Section 3 to recalling the basics of support theory, defining the finite condition number, and
explaining why we may restrict out attention to Laplacian matrices.

In Section 4, we state the properties we require of partial Cholesky factorizations, and we
present our first algorithms for solving equations in SDD0-matrices. These algorithms directly
solve equations in the preconditioners, rather than using a recursive approach, and take time
roughly O(m5/4 logO(1) n) for general SDD0-matrices and O(n9/8 log1/2 n) for SDDM0-matrices
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with planar non-zero structure. To accelerate these algorithms, we apply our preconditioners
in a recursive fashion. We analyze the complexity of these recursive algorithms in Section 5,
obtaining our main algorithmic results. In Section 6, we observe that these linear system solvers
yield efficient algorithms for computing approximate Fiedler vectors, when applied inside the
inverse power method.

We do not attempt to optimize the exponent of log n in the complexity of our algorithm.
Rather, we present the simplest analysis we can find of an algorithm of complexity m logO(1) n log(1/ε).
We expect that the exponent of log n can be substantially reduced through advances in the con-
structions of low-stretch spanning trees, sparsifiers, and ultrasparsifiers. Experimental work is
required to determine whether a variation of our algorithm will be useful in practice.

1.1 Ultra-sparsifiers

To describe the quality of our preconditioners, we employ the notation A ! B to indicate that
B − A is positive semi-definite. We define a SDDM0-matrix to be a SDD0-matrix with no
positive off-diagonal entries. When positive definite, the SDDM0-matrices are M-matrices and
in particular are Stieltjes matrices.

Definition 1.1 (Ultra-Sparsifiers). A (k, h)-ultra-sparsifier of an n-by-n SDDM0-matrix A with
2m non-zero off-diagonal entries is a SDDM0-matrix As such that

(a) As ! A ! k · As.

(b) As has at most 2(n − 1) + 2hm/k non-zero off-diagonal entries.

(c) The set of non-zero entries of As is a subset of the set of non-zero entries of A.

In Section 10, we present an expected m logO(1) n-time algorithm that on input a Laplacian
matrix A and a k ≥ 1 produces a (k, h)-ultra-sparsifier of A with probability at least 1 − 1/2n,
for

h = c3 logc4
2 n, (1)

where c3 and c4 are some absolute constants. As we will use these ultra-sparsifiers throughout
the paper, we will define a k-ultra-sparsifier to be a (k, h)-ultra-sparsifier where h satisfies (1).

For matrices whose graphs are planar, we present a simpler construction of (k, h)-ultra-
sparsifiers, with h = O

(
log n(log log n)2

)
. This simple constructions exploits low-stretch span-

ning trees [AKPW95, EEST08, ABN08], and is presented in Section 9. Our construction of
ultra-sparsifiers in Section 10 builds upon the simpler construction, but requires the use of
sparsifiers. The following definition of sparsifiers will suffice for the purposes of this paper.

Definition 1.2 (Sparsifiers). A d-sparsifier of n-by-n SDDM0-matrix A is a SDDM0-matrix As

such that

(a) As ! A ! (5/4)As.

(b) As has at most dn non-zero off-diagonal entries.

(c) The set of non-zero entries of As is a subset of the set of non-zero entries of A.
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(d) For all i,
∑

j !=i

As(i, j)

A(i, j)
≤ 2 |{j : A(i, j) %= 0}| .

In a companion paper [ST08c], we present a randomized algorithm Sparsify2 that produces
sparsifiers of Laplacian matrices in expected nearly-linear time. As explained in Section 3, this
construction can trivially be extended to all SDDM0-matrices.

Theorem 1.3 (Sparsification). On input an n × n Laplacian matrix A with 2m non-zero off-
diagonal entries and a p > 0, Sparsify2 runs in expected time m log(1/p) log17 n and with
probability at least 1 − p produces a c1 logc2(n/p)-sparsifier of A, for c2 = 30 and some absolute
constant c1 > 1.

We parameterize this theorem by the constants c1 and c2 as we believe that they can be
substantially improved. In particular, Spielman and Srivastava [SS08] construct sparsifiers with
c2 = 1, but these constructions require the solution of linear equations in Laplacian matrices,
and so can not be used to help speed up the algorithms in this paper. Batson, Spielman and
Srivastava [BSS09] have proved that there exist sparsifiers that satisfy conditions (a) through
(c) of Definition 1.2 with c2 = 0.

2 Related Work

In this section, we explain how our results relate to other rigorous asymptotic analyses of algo-
rithms for solving systems of linear equations. For the most part, we restrict our attention to
algorithms that make structural assumptions about their input matrices, rather than assump-
tions about the origins of those matrices.

Throughout our discussion, we consider an n-by-n matrix with m non-zero entries. When
m is large relative to n and the matrix is arbitrary, the fastest algorithms for solving linear
equations are those based on fast matrix multiplication [CW82], which take time approximately
O(n2.376). The fastest algorithm for solving general sparse positive semi-definite linear systems
is the Conjugate Gradient. Used as a direct solver, it runs in time O(mn) (see [TB97, Theo-
rem 28.3]). Of course, this algorithm can be used to solve a system in an arbitrary matrix A in
a similar amount of time by first multiplying both sides by AT . To the best of our knowledge,
every faster algorithm requires additional properties of the input matrix.

2.1 Special non-zero structure

In the design and analysis of direct solvers, it is standard to represent the non-zero structure
of a matrix A by an unweighted graph GA that has an edge between vertices i %= j if and only
if Ai,j is non-zero (see [DER86]). If this graph has special structure, there may be elimination
orderings that accelerate direct solvers. If A is tri-diagonal, in which case GA is a path, then a
linear system in A can be solved in time O(n). Similarly, when GA is a tree a linear system in
A by be solved in time O(n) (see [DER86]).

If the graph of non-zero entries GA is planar, one can use Generalized Nested Dissec-
tion [Geo73, LRT79, GT87] to find an elimination ordering under which Cholesky factorization
can be performed in time O(n1.5) and produces factors with at most O(n log n) non-zero entries.
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We will exploit these results in our algorithms for solving planar linear systems in Section 4.
We recall that a planar graph on n vertices has at most 3n− 6 edges (see [Har72, Corollary 11.1
(c)]), so m ≤ 6n.

2.2 Subgraph Preconditioners

Our work builds on a remarkable approach to solving linear systems in Laplacian matrices
introduced by Vaidya [Vai90]. Vaidya demonstrated that a good preconditioner for a Laplacian
matrix A can be found in the Laplacian matrix B of a subgraph of the graph corresponding to
A. He then showed that one could bound the condition number of the preconditioned system by
bounding the dilation and congestion of an embedding of the graph of A into the graph of B. By
using preconditioners obtained by adding edges to maximum spanning trees, Vaidya developed
an algorithm that finds ε-approximate solutions to linear systems in SDDM0-matrices with at
most d non-zero entries per row in time O((dn)1.75 log(1/ε)). When the graph corresponding
to A had special structure, such as having a bounded genus or avoiding certain minors, he
obtained even faster algorithms. For example, his algorithm for solving planar systems runs in
time O((dn)1.2 log(1/ε)).

As Vaidya’s paper was never published and his manuscript lacked many proofs, the task
of formally working out his results fell to others. Much of its content appears in the thesis
of his student, Anil Joshi [Jos97], and a complete exposition along with many extensions was
presented by Bern et. al. [BGH+06]. Gremban, Miller and Zagha [Gre96, GMZ95] explain parts
of Vaidya’s paper as well as extend Vaidya’s techniques. Among other results, they find ways of
constructing preconditioners by adding vertices to the graphs. Maggs et. al. [MMP+05] prove
that this technique may be used to construct excellent preconditioners, but it is still not clear if
they can be constructed efficiently.

The machinery needed to apply Vaidya’s techniques directly to matrices with positive off-
diagonal elements is developed in [BCHT04]. An algebraic extension of Vaidya’s techniques for
bounding the condition number was presented by Boman and Hendrickson [BH03b], and later
used by them [BH01] to prove that the low-stretch spanning trees constructed by Alon, Karp,
Peleg, and West [AKPW95], yield preconditioners for which the preconditioned system has con-

dition number at most m2O(
√

log n log log n). They thereby obtained a solver for symmetric diago-
nally dominant linear systems that produces ε-approximate solutions in time m1.5+o(1) log(1/ε).
Through improvements in the construction of low-stretch spanning trees [EEST08, ABN08] and
a careful analysis of the eigenvalue distribution of the preconditioned system, Spielman and
Woo [SW09] show that when the Preconditioned Conjugate Gradient is applied with the best
low-stretch spanning tree preconditioners, the resulting linear system solver takes time at most
O(mn1/3 log1/2 n log(1/ε)). The preconditioners in the present paper are formed by adding edges
to these low-stretch spanning trees.

The recursive application of subgraph preconditioners was pioneered in the work of Joshi [Jos97]
and Reif [Rei98]. Reif [Rei98] showed how to recursively apply Vaidya’s preconditioners to solve
linear systems in SDDM0-matrices with planar non-zero structure and at most a constant num-
ber of non-zeros per row in time O(n1+β logO(1)(κ(A)/ε)), for every β > 0. While Joshi’s anal-
ysis is numerically much cleaner, he only analyzes preconditioners for simple model problems.
Our recursive scheme uses ideas from both these works, with some simplification. Koutis and
Miller [KM07] have developed recursive algorithms that solve linear systems in SDDM0-matrices
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with planar non-zero structure in time O(n log(1/ε)).

2.3 Other families of matrices

Subgraph preconditioners have been used to solve systems of linear equations from a few other
families.

Daitch and Spielman [DS08] have shown how to reduce the problem of solving linear equa-
tions in symmetric M0-matrices to the problem of solving linear equations in SDDM0-matrices,
given a factorization of the M0-matrix of width 2 [EGB05]. These matrices, with the required
factorizations, arise in the solution of the generalized maximum flow problem by interior point
algorithms.

Shklarski and Toledo [ST08a] introduce an extension of support graph preconditioners, called
fretsaw preconditioners, which are well suited to preconditioning finite element matrices. Daitch
and Spielman [DS07] use these preconditioners to solve linear equations in the stiffness matrices
of two-dimensional truss structures in time O(n5/4 log n log(1/ε)).

For linear equations that arise when solving elliptic partial differential equations, other tech-
niques supply fast algorithms. For example, Multigrid methods may be proved correct when
applied to the solution of some of these linear systems [BHM01], and Hierarchical Matrices run
in nearly-linear time when the discretization is nice [BH03a]. Boman, Hendrickson, and Vavasis
[BHV04] have shown that the problem of solving a large class of these linear systems may be
reduced to that of solving diagonally-dominant systems. Thus, our algorithms may be applied
to the solution of these systems.

3 Background and Notation

By log x, we mean the logarithm of x base 2, and by lnx the natural logarithm.
We define SDD0 to be the class of symmetric, weakly diagonally dominant matrices, and

SDDM0 to be the class of SDD0-matrices with non-positive off-diagonal entries. We define a
Laplacian matrix to be a SDDM0-matrix with with zero row-sums.

Throughout this paper, we define the A-norm by

‖x‖A =
√

xT Ax .

3.1 Preconditioners

For symmetric matrices A and B, we write

A ! B

if B−A is positive semi-definite. We recall that if A is positive semi-definite and B is symmetric,
then all eigenvalues of AB are real. For a matrix B, we let B† denote the Moore-Penrose pseudo-
inverse of B—that is the matrix with the same nullspace as B that acts as the inverse of B on
its image. We will use the following propositions, whose proofs are elementary.

Proposition 3.1. If A and B are positive semi-definite matrices such that for some α, β > 0,

αA ! B ! βA

then A and B have the same nullspace.
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Proposition 3.2. If A and B are positive semi-definite matrices having the same nullspace and
α > 0, then

αA ! B

if and only if
αB†

! A†.

The following proposition notes the equivalence of two notions of preconditioning. This
proposition is called the “Support Lemma” in [BGH+06] and [Gre96], and is implied by Theo-
rem 10.1 of [Axe85]. We include a proof for completeness.

Proposition 3.3. If A and B are symmetric matrices with the same nullspace and A is positive
semi-definite, then all eigenvalues of AB† lie between λmin and λmax if and only if

λminB ! A ! λmaxB.

Proof. We first note that AB† has the same eigenvalues as A1/2B†A1/2. If for all x ∈ Image(A)
we have

λminx
Tx ≤ xT A1/2B†A1/2x ,

then by setting z = A1/2x , we find that for all z ∈ Image(A),

λminz
T A†z ≤ z T B†z ,

which is equivalent to λminA† ! B† and

λminB ! A.

The other side is proved similarly.

Following Bern et. al. [BGH+06], we define the finite generalized condition number κf (A,B)
of matrices A and B having the same nullspace to be the ratio of the largest to smallest non-
zero eigenvalues AB†. Proposition 3.3 tells us that λminB ! A ! λmaxB implies κf (A,B) ≤
λmax/λmin. One can use κf (A,B) to bound the number of iterations taken by the Preconditioned
Conjugate Gradient algorithm to solve linear systems in A when using B as a preconditioner.
Given bounds on λmax and λmin, one can similarly bound the complexity of the Preconditioned
Chebyshev method.

3.2 Laplacians Suffice

When constructing preconditioners, we will focus our attention on the problem of preconditioning
Laplacian matrices.

Bern et. al. [BGH+06, Lemma 2.5], observe that the problem of preconditioning SDDM0-
matrices is easily reduced to that of preconditioning Laplacian matrices. We recall the reduction
for completeness.

Proposition 3.4. Let A be a SDDM0-matrix. Then, A can be expressed as A = AL +AD where
AL is a Laplacian matrix and AD is a diagonal matrix with non-negative entries. Moreover,
if BL is a Laplacian matrix such that AL ! BL, then A ! BL + AD. Similarly, if BL is a
Laplacian matrix such that BL ! AL, then BL + AD ! A.
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So, any algorithm for constructing sparsifiers or ultra-sparsifiers for Laplacian matrices can
immediately be converted into an algorithm for constructing sparsifiers or ultra-sparsifiers of
SDDM0-matrices. Accordingly in Sections 9 and 10 we will restrict our attention to the problem
of preconditioning Laplacian matrices.

Recall that a symmetric matrix A is reducible if there is a permutation matrix P for which
P T AP is a block-diagonal matrix with at least two blocks. If such a permutation exists, one
can find it in linear time. A matrix that is not reducible is said to be irreducible. The problem
of solving a linear system in a reducible matrix can be reduced to the problems of solving linear
systems in each of the blocks. Throughout the rest of this paper, we will restrict our attention
to solving linear systems in irreducible matrices. It is well-known that a symmetric matrix is
irreducible if and only if its corresponding graph of non-zero entries is connected. We use this
fact in the special case of Laplacian matrices, observing that the weighted graph associated with
a Laplacian matrix A has the same set of edges as GA.

Proposition 3.5. A Laplacian matrix is irreducible if and only if its corresponding weighted
graph is connected.

It is also well-known that the null-space of the Laplacian matrix of a connected graph is the
span of the all-1’s vector. Combining this fact with Proposition 3.4, one can show that the only
singular irreducible SDDM0-matrices are the Laplacian matrices.

Proposition 3.6. A singular irreducible SDDM0-matrix is a Laplacian matrix, and its nullspace
is spanned by the all-1’s vector.

To the extent possible, we will describe our algorithms for solving irreducible singular and
non-singular systems similarly. The one tool that we use for which this requires some thought is
the Cholesky factorization. As the Cholesky factorization of a Laplacian matrix is degenerate, it
is not immediately clear that one can use backwards and forwards substitutions on the Cholesky
factors to solve a system in a Laplacian. To handle this technicality, we note that an irreducible
Laplacian matrix A has a factorization of the form

A = LDLT ,

where L is lower-triangular and non-zero on its entire diagonal and D is a diagonal matrix with
ones on each diagonal entry, excluding the bottom right-most which is a zero. This factorization
may be computed by a slight modification of standard Cholesky factorization algorithms. The
pseudo-inverse of A can be written

A† = ΠL−T DL−1Π,

where Π is the projection orthogonal to the all-1’s vector (see Appendix D).
When A is a Laplacian and we refer to forwards or backwards substitution on its Cholesky

factors, we will mean multiplying by DL−1Π or ΠL−T D, respectively, and remark that these
operations can be performed in time proportional to the number of non-zero entries in L.

4 Solvers

We first note that by Gremban’s reduction, the problem of solving an equation of the form
Ax = b for a SDD0-matrix A can be reduced to the problem of solving a system that is twice
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as large in a SDDM0-matrix (see Appendix A). So, for the purposes of asymptotic complexity,
we need only consider the problem of solving systems in SDDM0-matrices.

To solve systems in an irreducible SDDM0-matrix A, we will compute an ultra-sparsifier
B of A, and then solve the system in A using a preconditioned iterative method. At each
iteration of this method, we will need to solve a system in B. We will solve a system in B
by a two-step algorithm. We will first apply Cholesky factorization repeatedly to eliminate
all rows and columns with at most one or two non-zero off-diagonal entries. As we stop the
Cholesky factorization before it has factored the entire matrix, we call this process a partial
Cholesky factorization. We then apply another solver on the remaining system. In this section,
we analyze the use of a direct solver. In Section 5, we obtain our fastest algorithms by solving
the remaining system recursively.

The application of partial Cholesky factorization to eliminate rows and columns with at most
2 non-zero off-diagonal entries results in a factorization of B of the form

B = PLCLTP T ,

where C has the form

C =

(
In−n1

0
0 A1,

)
,

P is a permutation matrix, L is non-singular and lower triangular of the form

L =

(
L1,1 0
L2,1 In1

,

)
,

and every row and column of A1 has at least 3 non-zero off-diagonal entries.
We will exploit the properties of this factorization stated in the following proposition.

Proposition 4.1 (Partial Cholesky Factorization). If B is an irreducible SDDM0-matrix then,

(a) A1 is an irreducible SDDM0-matrix and is singular if and only if A is singular.

(b) If the graph of non-zero entries of B is planar, then the graph of non-zero entries of A1 is
as well.

(c) L has at most 3n non-zero entries.

(d) If B has 2(n− 1 + j) non-zero off-diagonal entries, then A1 has dimension at most 2j − 2
and has at most 2(3j − 3) non-zero off-diagonal entries.

(e) B† = ΠP−T L−T

(
In−n1

0
0 A1

†

)
L−1P−1Π, where Π is the projection onto the span of B.

Proof. It is routine to verify that A1 is diagonally dominant with non-positive off-diagonal
entries, and that planarity is preserved by elimination of rows and columns with 2 or 3 non-zero
entries, as these correspond to vertices of degree 1 or 2 in the graph of non-zero entries. It is
similarly routine to observe that these eliminations preserve irreducibility and singularity.

To bound the number of entries in L, we note that for each row and column with 1 non-zero
off-diagonal entry that is eliminated, the corresponding column in L has 2 non-zero entries,
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and that for each row and column with 2 non-zero off-diagonal entries that is eliminated, the
corresponding column in L has 3 non-zero entries.

To bound n1, the dimension of A1, first observe that the elimination of a row and column
with 1 or 2 non-zero off-diagonal entries decreases both the dimension by 1 and the number of
non-zero entries by 2. So, A1 will have 2(n1 − 1 + j) non-zero off-diagonal entries. As each row
in A1 has at least 3 non-zero off-diagonal entries, we have

2(n1 − 1 + j) ≥ 3n1,

which implies n1 ≤ 2j−2. The bound on the number non-zero off-diagonal entries in A1 follows
immediately.

Finally, (5) may be proved by verifying that the formula given for B† satisfies all the axioms
of the pseudo-inverse (which we do in Appendix D).

We name the algorithm that performs this factorization PartialChol, and invoke it with
the syntax

(P,L,A1) = PartialChol(B).

We remark that PartialChol can be implemented to run in linear time.

4.1 One-Level Algorithms

Before analyzing the algorithm in which we solve systems in A1 recursively, we pause to examine
the complexity of an algorithm that applies a direct solver to systems in A1. While the results
in this subsection are not necessary for the main claims of our paper, we hope they will provide
intuition.

If we are willing to ignore numerical issues, we may apply the conjugate gradient algorithm
to directly solve systems in A1 in O(n1m1) operations [TB97, Theorem 28.3], where m1 is the
number of non-zero entries in A1. In the following theorem, we examine the performance of the
resulting algorithm.

Theorem 4.2 (General One-Level Algorithm). Let A be an irreducible n-by-n SDDM0-matrix
with 2m non-zero off-diagonal entries. Let B be a

√
m-ultra-sparsifier of A. Let (P,L,A1) =

PartialChol(B). Consider the algorithm that solves systems in A by applying PCG with B as a
preconditioner, and solves each system in B by a performing backward substitution on its partial
Cholesky factor, solving the inner system in A1 by conjugate gradient used as an exact solver,
and performing forward substitution on its partial Cholesky factor. Then for every right-hand
side b, after

O(m1/4 log(1/ε))

iterations, comprising
O(m5/4 log2c4 n log(1/ε))

arithmetic operations, the algorithm will output an approximate solution x̃ satisfying
∥∥∥x̃ − A†b

∥∥∥
A
≤ ε

∥∥∥A†b
∥∥∥

A
. (2)
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Proof. As κf (A,B) ≤
√

m, we may apply the standard analysis of PCG [Axe85], to show that
(2) will be satisfied after O(m1/4 log(1/ε)) iterations. To bound the number of operations in
each iteration, note that B has at most 2(n − 1) + O(

√
m logc4 n) non-zero off-diagonal entries.

So, Proposition 4.1 implies m1 and n1 are both O(
√

m logc4 n). Thus, the time required to solve
each inner system in A1 is at most O(m1n1) = O(m log2c4 n). As A is irreducible m ≥ n− 1, so
this bounds the number of operations that must be performed in each iteration.

If m is much greater than n, we could speed up this algorithm by first applying Sparsify2

to compute a very good sparse preconditioner As for A, using the one-level algorithm to solve
systems in As, and then applying this solver to A by iterative refinement.

When the graph of non-zero entries of A is planar, we may precondition using the the
algorithm UltraSimple, presented in Section 9, instead of UltraSparsify. As the matrix
A1 produced by applying partial Cholesky factorization to the output of UltraSimple is also
planar, we can solve the linear systems in A1 by the generalized nested dissection algorithm of
Lipton, Rose and Tarjan [LRT79]. This algorithm uses graph separators to choose a good order

for Cholesky factorization. The Cholesky factorization is then computed in time O(n3/2
1 ). The

resulting Cholesky factors only have O(n1 log n1) non-zero entries, and so each linear system in
A1 may be solved in time O(n1 log n1), after the Cholesky factors have been computed.

Theorem 4.3 (Planar One-Level Algorithm). Let A be an n-by-n planar SDDM0-matrix with
m non-zero entries. Consider the algorithm that solves linear systems in A by using PCG with
the preconditioner

B = UltraSimple(A,n3/4 log1/3 n),

and solves systems in B by applying PartialChol to factor B into PL[I, 0; 0, A1]LT P T , and
uses generalized nested dissection to solve systems in A1. For every right-hand side b, this
algorithm computes an x̃ satisfying

∥∥∥x̃ − A†b
∥∥∥

A
≤ ε

∥∥∥A†b
∥∥∥

A
(3)

in time
O

(
n9/8 log1/2 n log(1/ε)

)
.

Proof. First, recall that the planarity of A implies m ≤ 3n. Thus, the time taken by UltraSimple

is dominated by the time taken by LowStretch, which is O(n log2 n).
By Theorem 9.1 and Theorem 9.5, the matrix B has at most 2(n−1)+6n3/4 log1/3 n non-zero

off-diagonal entries and

κf (A,B) = O
(
n1/4 log2/3 n log2 log n

)
≤ O

(
n1/4 log n

)
.

Again, standard analysis of PCG [Axe85] tells us that the algorithm will require at most

O
(
n1/8 log1/2 n log(1/ε)

)

iterations guarantee that (3) is satisfied.
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By Proposition 4.1, the dimension of A1, n1, is at most 6n3/4 log1/3 n. Before beginning to
solve the linear system, the algorithm will spend

O(n3/2
1 ) = O((n3/4 log1/3 n)3/2) = O(n9/8 log1/2 n)

time using generalized nested dissection [LRT79] to permute and Cholesky factor the matrix A1.
As the factors obtained will have at most O(n1 log n1) ≤ O(n) non-zeros, each iteration of the
PCG will require at most O(n) steps. So, the total complexity of the application of the PCG
will be

O
(
n ·

(
n1/8 log1/2 n log(1/ε)

))
= O

(
n9/8 log1/2 n log(1/ε)

)
,

which dominates the time required to compute the Cholesky factors and the time of the call to
UltraSimple.

5 The Recursive Solver

In our recursive algorithm for solving linear equations, we solve linear equations in a matrix A
by computing an ultra-sparsifier B, using partial Cholesky factorization to reduce it to a matrix
A1, and then solving the system in A1 recursively. Of course, we compute all of the necessary
ultra-sparsifiers and Cholesky factorizations just once at the beginning of the algorithm.

To specify the recursive algorithm for an n-by-n matrix, we first set the parameters

χ = c3 logc4 n, (4)

and
k = (14χ+ 1)2, (5)

where we recall that c3 and c4 are determined by the quality of the ultra-sparsifiers we can
compute (see equation (1)), and were used to define a k-ultra-sparsifier.

We the following algorithm BuildPreconditioners to build the sequence of preconditioners
and Cholesky factors. In Section 10, we define the routine UltraSparsify for weighted graphs,
and thus implicitly for Laplacian matrices. For general irreducible SDDM0-matrices A, we
express A as a sum of matrices AL and AD as explained in Proposition 3.4, and return AD plus
the ultra-sparsifier of the Laplacian matrix AL.

12



BuildPreconditioners(A0),

1. i = 0.

2. Repeat

(a) i = i + 1.

(b) Bi = UltraSparsify(Ai−1, k).

(c) (Pi, Li, Ai) = partialChol(Bi).

(d) Set Πi to be the projection onto the span of Bi.

Until Ai has dimension less than 66χ+ 6.

3. Set ' = i.

4. Compute Z" = A"
†.

We now make a few observations about the sequence of matrices this algorithm generates.
In the following, we let noff (A) denote the number of non-zero off-diagonal entries in the upper-
triangular portion of A, and let dim (A) denote the dimension of A.

Proposition 5.1 (Recursive Preconditioning). If A0 is a symmetric, irreducible, SDDM0-
matrix, and for each i the matrix Bi is a k-ultra-sparsifier of Ai, then

(a) For i ≥ 1, noff (Ai) ≤ (3χ/k)noff (Ai−1).

(b) For i ≥ 1, dim (Ai) ≤ (2χ/k)noff (Ai−1).

(c) For i ≥ 1, dim (Bi) = dim (Ai−1).

(d) Each of Bi and Ai is an irreducible SDDM0-matrix.

(e) Each Ai and Bi is a Laplacian matrix if and only if A0 is as well.

(f) If A0 is a Laplacian matrix, then each Πi is a projection orthogonal to the all-1’s vector.
Otherwise, each Πi is the identity.

Proof. Let ni be the dimension of Ai. Definition 1.1 tells us that

noff (Bi) ≤ n − 1 + hnoff (Ai) /k = n − 1 + noff (Ai)χ/k.

Parts (a), (b), (d) and (e) now follow from Proposition 4.1. Part (c) is obvious, and part (f)
follows from Proposition 3.6.

Our recursive solver will use each matrix Bi as a preconditioner for Ai−1. But rather than
solve systems in Bi directly, it will reduce these to systems in Ai, which will in turn be solved
recursively. Our solver will use the preconditioned Chebyshev method, instead of the precon-
ditioned conjugate gradient. This choice is dictated by the requirements of our analysis rather
than by common sense. Our preconditioned Chebyshev method will not take the preconditioner

13



Bi as input. Rather, it will take a subroutine solveBi that produces approximate solutions to
systems in Bi. So that we can guarantee that our solvers will be linear operators, we will fix
the number of iterations that each will perform, as opposed to allowing them to terminate upon
finding a sufficiently good solution. While this trick is necessary for our analysis, it may also be
unnecessary in practice1.

For concreteness, we present pseudocode for the variant of the preconditioned Chebyshev
algorithm that we will use. It is a modification of the pseudocode presented in [BBC+94, page
36], the difference being that it takes as input a parameter t determining the number of iterations
it executes (and some variable names have been changed).

x = precondCheby(A, b , t, f(·), λmin, λmax)
(0) Set x = 0.
(1) r = b

(2) d = (λmax + λmin)/2, c = (λmax − λmin)/2
(3) for i = 1, . . . , t,

(a) z = f(r)
(b) if i = 1,

x = z

α = 2/d
else,

β = (cα/2)2

α = 1/(d − β)
x = z + βx

(c) x = x + αx
(d) r = b − Ax

Proposition 5.2 (Linear Chebyshev). Let A be a positive semi-definite matrix and f be a
positive semi-definite, symmetric linear operator such that

λminf †
! A ! λmaxf †. (6)

Let ε < 1 and let

t ≥
⌈

1

2

√
λmax

λmin
ln

2

ε

⌉

. (7)

Then, the function precondCheby(A, b , t, f, λmin, λmax) is a symmetric linear operator in b with
the same nullspace as A. Moreover, if Z is the matrix realizing this operator, then

(1 − ε)Z†
! A ! (1 + ε)Z†.

1 One could obtain a slightly weaker analysis of this algorithm if one instead allowed the Chebyshev solvers to
terminate as soon as they found a sufficiently accurate solution. In an early version of this paper, we analyzed such
an algorithm using the analysis of the inexact preconditioned Chebyshev iteration by Golub and Overton [GO88].
This analysis was improved by applying a slight extension by Joshi [Jos97] of Golub and Overton’s analysis. The
idea of bypassing these analysis by forcing our solvers to be linear operators was suggested to us by Vladimir
Rokhlin.
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Proof. By Proposition 3.1, condition (6) implies that f and A have the same nullspace. An
inspection of the pseudo-code reveals that the function computed by precondCheby can be
expressed as a sum of monomials of the form f(Af)i, from which it follows that this function is
a symmetric linear operator having the same nullspace as A. Let Z be the matrix realizing this
operator.

Standard analyses of the preconditioned Chebyshev algorithm [Axe85, Section 5.3] imply
that for all b in the range of A,

∥∥∥Zb − A†b
∥∥∥

A
≤ ε

∥∥∥A†b
∥∥∥

A
.

Now, consider any non-zero eigenvalue λ and eigenvector b of AZ, so that

AZb = λb.

Multiplying on the left by A† and using the fact that Z and A have the same nullspace, we
obtain

Zb = λA†b.

Plugging this into the previous inequality, we find

ε
∥∥∥A†b

∥∥∥
A
≥

∥∥∥Zb − A†b
∥∥∥

A
= |λ− 1|

∥∥∥A†b
∥∥∥

A
,

and so λ must lie between 1 − ε and 1 + ε. Applying Proposition 3.3, we obtain

(1 − ε)Z†
! A ! (1 + ε)Z†.

We can now state the subroutine solveBi for i = 1, . . . , '.

x = solveBi(b)

1. Set λmin = 1 − 2e−2, λmax = (1 + 2e−2)k and t =
⌈
1.33

√
k
⌉
.

2. Set s = L−1
i P−1

i Πib.

3. Write s =

(
s0

s1

)
, where the dimension of s1 is the size of Ai.

4. Set y0 = s0, and

(a) if i = ', set y1 = Z"s1

(b) else, set y1 = precondCheby(Ai, s1, solveBi+1
, t, λmin, λmax).

5. Set x = ΠiP
−T
i L−T

i

(
y0

y1

)
.

We have chosen the parameters λmin, λmax, and t so that inequality (7) holds for for ε = 2e−2.
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We note that we apply L−T
i and L−1

i by forward and backward substitution, rather than by
constructing the inverses. Similarly, Πi may be applied in time proportional to the length of b as
it is either the identity, or the operator that orthogonalizes with respect to the all-1’s vector. We
remark that the multiplications by Πi are actually unnecessary in our code, as solveBi will only
appear inside a call to precondCheby, in which case it is multiplied on either side by matrices
that implicitly contain Πi. However, our analysis is simpler if we include these applications of
Πi.

Lemma 5.3 (Correctness of solveBi). If A is an irreducible SDDM0-matrix and Bi ! Ai−1 !

kBi for all i ≥ 1, then for 1 ≤ i ≤ ',

(a) The function solveBi is a symmetric linear operator.

(b) The function precondCheby(Ai−1, b , solveBi , t, λmin, λmax) is a symmetric linear operator
in b.

(c)
(1 − 2e−2)Zi

†
! Ai ! (1 + 2e−2)Zi

†,

where for i ≤ l − 1, Zi is the matrix such that

Zis1 = precondCheby(Ai, s1, solveBi+1
, t, λmin, λmax).

(d)
(1 − 2e−2)solveBi

†
! Bi ! (1 + 2e−2)solveBi

†.

Proof. We first prove (a) and (b) by reverse induction on i. The base case of our induction is
when i = ', in which case BuildPreconditioners sets Z" = A"

†, and so

solveB!
= Π"P

−T
" L−T

"

(
I 0
0 Z"

)
L−1
" P−1

" Π",

which is obviously a symmetric linear operator. Given that solveBi is a symmetric linear
operator, part (b) for Ai−1 follows from Proposition 5.2. Given that (b) holds for Ai and that
the call to precondCheby is realized by a symmetric matrix Zi, we then have that

solveBi = ΠiP
−T
i L−T

i

(
I 0
0 Zi

)
L−1

i P−1
i Πi

is a symmetric linear operator. We may thereby establish that (a) and (b) hold for all 1 ≥ i ≥ '.
We now prove properties (c) and (d), again by reverse induction. By construction Z" = A"

†,
so (c) holds for i = '. To see that if (c) holds for i, then (d) does also, note that

(1 − 2e−2)Zi
†
! Ai implies

(1 − 2e−2)Ai
†
! Zi, by Proposition 3.2, which implies

(1 − 2e−2)

(
I 0
0 Ai

†

)
!

(
I 0
0 Zi

)
which implies

16



(1 − 2e−2)Bi
† = (1 − 2e−2)ΠiP

−T
i L−T

i

(
I 0
0 Ai

†

)
L−1

i P−1
i Πi (by Proposition 4.1 (e))

! ΠiP
−T
i L−T

i

(
I 0
0 Zi

)
L−1

i P−1
i Πi = solveBi ,

which by Proposition 3.2 implies (1−2e−2)solveBi
† ! Bi. The inequality Bi ! (1+2e−2)solveBi

†

may be established similarly.
To show that when (d) holds for i then (c) holds for i−1, note that (d) and Bi ! Ai−1 ! k ·Bi

imply
(1 − 2e−2)solveBi

†
! Ai−1 ! k(1 + 2e−2)solveBi

†.

So, (c) for i − 1 now follows from Proposition 5.2 and the fact that λmin, λmax and t have been
chosen so that inequality (7) is satisfied with ε = 2e−2.

Lemma 5.4 (Complexity of solveBi). If A0 is an irreducible, n-by-n SDDM0-matrix with 2m
non-zero off-diagonal entries and each Bi is a k-ultra-sparsifier of Ai−1, then solveB1

runs in
time

O(n + m).

Proof. Let Ti denote the running time of solveBi . We will prove by reverse induction on i that
there exists a constant c such that

Ti ≤ c (dim (Bi) + (γχ+ δ)(noff (Ai) + dim (Ai))) , (8)

where
γ = 196 and δ = 15.

This will prove the lemma as dim (B1) = dim (A0) = n, and Proposition 5.1 implies

(γχ+ δ)(noff (Ai) + dim (Ai)) ≤ (γχ+ δ)
5χm

k
≤ m

5γχ2 + 5δχ

(14χ+ 1)2
= O(m).

To prove (8), we note that there exists a constant c so that steps 2 and 5 take time at most
c(dim (Bi)) (by Proposition 4.1), step 4a takes time at most c(dim (A")

2), and step 4b takes
time at most t(c · dim (Ai) + c · noff (Ai) + Ti+1), where t is as defined on step 1 of solveBi .

The base case of our induction will be i = ', in which case the preceding analysis implies

T" ≤ c
(
dim (B") + dim (A")

2
)

≤ c (dim (B") + (66χ+ 6)dim (A")) , (by step 2 of BuildPreconditioners)

which satisfies (8). We now prove (8) is true for i < ', assuming it is true for i + 1. We have

Ti ≤ c (dim (Bi)) + t(c · dim (Ai) + c · noff (Ai) + Ti+1)

≤ c
[
dim (Bi) + t

(
dim (Ai) + noff (Ai) + dim (Bi+1) + (γχ+ δ)(noff (Ai+1) + dim (Ai+1))

)]

(by the induction hypothesis)

≤ c
[
dim (Bi) + t

(
2 dim (Ai) + noff (Ai) + (γχ+ δ)(5 noff (Ai)χ/k)

)]
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(by Proposition 5.1)

≤ c [dim (Bi) + t (2 dim (Ai) + 6 noff (Ai))] ,

as γχ2 + δχ ≤ k. As
6t ≤ 6 · (1.33(14χ + 1) + 1) ≤ γχ+ δ,

we have proved that (8) is true for i as well.

We now state and analyze our ultimate solver.

x = solve(A, b , ε)

1. Set λmin = 1 − 2e−2, λmax = (1 + 2e−2)k and t =
⌈
0.67

√
k ln(2/ε)

⌉
.

2. Run BuildPreconditioners(A).

3. x = precondCheby(A, b , solveB1
, t, λmin, λmax).

Theorem 5.5 (Nearly Linear-Time Solver). On input an irreducible n-by-n SDDM0-matrix A
with 2m non-zero off-diagonal entries and an n-vector b, with probability at least 1 − 1/500,
solve(A, b , ε) runs in time

O(m logc4 m log(1/ε)) + m logO(1) m

and produces an x̃ satisfying ∥∥∥x̃ − A†b
∥∥∥

A
≤ ε

∥∥∥A†b
∥∥∥

A
.

Proof. By Proposition 5.1, the numbers noff (Ai) are geometrically decreasing, and l ≤ logk/3χ m.
So we may use Theorem 10.5 to show that the time required to build the preconditioners is at
most m logO(1) m. If each Bi is a k-ultra-sparsifier of Ai−1, then the bound on the A-norm of
the output follows by an analysis similar to that used to prove Lemma 5.3. In this case, we may
use Lemma 5.4 to bound on the running time of step 3 by

O (mt) = O(m
√

k log(1/ε)) = O (m logc4 n log(1/ε)) .

The probability that there is some Bi that is not a k-ultra-sparsifier of Ai−1 is at most

∑

i

1

2 dim (Bi)
≤ l

2(66χ + 6)
≤

logk/3χ m

2(66χ+ 6)
< 1/500,

assuming c3, c4 ≥ 1.

If the non-zero structure of A is planar, then by Theorem 9.5, we can replace all the calls
to UltraSparsify in the above algorithm with calls to UltraSimple. By Theorem 9.1, this
is like having (k, h)-ultra-sparsifiers with h = O(log n log2 log n). Thus, the same analysis goes
through with χ = O(log n log2 log n), and the resulting linear system solver runs in time

O(n log2 n + n log n log2 log n log(1/ε)).
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We remark that our analysis is very loose when m is much larger than n. In this case, the
first ultra-sparsifier constructed, B1, will probably have close to n edges, which could be much
lower than the bound proved in Proposition 5.1. While it is not necessary for the proof of our
theorem, one could remove this slack by setting B1 = Sparsify(A0, 1/2n) in this case.

6 Computing Approximate Fiedler Vectors

Fiedler [Fie73] was the first to recognize that the eigenvector associated with the second-smallest
eigenvalue of the Laplacian matrix of a graph could be used to partition a graph. From a result
of Mihail [Mih89], we know that any vector whose Rayleigh quotient is close to this eigenvalue
can also be used to find a good partition. We call such a vector an approximate Fiedler vector.

Definition 6.1 (Approximate Fiedler Vector). For a Laplacian matrix A, v is an ε-approximate
Fiedler vector if v is orthogonal to the all-1’s vector and

vT Av

vT v
≤ (1 + ε)λ2(A),

where λ2(A) is the second-smallest eigenvalue of A.

Our linear system solvers may be used to quickly compute ε-approximate Fiedler vectors.
We will prove that the following algorithm does so with probability at least 1− p.

v = ApproxFiedler(A, ε, p)

1. Set λmin = 1 − 2e−2, λmax = (1 + 2e−2)k and t =
⌈
0.67

√
k ln(8/ε)

⌉
.

2. Set k = 8 ln(18(n − 1)/ε)/ε.

3. For a = 1, . . . , *log2 p+.

(a) Run BuildPreconditioners(A).

(b) Choose r0 to be a random unit vector orthogonal to the all-1’s vector.

(c) For b = 1, . . . , k

r b = precondCheby(A, r b−1, solveB1
, t, λmin, λmax).

(d) Set va = rk.

4. Let a0 be the index of the vector minimizing vT
a0

Ava0
/vT

a0
va0

.

5. Set v = va0
.

Theorem 6.2. On input a Laplacian matrix A with m non-zero entries and ε, p > 0, with
probability at least 1−1/p, ApproxFiedler(A, ε, p) computes an ε-approximate Fiedler vector of
A in time

m logO(1) m log(1/p) log(1/ε)/ε.
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Our proof of Theorem 6.2 will use the following proposition.

Proposition 6.3. If Z is a matrix such that

(1 − ε)Z†
! A ! (1 + ε)Z†,

and v is a vector such that vT Z†v ≤ (1+ε)λ2(Z†), for some ε ≤ 1/5, then v is a 4ε-approximate
Fiedler vector of A.

Proof. We first observe that
λ2(Z

†) ≤ λ2(A)/(1 − ε).

We then compute

vT Av ≤ (1 + ε)vT Z†v

≤ (1 + ε)(1 + ε)λ2(Z
†)

≤ (1 + ε)(1 + ε)λ2(A)/(1 − ε)
≤ (1 + 4ε)λ2(A),

for ε ≤ 1/5.

Proof of Theorem 6.2. As we did in the proof of Lemma 5.3 and Theorem 5.5, we can show that
precondCheby(A, b , solveB1

, t, λmin, λmax) is a linear operator in b. Let Z denote the matrix
realizing this operator. As in the proof of Lemma 5.3, we can show that (1 − ε/4)Z† ! A !

(1 + ε/4)Z†.
By Proposition 6.3, it suffices to show that with probability at least 1/2 each vector va

satisfies
vT

a Z†va/v
T
a va ≤ (1 + ε/4)λ2(Z

†).

To this end, let 0 = µ1 ≤ µ2 ≤ · · · ≤ µn be the eigenvalues of Z†, and let 1 = u1, . . . ,un be
corresponding eigenvectors. Let

r0 =
∑

i≥2

αiu i,

and recall that (see e.g. [SST06, Lemma B.1])

Pr
[
|α2| ≥ 2/3

√
(n − 1)

]
≥ 2√

2π

∫ ∞

2/3
e−t2/2 dt ≥ 0.504.

Thus, with probably at least 1/2, the call to BuildPreconditioners succeeds and |α2| ≥
2/3

√
(n − 1). In this case,

k ≥ 8 ln(8/α2
2ε)/ε. (9)

We now show that this inequality implies that rk satisfies

(rk)T Z†rk

(rk)T rk
≤ (1 + ε/4)µ2.

To see this, let j be the greatest index such that µj ≤ (1 + ε/8)µ2, and compute

rk = Zkr0 =
∑

i≥2

αi/µ
k
i u i,
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so

(rk)T Z†rk

(rk)T rk
=

∑
i≥2 α

2
i /µ

2k−1
i∑

i≥2 α
2
i /µ

2k
i

≤
∑

j≥i≥2 α
2
i /µ

2k−1
i∑

j≥i≥2 α
2
i /µ

2k
i

+

∑
i>j α

2
i /µ

2k−1
i∑

i≥2 α
2
i /µ

2k
i

≤ µj +

∑
i>j α

2
i /µ

2k−1
i

α2
2/µ

2k
2

≤ (1 + ε/8)µ2 + µ2

(∑
i>j α

2
i (µ2/µi)2k−1

α2
2

)

≤ (1 + ε/8)µ2 + µ2

(∑
i>j α

2
i (1/(1 + ε/8))2k−1

α2
2

)

≤ (1 + ε/8)µ2 + µ2

∑

i>j

α2
i ε/8 (by inequality (9))

≤ (1 + ε/8)µ2 + µ2(ε/8)

≤ (1 + ε/4)µ2.

7 Laplacians and Weighted Graphs

We will find it convenient to describe and analyze our preconditioners for Laplacian matrices
in terms of weighted graphs. This is possible because of the isomorphism between Laplacian
matrices and weighted graphs. To an n-by-n Laplacian matrix A, we associate the graph with
vertex set {1, . . . , n} having an edge between vertices u and v of weight −A(u, v) for each u and
v such that A(u, v) is non-zero.

All the graphs we consider in this paper will be weighed. If u and v are distinct vertices in
a graph, we write (((u, v))) to denote an edge between u and v of weight 1. Similarly, if w > 0,
then we write w(((u, v))) to denote an edge between u and v of weight w. A weighted graph is then
a pair G = (V,E) where V is a set of vertices and E is a set of weighted edges on V , each of
which spans a distinct pair of vertices. The Laplacian matrix LG of the graph G is the matrix
such that

LG(u, v) =






−w if there is an edge w(((u, v))) ∈ E

0 if u %= v and there is no edge between u and v in E
∑

w(((u,x)))∈E w if u = v.

We recall that for every vector x ∈ IRn,

xT LGx =
∑

w(((u,v)))∈E

w(xu − x v)
2.

For graphs G and H, we define the graph G + H to be the graph whose Laplacian matrix is
LG + LH .
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8 Graphic Inequalities, Resistance, and Low-Stretch Spanning

Trees

In this section, we introduce the machinery of “graphic inequalities” that underlies the proofs in
the rest of the paper. We then introduce low-stretch spanning trees, and use graphic inequalities
to bound how well a low-stretch spanning tree preconditions a graph. This proof provides the
motivation for the construction in the next section.

We begin by overloading the notation ! by writing

G ! H and E ! F

if G = (V,E) and H = (V, F ) are two graphs such that their Laplacian matrices, LG and LH

satisfy
LG ! LH .

Many facts that have been used in the chain of work related to this paper can be simply
expressed with this notation. For example, the Splitting Lemma of [BGH+06] becomes

A1 ! B1 and A2 ! B2 implies A1 + A2 ! B1 + B2.

We also observe that if B is a subgraph of A, then

B ! A.

We define the resistance of an edge to be the reciprocal of its weight. Similarly, we define
the resistance of a simple path to be the sum of the resistances of its edges. For example,
the resistance of the path w1(((1, 2))), w2(((2, 3))), w3(((3, 4))) is (1/w1 + 1/w2 + 1/w3). Of course, the
resistance of a trivial path with one vertex and no edges is zero. If one multiplies all the weights
of the edges in a path by α, its resistance decreases by a factor of α.

The next lemma says that a path of resistance r supports an edge of resistance r. This
lemma may be derived from the Rank-One Support Lemma of [BH03b], and appears in simpler
form as the Congestion-Dilation Lemma of [BGH+06] and Lemma 4.6 of [Gre96].

Lemma 8.1 (Path Inequality). Let e = w(((u, v))) and let P be a path from u to v. Then,

e ! w resistance(P ) · P.

Proof. After dividing both sides by w, it suffices to consider the case w = 1. Without loss of
generality, we may assume that e = (((1, k + 1))) and that P consists of the edges wi(((i, i + 1))) for
1 ≤ i ≤ k. In this notation, the lemma is equivalent to

(((1, k + 1))) !

(
∑

i

1

wi

)
(
w1(((1, 2))) + w2(((2, 3))) + · · · + wk(((k, k + 1)))

)
.

We prove this for the case k = 2. The general case follows by induction.
Recall Cauchy’s inequality, which says that for all 0 < α < 1,

(a + b)2 ≤ a2/α+ b2/(1 − α).
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For k = 2, the lemma is equivalent to

(x1 − x3)
2 ≤ (1 + w1/w2)(x1 − x2)

2 + (1 + w2/w1)(x2 − x3)
2,

which follows from Cauchy’s inequality with α = w2/(w1 + w2).

Recall that a spanning tree of a weighted graph G = (V,E) is a connected subgraph of G
with exactly |V | − 1 edges. The weights of edges that appear in a spanning tree are assumed to
be the same as in G. If T is a spanning tree of a graph G = (V,E), then for every pair of vertices
u, v ∈ V , T contains a unique path from u to v. We let T (u, v) denote this path. We now use
graphic inequalities to derive a bound on how well T preconditions G. This bound strengthens
a bound of Boman and Hendrickson [BH03b, Lemma 4.9].

Lemma 8.2. Let G = (V,E) be a graph and let T be a spanning tree of G. Then,

T ! G !

(
∑

e∈E

resistance(T (e))

resistance(e)

)

· T.

Proof. As T is a subgraph of G, T ! G is immediate. To prove the right-hand inequality, we
compute

E =
∑

e∈E

e

!
∑

e∈E

resistance(T (e))

resistance(e)
· T (e), by Lemma 8.1

!

(
∑

e∈E

resistance(T (e))

resistance(e)

)

· T, as T (e) ! T .

Definition 8.3. Given a tree T spanning a set of vertices V and a weighted edge e = w(((u, v)))
with u, v ∈ V , we define the stretch of e with respect to T to be

stT (e) =
resistance(T (e))

resistance(e)
= w · resistance(T (e)).

If E is a set of edges on V , then we define

stT (E) =
∑

e∈E

stT (e).

With this definition, the statement of Lemma 8.2 may be simplified to

T ! G ! stT (E) · T. (10)

We will often use the following related inequality, which follows immediately from Lemma 8.1
and the definition of stretch.

w(((u, v))) ! stT (w(((u, v)))) T (u, v) = w stT ((((u, v)))) T (u, v), (11)

where we recall that T (u, v) is the unique path in T from u to v.
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9 Preconditioning with Low-Stretch Trees

In this section, we present a simple preconditioning algorithm, UltraSimple, that works by
simply adding edges to low-stretch spanning trees. This algorithm is sufficient to obtain all our
results for planar graphs. For arbitrary graphs, this algorithm might add too many additional
edges. We will show in Section 10 how these extra edges can be removed via sparsification.

9.1 Low-Stretch Trees

Low-stretch spanning trees were introduced by Alon, Karp, Peleg and West [AKPW95]. At
present, the construction of spanning trees with the lowest stretch is due to Abraham, Bartal
and Neiman [ABN08], who prove

Theorem 9.1 (Low Stretch Spanning Trees). There exists an O(m log n + n log2 n)-time algo-
rithm, LowStretch, that on input a weighted connected graph G = (V,E), outputs a spanning
tree T of G such that

stT (E) ≤ cABN m log n log log n(log log log n)3,

where m = |E|, for some constant cABN . In particular, stT (E) = O(m log n log2 log n).

9.2 Augmenting Low-Stretch Spanning Trees

To decide which edges to add to the tree, we first decompose the tree into a collection of
subtrees so that no non-singleton subtree is attached to too many edges of E of high stretch.
In the decomposition, we allow subtrees to overlap at a single vertex, or even consist of just a
single vertex. Then, for every pair of subtrees connected by edges of E, we add one such edge
of E to the tree. The subtrees are specified by the subset of the vertices that they span.

Definition 9.2. Given a tree T that spans a set of vertices V , a T -decomposition is a decom-
position of V into sets W1, . . . ,Wh such that V = ∪Wi, the graph induced by T on each Wi is a
tree, possibly with just one vertex, and for all i %= j, |Wi ∩ Wj| ≤ 1.

Given an additional set of edges E on V , a (T,E)-decomposition is a pair ({W1, . . . ,Wh} , ρ)
where {W1, . . . ,Wh} is a T -decomposition and ρ is a map that sends each edge of E to a set or
pair of sets in {W1, . . . ,Wh} so that for each edge in (u, v) ∈ E,

(a) if ρ(u, v) = {Wi} then {u, v} ∈ Wi, and

(b) if ρ(u, v) = {Wi,Wj}, then either u ∈ Wi and v ∈ Wj , or u ∈ Wj and v ∈ Wi.

We remark that as the sets Wi and Wj can overlap, it is possible that ρ(u, v) = {Wi,Wj},
u ∈ Wi and v ∈ Wi ∩ Wj.

We use the following tree decomposition theorem to show that one can always quickly find a
T -decomposition of E with few components in which the sum of stretches of the edges attached
to each component is not too big. As the theorem holds for any non-negative function η on the
edges, not just stretch, we state it in this general form.
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W3 W4

W5

W1
W2

Figure 2: An example of a tree decomposition. Note that sets W1 and W6 overlap, and that set
W5 is a singleton set and that it overlaps W4.

Theorem 9.3 (decompose). There exists a linear-time algorithm, which we invoke with the
syntax

({W1, . . . ,Wh} , ρ) = decompose(T,E, η, t),

that on input a set of edges E on a vertex set V , a spanning tree T on V , a function η : E → IR+,
and an integer 1 < t ≤

∑
e∈E η(e), outputs a (T,E)-decomposition ({W1, . . . ,Wh} , ρ), such that

(a) h ≤ t,

(b) for all Wi such that |Wi| > 1,

∑

e∈E:Wi∈ρ(e)

η(e) ≤ 4

t

∑

e∈E

η(e).

For pseudo-code and a proof of this theorem, see Appendix C. We remark that when t ≥ n,
the algorithm can just construct a singleton set for every vertex.

For technical reasons, edges with stretch less than 1 can be inconvenient. So, we define

η(e) = max(stT (e), 1) and η(E) =
∑

e∈E

η(e). (12)

The tree T should always be clear from context.
Given a (T,E)-decomposition, ({W1, . . . ,Wh} , ρ), we define the map

σ : {1, . . . , h} × {1, . . . , h} → E ∪ {undefined}

by setting

σ(i, j) =

{
arg maxe:ρ(e)={Wi,Wj} weight(e)/η(e), if i %= j and such an e exists

undefined otherwise.
(13)

In the event of a tie, we let e be the lexicographically least edge maximizing weight(e)/η(e) such
that ρ(e) = {Wi,Wj}. Note that σ(i, j) is a weighted edge.

The map σ tells us which edge from E between Wi and Wj to add to T . The following
property of σ, which follows immediately from its definition, will be used in our analysis in this
and the next section.
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Proposition 9.4. For every i, j such that σ(i, j) is defined and for every e ∈ E such that
ρ(e) = {Wi,Wj},

weight(e)

η(e)
≤ weight(σ(i, j))

η(σ(i, j))
.

We can now state the procedure by which we augment a spanning tree.

F = AugmentTree(T,E, t),
E is set of weighted edges,
T is a spanning tree of the vertices underlying E,
t is an integer.

1. Compute stT (e) for each edge e ∈ E.

2. Set ((W1, . . . ,Wh) , ρ) = decompose(T,E, η, t), where η(e) is as defined in (12).

3. Set F to be the union of the weighted edges σ(i, j) over all pairs 1 ≤ i < j ≤ h for which
σ(i, j) is defined, where σ(i, j) is as defined in (13).

A = UltraSimple(E, t)

1. Set T = LowStretch(E).

2. Set F = AugmentTree(T,E, t).

3. Set A = T ∪ F .

We remark that when t ≥ n, UltraSimple can just return A = E.

Theorem 9.5 (AugmentTree). On input a set of weighted edges E, a spanning subtree T , and
an integer 1 < t ≤ η(E), the algorithm AugmentTree runs in time O(m log n), where m = |E|.
The set of edges F output by the algorithm satisfies

(a) F ⊆ E,

(b) |F | ≤ t2/2,

(c) If T ⊆ E, as happens when AugmentTree is called by UltraSimple, then (T ∪ F ) ! E.

(d)

E !
12η(E)

t
· (T ∪ F ). (14)

Moreover, if E is planar then A is planar and |F | ≤ 3t − 6.

Proof. In Appendix B, we present an algorithm for computing the stretch of each edge of E in
time O(m log n). The remainder of the analysis of the running time is trivial. Part (a) follows
immediately from the statement of the algorithm. When T ⊆ E, T ∪F ⊆ E, so part (c) follows
as well.

26



To verify (b), note that the algorithm adds at most one edge to F for each pair of sets in
W1, . . . ,Wh, and there are at most

(t
2

)
≤ t2/2 such pairs. If E is planar, then F must be planar

as F is a subgraph of E. Moreover, we can use Lemma C.1 to show that the graph induced by
E on the sets W1, . . . ,Wh is also planar. Thus, the number of pairs of these sets connected by
edges of E is at most the maximum number of edges in a planar graph with t vertices, 3t − 6.

We now turn to the proof of part (d). Set

β = 4η(E)/t. (15)

By Theorem 9.3, ρ and W1, . . . ,Wh satisfy

∑

e:Wi∈ρ(e)

η(e) ≤ β, for all Wi such that |Wi| > 1. (16)

Let Eint
i denote the set of edges e with ρ(e) = (Wi,Wi), and let Eext

i denote the set of edges
e with |ρ(e)| = 2 and Wi ∈ ρ(e). Let Eint = ∪iEint

i and Eext = ∪iEext
i . Also, let Ti denote

the tree formed by the edges of T inside the set Wi. Note that when |Wi| = 1, Ti and Eint
i are

empty.
We will begin by proving that when |Wi| > 1,

Eint
i !




∑

e∈Eint
i

η(e)



 Ti, (17)

from which it follows that

Eint
!

∑

i:|Wi|>1




∑

e∈Eint
i

η(e)



 Ti. (18)

For any edge e ∈ Eint
i , the path in T between the endpoints of e lies entirely in Ti. So, by

(11) we have
e ! stT (e) · Ti ! η(e) · Ti.

Inequality (17) now follows by summing over the edges e ∈ Eint
i .

We now define the map τ : E → E ∪ {undefined} by

τ(e) =

{
σ(i, j), if |ρ(e)| = 2, where ρ(e) = {Wi,Wj}, and

undefined otherwise.
(19)

To handle the edges bridging components, we prove that for each edge e with ρ(e) = (Wi,Wj),

e ! 3η(e)(Ti + Tj) + 3
weight(e)

weight(τ(e))
· τ(e) (20)

Let e = w(((u, v))) be such an edge, with u ∈ Wi and v ∈ Wj. Let τ(e) = z(((x, y))), with x ∈ Wi and
y ∈ Wj. Let ti denote the last vertex in Ti on the path in T from u to v (see Figure 3). If Ti is
empty, ti = u. Note that ti is also the last vertex in Ti on the path in T from x to y. Define tj
similarly. As Ti(u, x) ⊆ Ti(u, ti) ∪ Ti(ti, x), the tree Ti contains a path from u to x of resistance
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Figure 3: In this example, e = w(((u, v))) and τ(e) = z(((x, y))).

at most
resistance(Ti(u, ti)) + resistance(Ti(ti, x)),

and the tree Tj contains a path from y to v of resistance at most

resistance(Tj(y, tj)) + resistance(Tj(tj , v)).

Furthermore, as Ti(u, ti) + Tj(tj, v) ⊆ T (u, v) and Ti(ti, x) + Tj(y, tj) ⊆ T (x, y), the sum of the
resistances of the paths from u to x in Ti and from y to v in Tj is at most

resistance(T (u, v)) + resistance(T (x, y)) = stT (e)/w + stT (τ(e))/z

≤ η(e)/w + η(τ(e))/z

≤ 2η(e)/w,

where the last inequality follows from Proposition 9.4. Thus, the graph

3η(e)(Ti + Tj) + 3w(((x, y))) = 3η(e)(Ti + Tj) + 3
weight(e)

weight(τ(e))
· τ(e)

contains a path from u to v of resistance at most

2

3

1

w
+

1

3

1

w
=

1

w
,

which by Lemma 8.1 implies (20).
We will now sum (20) over every edge e ∈ Eext

i for every i, observing that this counts every
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edge in Eext twice.

Eext = (1/2)
∑

i

∑

e∈Eext
i

e

!
∑

i

∑

e∈Eext
i

3η(e)Ti + (1/2)
∑

i

∑

e∈Eext
i

3
weight(e)

weight(τ(e))
· τ(e)

= 3
∑

i




∑

e∈Eext
i

η(e)



 Ti + 3
∑

e∈Eext

weight(e)

weight(τ(e))
· τ(e)

= 3
∑

i:|Wi|>1




∑

e∈Eext
i

η(e)



 Ti + 3
∑

e∈Eext

weight(e)

weight(τ(e))
· τ(e), (21)

as Ti is empty when |Wi| = 1.
We will now upper bound the right-hand side of (21). To handle boundary cases, we divide

Eext into two sets. We let Eext
single consist of those e ∈ Eext for which both sets in ρ(e) have

size 1. We let Eext
general = Eext − Eext

single contain the rest of the edges in Eext. For e ∈ Eext
single,

τ(e) = e, while for e ∈ Eext
general, τ(e) ∈ Eext

general.

For Eext
single, we have

∑

e∈Eext
single

weight(e)

weight(τ(e))
· τ(e) =

∑

e∈Eext
single

τ(e) = Eext
single.

To evaluate the sum over the edges e ∈ Eext
general, consider any f ∈ Eext

general in the image of

τ . Let i be such that f ∈ Eext
i and |Wi| > 1. Then, for every e such that τ(e) = f , we have

e ∈ Eext
i . So, by Proposition 9.4,

∑

e∈Eext

τ(e)=f

weight(e)

weight(τ(e))
=

∑

e∈Eext
i

τ(e)=f

weight(e)

weight(τ(e))

≤
∑

e∈Eext
i

weight(e)

weight(τ(e))
≤

∑

e∈Eext
i

η(e)

η(τ(e))
≤

∑

e∈Eext
i

η(e) ≤ β. (22)

Thus,
∑

e∈Eext

weight(e)

weight(τ(e))
· τ(e) ! Eext

single +
∑

f∈image(τ)
f∈Eext

general

β · f ! β · F.

Plugging this last inequality into (21), we obtain

Eext
! 3

∑

i:|Wi|>1




∑

e∈Eext
i

η(e)



 Ti + 3β · F.
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Applying (18) and then (16), we compute

E = Eext + Eint
! 3

∑

i:|Wi|>1

Ti




∑

e∈Eint
i

η(e) +
∑

e∈Eext
i

η(e)



 + 3β · F ! 3β · (T ∪ F ),

which by (15) implies the lemma.

We now observe three sources of slack in Theorem 9.5, in decreasing order of importance.
The first is the motivation for the construction of ultra-sparsifiers in the next section.

1. In the proof of Theorem 9.5, we assume in the worst case that the tree decomposition
could result in each tree Ti being connected to t − 1 other trees, for a total of t(t − 1)/2
extra edges. Most of these edges seem barely necessary, as they could be included at a
small fraction of their original weight. To see why, consider the crude estimate at the end
of inequality (22). We upper bound the multiplier of one bridge edge f from Ti,

∑

e∈Eext
i

τ(e)=f

weight(e)

weight(τ(e))
,

by the sum of the multipliers of all bridge edges from Ti,

∑

e∈Eext
i

weight(e)

weight(τ(e))
.

The extent to which this upper bound is loose is the factor by which we could decrease
the weight of the edge f in the preconditioner.

While we cannot accelerate our algorithms by decreasing the weights with which we include
edges, we are able to use sparsifiers to trade many low-weight edges for a few edges of
higher weight. This is how we reduce the number of edges we add to the spanning tree to
t logO(1) n.

2. The number of edges added equals the number of pairs of trees that are connected. While
we can easily obtain an upper bound on this quantity when the graph has bounded genus,
it seems that we should also be able to bound this quantity when the graph has some nice
geometrical structure.

3. The constant 12 in inequality (14) can be closer to 2 in practice. To see why, first note
that the internal and external edges count quite differently: the external edges have three
times as much impact. However, most of the edges will probably be internal. In fact, if
one uses the algorithm of [ABN08] to construct the tree, then one can incorporate the
augmentation into this process to minimize the number of external edges. Another factor
of 2 can be saved by observing that the decomposeTree, as stated, counts the internal
edges twice, but could be modified to count them once.
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10 Ultra-Sparsifiers

We begin our construction of ultra-sparsifiers by building ultra-sparsifiers for the special case in
which our graph has a distinguished vertex r and a low-stretch spanning tree T with the property
that for every edge e ∈ E − T , the path in T connecting the endpoints of e goes through r.
In this case, we will call r the root of the tree. All of the complications of ultra-sparsification
will be handled in this construction. The general construction will follow simply by using tree
splitters to choose the roots and decompose the input graph.

The algorithm RootedUltraSparsify begins by computing the same set of edges σ(i, j),
as was computed by UltraSimple. However, when RootedUltraSparsify puts one of these
edges into the set F , it gives it a different weight: ω(i, j). For technical reasons, the set F is
decomposed into subsets F b according to the quantities φ(f), which will play a role in the analysis
of RootedUltraSparsify analogous to the role played by η(e) in the analysis of UltraSimple.
Each set of edges F b is sparsified, and the union of the edges of E that appear in the resulting
sparsifiers are returned by the algorithm. The edges in F b cannot necessarily be sparsified
directly, as they might all have different endpoints. Instead, F b is first projected to a graph Hb

on vertex set {1, . . . , h}. After a sparsifier Hb
s of Hb is computed, it is lifted back to the original

graph to form Eb
s. Note that the graph Es returned by RootedUltraSparsify is a subgraph of

E, with the same edge weights.

We now prove that F = ∪'log2 η(E)(
b=1 F b. Our proof will use the function η, which we recall

was defined in (12) and which was used to define the map σ.

Lemma 10.1. For φ as defined in (24), for every f = ψ(i, j)σ(i, j) ∈ F ,

1 ≤ ψ(i, j) ≤ φ(f) ≤ η(E). (25)

Proof. Recall from the definitions of φ and ψ that

φ(f) ≥ ψ(i, j) =

∑
e∈E:ρ(e)={Wi,Wj} weight(e)

weight(σ(i, j))
.

By definition σ(i, j) is an edge in E satisfying ρ(σ(i, j)) = {Wi,Wj}; so, the right-hand side of
the last expression is at least 1.

To prove the upper bound on φ(f), first apply Proposition 9.4 to show that

ψ(i, j) =

∑
e∈E:ρ(e)={Wi,Wj} weight(e)

weight(σ(i, j))
≤

∑
e∈E:ρ(e)={Wi,Wj} η(e)

η(σ(i, j))
≤ η(E),

as η is always at least 1. Similarly,

stT (f) =
ω(i, j)

weight(σ(i, j))
stT (σ(i, j)) =

stT (σ(i, j))

weight(σ(i, j))




∑

e∈E:ρ(e)={Wi,Wj}

weight(e)





≤ η(σ(i, j))

weight(σ(i, j))




∑

e∈E:ρ(e)={Wi,Wj}

weight(e)



 ≤
∑

e∈E:ρ(e)={Wi,Wj}

η(e) ≤ η(E),

where the second-to-last inequality follows from Proposition 9.4.
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Es = RootedUltraSparsify(E,T, r, t, p)

Condition: for all e ∈ E, r ∈ T (e). The parameter t is a positive integer at most *η(E)+.

1. Compute stT (e) and η(e) for each edge e ∈ E, where η is as defined in (12).

2. If t ≥ |E|, return Es = E.

3. Set ({W1, . . . ,Wh} , ρ) = decompose(T,E, η, t).

4. Compute σ, as given by (13), everywhere it is defined.

5. For every (i, j) such that σ(i, j) is defined, set

ω(i, j) =
∑

e∈E:ρ(e)={Wi,Wj}

weight(e) and ψ(i, j) = ω(i, j)/weight(σ(i, j)). (23)

6. Set F = {ψ(i, j)σ(i, j) : σ(i, j) is defined} .

7. For each f = ψ(i, j)σ(i, j) ∈ F , set

φ(f) = max(ψ(i, j), stT (f)). (24)

8. For b ∈ {1, . . . , *log2 η(E)+}:

(a) Set F b =

{
{f ∈ F : φ(f) ∈ [1, 2]} if b = 1
{
f ∈ F : φ(f) ∈ (2b−1, 2b]

}
otherwise

(b) Let Hb be the set of edges on vertex set {1, . . . , h} defined by

Hb =
{
ω(i, j)(((i, j))) : ψ(i, j)σ(i, j) ∈ F b

}
.

(c) Set Hb
s = Sparsify2(Hb, p).

(d) Set

Eb
s =

{
σ(i, j) : ∃w such that w(((i, j))) ∈ Hb

s

}
.

9. Set Es = ∪bEb
s.

32



It will be convenient for us to extend the domain of ρ to F by setting ρ(f) = ρ(e) where
e ∈ E has the same vertices as f . That is, when there exists γ ∈ IR+ such that f = γe. Define

β = 4η(E)/t.

Our analysis of RootedUltraSparsify will exploit the inequalities contained in the following
two lemmas.

Lemma 10.2. For every i for which |Wi| > 1,

∑

f∈F :Wi∈ρ(f)

stT (f) ≤ β.

Proof. Consider any f ∈ F , and let f = ψ(i, j)σ(i, j). Note that the weight of f is ω(i, j), and
recall that stT (f) ≤ η(f). We first show that

∑

e:τ(e)=σ(i,j)

η(e) ≥ η(f).

By Proposition 9.4, and the definition of τ in (19)

∑

e:τ(e)=σ(i,j)

η(e) ≥ η(σ(i, j))

weight(σ(i, j))

∑

e:τ(e)=σ(i,j)

weight(e)

=
η(σ(i, j))

weight(σ(i, j))
weight(f)

= max

(
weight(f)

weight(σ(i, j))
,

stT (σ(i, j))

weight(σ(i, j))
weight(f)

)

= max (ψ(i, j), stT (f))

= max (φ(f), stT (f)) (by (24))

≥ max (1, stT (f)) (by (25))

= η(f).

We then have ∑

e∈E:Wi∈ρ(e)

η(e) ≥
∑

f∈F :Wi∈ρ(f)

η(f).

The lemma now follows from the upper bound of 4η(E)/t imposed on the left-hand term by
Theorem 9.3.

Lemma 10.3. For every i for which |Wi| > 1,

∑

f∈F :Wi∈ρ(f)

φ(f) ≤ 2β. (26)

33



Proof. For an edge f ∈ F , let ψ(f) equal ψ(i, j) where f = ψ(i, j)σ(i, j). With this notation,
we may compute

∑

f∈F :Wi∈ρ(f)

φ(f) ≤
∑

f∈F :Wi∈ρ(f)

stT (f) +
∑

f∈F :Wi∈ρ(f)

ψ(f)

≤
∑

f∈F :Wi∈ρ(f)

η(f) +
∑

f∈F :Wi∈ρ(f)

ψ(f)

≤ β +
∑

f∈F :Wi∈ρ(f)

ψ(f),

by Lemma 10.2. We now bound the right-hand term as in the proof of inequality (22):

∑

f∈F :Wi∈ρ(f)

ψ(f) =
∑

e∈Eext
i

weight(e)

weight(τ(e))
≤

∑

e∈Eext
i

η(e)

η(τ(e))
≤

∑

e∈Eext
i

η(e) ≤ β,

by our choice of β and Theorem 9.3.

Lemma 10.4 (RootedUltraSparsify). Let T be a spanning tree on a vertex set V , and let E
be a non-empty set of edges on V for which there exists an r ∈ V be such that for all e ∈ E,
r ∈ T (v). For p > 0 and t a positive integer at most *η(E)+, let Es be the graph returned by
RootedUltraSparsify(E,T, r, t, p). The graph Es is a subgraph of E, and with probability at
least 1 − *log2 η(E)+ p,

|Es| ≤ c1 logc2(n/p)max(1, *log2 η(E)+)t, (27)

and
E ! (3β + 126βmax(1, log2 η(E))) · T + 120β · Es, (28)

where β = 4η(E)/t.

Proof. We first dispense with the case in which the algorithm terminates at line 2. If t ≥ m,
then both (27) and (28) are trivially satisfied by setting Es = E, as β ≥ 2.

By Theorem 1.3 each graph Hb
s computed by Sparsify2 is a c1 logc2(n/p)-sparsifier of Hb

according to Definition 1.2 with probability at least 1−p. As there are at most *log2 η(E)+ such
graphs Hb, this happens for all of these graphs with probability at least 1 − *log2 η(E)+ p. For
the remainder of the proof, we will assume that each graph Hb

s is a c1 logc2(n/p)-sparsifier of
Hb. Recalling that h ≤ t, the bound on the number of edges in Es is immediate.

Our proof of (28) will go through an analysis of intermediate graphs. As some of these could
be multi-graphs, we will find it convenient to write them as sums of edges.

To define these intermediate graphs, let ri be the vertex in Wi that is closest to r in T . As in
Section 9, let Ti denote the edges of the subtree of T with vertex set Wi. We will view ri as the
root of tree Ti. Note that if |Wi| = 1, then Wi = {ri} and Ti is empty. As distinct sets Wi and
Wj can overlap in at most one vertex,

∑
i Ti ≤ T . We will exploit the fact that for each e ∈ E

with ρ(e) = {Wi,Wj}, the path T (e) contains both ri and rj, which follows from the condition
r ∈ T (e).
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We now define the edge set Db, which is a projection of Hb to the vertex set r1, . . . , rh, and
Db

s, which is an analogous projection of the sparsifier Hb
s . We set

Db =
∑

(i,j):ψ(i,j)σ(i,j)∈F b

ω(i, j)(((ri, rj)))

and
Db

s =
∑

w(((i,j)))∈Hb
s

w(((ri, rj))).

As the sets Wi and Wj are allowed to overlap slightly, it could be the case that some ri = rj for
i %= j. In this case, Db would not be isomorphic to Hb.

Set
F b

s =
{
γψ(i, j)σ(i, j) : ∃γ and (i, j) so that γω(i, j)(((i, j))) ∈ Hb

s

}
.

The edge set Hb can be viewed as a projection of the edge set F b to the vertex set {1, . . . , h},
and the edge set F b

s can be viewed as a lift of Hb
s back into a reweighted subgraph of F b.

We will prove the following inequalities

E ! 3β · T + 3F (29)

F b
! 2β · T + 2Db (30)

Db
! (5/4)Db

s (31)

Db
s ! 16β · T + 2F b

s (32)

F b
s ! 8β · Eb

s (33)

Inequality (28) in the statement of the lemma follows from these inequalities and F =
∑

b F b.
To prove inequality (29), we exploit the proof of Theorem 9.5. The edges F constructed

in RootedUltraSparsify are the same as those chosen by UltraSimple, except that they are
reweighted by the function ψ. If we follow the proof of inequality (14) in Theorem 9.5, but
neglect to apply inequality (22), we obtain

E ! 3β · T + 3
∑

e∈Eext

weight(e)

weight(τ(e))
· τ(e) = 3β · T + 3F.

To prove inequality (30), consider any edge w(((u, v))) = f ∈ F b. Assume ρ(f) = {Wi,Wj},
u ∈ Wi and v ∈ Wj. We will now show that

f ! 2stT (f)(Ti + Tj) + 2w(((ri, rj))). (34)

As the path from u to v in T contains both ri and rj,

resistance(T (u, ri)) + resistance(T (rj , v)) ≤ resistance(T (u, v)) = stT (f)/w.

Thus, the resistance of the path

2stT (f)T (u, ri) + 2w(((ri, rj))) + 2stT (f)T (rj, v)
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is at most 1/w, and so Lemma 8.1 implies that

f ! 2stT (f)T (u, ri) + 2w(((ri, rj))) + 2stT (f)T (rj, v),

which in turn implies (34). Summing (34) over all f ∈ F b yields

F b
! 2

∑

i




∑

f∈F :Wi∈ρ(f)

stT (f)



 Ti + 2Db

F b
! 2

∑

i:|Wi|>1




∑

f∈F :Wi∈ρ(f)

stT (f)



 Ti + 2Db as Ti is empty when |Wi| = 1

! 2
∑

i

β · Ti + 2Db, by Lemma 10.2

! 2β · T + 2Db.

We now prove inequality (32), as it uses similar techniques. Let fs = w(((u, v))) ∈ F b
s . Then,

there exist γ and (i, j) so that γω(i, j)(((i, j))) ∈ Hb
s , u ∈ Wi, and v ∈ Wj. Set γ(fs) to be this

multiplier γ. By part (c) of Definition 1.2, we must have ω(i, j)(((i, j))) ∈ Hb and ψ(i, j)σ(i, j) ∈ F b.
Let f = ψ(i, j)σ(i, j). Note that fs = γ(fs)f . The sum of the resistances of the paths from ri

to u in Ti and from v to rj in Tj is

resistance(T (ri, u)) + resistance(T (v, rj)) ≤ resistance(T (u, v)) = stT (f)/ω(i, j),

as weight(f) = ω(i, j). Thus, the resistance of the path

2stT (f)T (ri, u) + 2f + 2stT (f)T (v, rj)

is at most 1/ω(i, j), and so Lemma 8.1 implies that

ω(i, j)(((ri, rj))) ! 2stT (f)(Ti + Tj) + 2f,

and

γ(fs)ω(i, j)(((ri, rj))) ! 2γ(fs)stT (f)(Ti + Tj) + 2fs

! 2γ(fs)φ(f)(Ti + Tj) + 2fs (by (24))

! 2b+1γ(fs)(Ti + Tj) + 2fs (by f ∈ F b).

Summing this inequality over all fs ∈ F b
s , we obtain

Db
s !

∑

i



2b+1
∑

fs∈F b
s :Wi∈ρ(fs)

γ(fs)



 Ti + 2F b
s .

For all i such that |Wi| > 1,
∑

fs∈F b
s :Wi∈ρ(fs)

γ(fs) ≤ 2
∣∣∣
{

f ∈ F b : Wi ∈ ρ(f)
}∣∣∣ (part (d) of Definition 1.2)

≤ 2
∑

f∈F b:Wi∈ρ(f)

φ(f)/2b−1

≤ 4β/2b−1 (by Lemma 10.3)

= β/2b−3. (35)
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So,

Db
s !

∑

i

16β · Ti + 2F b
s ! 16β · T + 2F b

s .

To prove inequality (33), let fs be any edge in Fs, let f be the edge in F such that fs = γ(fs)f ,
and let σ(i, j) be the edge such that fs = γ(fs)ψ(i, j)σ(i, j). It suffices to show that

weight(fs) ≤ 8β weight(σ(i, j)). (36)

Set b so that f ∈ F b. By (35),

γ(fs) ≤ β/2b−3 ≤ 8β/φ(f) = 8β/max(ψ(i, j), stT (f)) ≤ 8β/ψ(i, j).

As weight(fs) = γ(fs)ψ(i, j)weight(σ(i, j)), inequality (36) follows.
It remains to prove inequality (31). The only reason this inequality is not immediate from

part (a) of Definition 1.2 is that we may have ri = rj for some i %= j. Let R = {r1, . . . , rh} and
S = {1, . . . , h}, Define the map π : IRR → IRS by π(x)i = xri . We then have for all x ∈ IRR

xT LDbx = π(x)T LHbπ(x) and xT LDb
s
x = π(x)T LHb

s
π(x);

so,
xT LDbx = π(x)T LHbπ(x) ≤ (5/4)π(x)T LHb

s
π(x) = (5/4)xT LDb

s
x.

The algorithm UltraSparsifywill construct a low-stretch spanning tree T of a graph, choose
a root vertex r, apply RootedUltraSparsify to sparsify all edges whose path in T contains r,
and then work recursively on the trees obtained by removing the root vertex from T . The root
vertex will be chosen to be a tree splitter, where we recall that a vertex r is a splitter of a tree
T if the trees T 1, . . . , T q obtained by removing r each have at most two-thirds as many vertices
as T . It is well-known that a tree splitter can be found in linear time. By making the root a
splitter of the tree, we bound the depth of the recursion. This is both critical for bounding the
running time of the algorithm and for proving a bound on the quality of the approximation it
returns. For each edge e such that r %∈ T (e), T (e) is entirely contained in one of T 1, . . . , T q.
Such edges are sparsified recursively.

U = UltraSparsify(G = (V,E), k)
Condition: G is connected.

1. T = LowStretch(E).

2. Set t = 517 · max(1, log2 η(E)) ·
⌈
log3/2 n

⌉
η(E)/k and p =

(
2 *log η(E)+ n2

)−1
.

3. If t ≥ η(E) then set A = E − T ; otherwise, set A = TreeUltraSparsify(E − T, t, T, p).

4. U = T ∪ A.
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A = TreeUltraSparsify(E′, t′, T ′, p)

1. If E′ = ∅, return A = ∅.

2. Compute a splitter r of T ′.

3. Set Er = {edges e ∈ E′ such that r ∈ T ′(e)} and tr = *t′η(Er)/η(E′)+.

4. If tr > 1, set Ar = RootedUltraSparsify(Er, T ′, r, tr, p); otherwise, set Ar = ∅.

5. Set T 1, . . . , T q to be the trees obtained by removing r from T ′. Set V 1, . . . , V q to be the
vertex sets of these trees, and set E1, . . . , Eq so that Ei =

{
(u, v) ∈ E′ : {u, v} ⊆ V i

}
.

6. For i = 1, . . . , q, set

A = Ar ∪ TreeUltraSparsify(Ei, t′η(Ei)/η(E′), T i, p).

Theorem 10.5 (Ultra-Sparsification). On input a weighted, connected n-vertex graph G =
(V,E) and k ≥ 1, UltraSparsify(E, k) returns a set of edges U = T ∪ A ⊆ E such that T is a
spanning tree of G, U ⊆ E, and with probability at least 1 − 1/2n,

U ! E ! kU, (37)

and
|A| ≤ O

(m

k
logc2+5 n

)
, (38)

where m = |E|. Furthermore, UltraSparsify runs in expected time m logO(1) n.

We remark that this theorem is very loose when m/k ≥ n. In this case, the calls made to
decompose by RootedUltraSparsify could have t ≥ n, in which case decompose will just return
singleton sets, and the output of RootedUltraSparsify will essentially just be the output of
Sparsify2 on Er. In this case, the upper bound in (38) can be very loose.

Proof. We first dispense with the case t ≥ η(E). In this case, UltraSparsify simply returns
the graph E, so (37) is trivially satisfied. The inequality t ≥ η(E) implies k ≤ O(log2 n), so (38)
is trivially satisfied as well.

At the end of the proof, we will use the inequality t < η(E). It will be useful to observe that
every time TreeUltraSparsify is invoked,

t′ = tη(E′)/η(E).

To apply the analysis of RootedUltraSparsify, we must have

tr ≤ *η(Er)+ .

This follows from
tr =

⌈
t′η(Er)/η(E′)

⌉
= *tη(Er)/η(E)+ ≤ *η(Er)+ ,

as TreeUltraSparsify is only called if t < η(E).
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Each vertex of V can be a root in a call to RootedUltraSparsify at most once, so this sub-
routine is called at most n times during the execution of UltraSparsify. Thus by Lemma 10.4,
with probability at least

1 − n *log2 η(E)+ p = 1 − 1/2n,

every graph Es returned by a call to RootedUltraSparsify satisfies (27) and (28). Accordingly,
we will assume both of these conditions hold for the rest of our analysis.

We now prove the upper bound on the number of edges in A. During the execution of
UltraSparsify, many vertices become the root of some tree. For those vertices v that do not,
set tv = 0. By (27),

|A| =
∑

r∈V :tr>1

|Ar| ≤ c1 logc2(n/p)max(1, *log2 η(E)+)
∑

r∈V :tr>1

tr. (39)

As *z+ ≤ 2z for z ≥ 1 and Er1 ∩ Er2 = ∅ for each r1 %= r2,

∑

r∈V :tr>1

tr =
∑

r∈V :tr>1

⌈
η(Er)

η(E)
t

⌉
≤

∑

r∈V :tr>1

2η(Er)

η(E)
t ≤ 2t.

Thus,

(39) ≤ 2c1 logc2(n/p) *log2 η(E)+ t

≤ 2c1 logc2(n/p) *log2 η(E)+ 517 · log2 η(E) ·
⌈
log3/2 n

⌉
η(E)/k

≤ O
(m

k
logc2+5 n

)
,

where the last inequality uses η(E) = O(m log n log2 n) = O(m log2 n) from Theorem 9.1 and
log m = O(log n).

We now establish (37). For every vertex r that is ever selected as a tree splitter in line 2 of
TreeUltraSparsify, let T r be the tree T ′ of which r is a splitter, and let Er denote the set of
edges and tr be the parameter set in line 3. Observe that ∪rEr = E − T . Let

βr = 4η(Er)/tr,

and note this is the parameter used in the analysis of RootedUltraSparsify in Lemma 10.4. If
tr > 1, let Ar be the set of edges returned by the call to RootedUltraSparsify. By Lemma 10.4,
RootedUltraSparsify returns a set of edges Ar satisfying

Er
! (3βr + 126βr max(1, log2 η(E

r))) · T r + 120βr · Ar. (40)

On the other hand, if tr = 1 and so Ar = ∅, then βr = 4η(Er). We know that (40) is satisfied in
this case because Er ! η(Er)T r (by (10)). If tr = 0, then Er = ∅ and (40) is trivially satisfied.
As tr = *tη(Er)/η(E)+ ,

βr ≤ 4η(E)/t.

We conclude

Er
! 129βr max(1, log2 η(E

r))·T r+120βr·Ar
! 516(η(E)/t)max(1, log2 η(E

r))T r+120(η(E)/t)Ar .
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Adding T , summing over all r, and remembering η(Er) ≤ η(E), we obtain

T + (E − T ) ! T + 516(η(E)/t)max(1, log2 η(E))
∑

r

T r + 120(η(E)/t)A.

As r is always chosen to be a splitter of the tree input to TreeUltraSparsify, the depth of the

recursion is at most
⌈
log3/2 n

⌉
. Thus, no edge of T appears more than

⌈
log3/2 n

⌉
times in the

sum
∑

r T r, and we may conclude

T + (E − T ) ! T + 516(η(E)/t)max(1, log2 η(E))
⌈
log3/2 n

⌉
T + 120(η(E)/t)A

! 517(η(E)/t)max(1, log2 η(E))
⌈
log3/2 n

⌉
T + 120(η(E)/t)A

! k(T + A)

= kU,

where the second inequality follows from t ≤ η(E), and the third inequality follows from the
value chosen for t in line 2 of UltraSparsify.

To bound the expected running time of UltraSparsify, first observe that the call to
LowStretch takes time O(m log2 n). Then, note that the routine TreeUltraSparsify is re-
cursive, the recursion has depth at most O(log n), and all the graphs being processed by
TreeUltraSparsify at any level of the recursion are disjoint. The running time of TreeUltraSparsify
is dominated by the calls made to Sparsify2 inside RootedUltraSparsify. Each of these takes
nearly-linear expected time, so the overall expected running time of TreeUltraSparsify is
O(m logO(1) n).
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A Gremban’s reduction

Gremban [Gre96] (see also [MMP+05]) provides the following method for handling positive off-
diagonal entries. If A is a SDD0-matrix, then Gremban decomposes A into D + An + Ap, where
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D is the diagonal of A, An is the matrix containing all the negative off-diagonal entries of A,
and Ap contains all the positive off-diagonals. Gremban then considers the linear system

Â

(
x 1

x 2

)
= b̂, where Â =

[
D + An −Ap

−Ap D + An

]
and b̂ =

(
b

−b

)
,

and observes that x = (x 1−x 2)/2 will be the solution to Ax = b, if a solution exists. Moreover,
approximate solutions of Gremban’s system yield approximate solutions of the original:

∥∥∥∥

(
x 1

x 2

)
− Â†b̂

∥∥∥∥ ≤ ε
∥∥∥Â†b̂

∥∥∥ implies
∥∥∥x − A†b

∥∥∥ ≤ ε
∥∥∥A†b

∥∥∥ ,

where again x = (x 1 − x 2)/2. Thus we may reduce the problem of solving a linear system in a
SDD0-matrix into that of solving a linear system in a SDDM0-matrix that is at most twice as
large and has at most twice as many non-zero entries.

B Computing the stretch

We now show that given a weighted graph G = (V,E) and a spanning tree T of G, we can
compute stT (e) for every edge e ∈ E in O((m + n) log n) time, where m = |E| and n = |V |.

For each pair of vertices u, v ∈ V , let resistance(u, v) be the resistance of T (u, v), the path
in T connecting u and v. We first observe that for an arbitrary r ∈ V , we can compute
resistance(v, r) for all v ∈ V in O(n) time by a top-down traversal on the rooted tree obtained
from T with root r. Using this information, we can compute the stretch of all edges in Er =
{edges e ∈ E such that r ∈ T (e)} in time O(|Er|). We can then use tree splitters in the same
manner as in TreeUltraSparsify to compute the stretch of all edges in E in O((m + n) log n)
time.

C Decomposing Trees

The pseudo-code for for decompose appears on the next page. The algorithm performs a depth-
first traversal of the tree, greedily forming sets Wi once they are attached to a sufficient number
of edges of E. While these sets are being created, the edges they are responsible for are stored
in Fsub, and the sum of the value of η on these edges is stored in wsub. When a set Wi is formed,
the edges e for which ρ(e) = Wi are set to some combination of Fsub and Fv.

We assume that some vertex r has been chosen to be the root of the tree. This choice is
used to determine which nodes in the tree are children of each other.

Proof of Theorem 9.3. As algorithm decompose traverses the tree T once and visits each edge
in E once, it runs in linear time.

In our proof, we will say that an edge e is assigned to a set Wj if Wj ∈ ρ(e). To prove part
(a) of the theorem, we use the following observations: If Wj is formed in step 3.c.ii or step 6.b,
then the sum of η over edges assigned to Wj is at least φ, and if Wj is formed in step 7.b, then
the sum of η of edges incident to Wj and Wj+1 (which is a singleton) is at least 2φ. Finally,
if a set Wh is formed in line 5.b of decompose, then the sum of η over edges assigned to Wh is
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({W1, . . . ,Wh} , ρ) = decompose(T,E, η, t)

Comment: h, ρ, and the Wi’s are treated as global variables.

1. Set h = 0.
2. For all e ∈ E, set ρ(e) = ∅.
3. Set φ = 2

∑
e∈E η(e)/t.

4. (F,w,U) = sub(r).
5. If U %= ∅,

(a) h = h + 1.
(b) Wh = U .
(c) For all e ∈ F , set ρ(e) = ρ(e) ∪ {Wh}.

(F,w,U) = sub(v)

1. Let v1, . . . , vs be the children of v.
2. Set wsub = 0, Fsub = ∅ and Usub = ∅.
3. For i = 1, . . . , s

(a) (Fi, wi, Ui) = sub(vi).
(b) wsub = wsub + wi, Fsub = Fsub ∪ Fi, Usub = Usub ∪ Ui.
(c) If wsub ≥ φ,

i. h = h + 1.
ii. Set Wh = Usub ∪ {v}.
iii. For all e ∈ Fsub, set ρ(e) = ρ(e) ∪ {Wh}.
iv. Set wsub = 0, Fsub = ∅ and Usub = ∅.

4. Set Fv = {(u, v) ∈ E}, the edges attached to v.
5. Set wv =

∑
e∈Fv

η(e).
6. If φ ≤ wv + wsub ≤ 2φ,

(a) h = h + 1.
(b) Set Wh = Usub ∪ {v}.
(c) For all e ∈ Fsub ∪ Fv, set ρ(e) = ρ(e) ∪ {Wh}.
(d) Return (∅, 0, ∅).

7. If wv + wsub > 2φ,

(a) h = h + 1.
(b) Set Wh = Usub.
(c) For all e ∈ Fsub, set ρ(e) = ρ(e) ∪ {Wh}.
(d) h = h + 1.
(e) Set Wh = {v}.
(f) For all e ∈ Fv , set ρ(e) = ρ(e) ∪ {Wh}.
(g) Return (∅, 0, ∅).

8. Return (Fsub ∪ Fv, wsub + wv, Usub ∪ {v})
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greater than zero. But, at most one set is formed this way. As each edge is assigned to at most
two sets in W1, . . . ,Wh, we may conclude

2
∑

e∈E

η(e) > (h − 1)φ,

which implies t > h − 1. As both t and h are integers, this implies t ≥ h.
We now prove part (b). First, observe that steps 6 and 7 guarantee that when a call to

sub(v) returns a triple (F,w,U),

w =
∑

e∈U

η(e) < φ.

Thus, when a set Wh is formed in step 3.c.ii, we know that the sum of η over edges assigned to
Wh equals wsub and is at most 2φ. Similarly, we may reason that wsub < φ at step 4. If a set
Wh is formed in step 6.b, the sum of η over edges associated with Wh is wv + wsub, and must
be at most 2φ. If a set Wh is formed in step 7.b, the sum of η over edges associated with Wh is
wsub, which we established is at most φ. As the set formed in step 7.e is a singleton, we do not
need to bound the sum of η over its associated edges.

Lemma C.1. Suppose G = (V,E) is a planar graph, π is a planar embedding of G, T is a
spanning tree of G, and t > 1 is an integer. Let ({W1, . . . ,Wh} , ρ) = decompose(T,E, η, t) with
the assumption that in Step 1 of sub, the children v1, . . . , vs of v always appear in clock-wise order
according to π. Then the graph G{W1,...,Wh} = ({1, . . . , h} , {(i, j) : ∃ e ∈ E, ρ(e) = {Wi,Wj}})
is planar.

Proof. Recall that the contraction of an edge e = (u, v) in a planar graph G = (V,E) defines
a new graph (V − {u} , E ∪ {(x, v) : (x, u) ∈ E} − {(x, u) ∈ E}). Also recall that edge deletions
and edge contractions preserve planarity.

We first prove the lemma in the special case in which the sets W1, . . . ,Wh are disjoint. For
each j, let Tj be the graph induced on T by Wj . As each Tj is connected, G{W1,...,Wh} is a
subgraph of the graph obtained by contracting all the edges in each subgraph Tj. Thus in this
special case G{W1,...,Wh} is planar.

We now analyze the general case, recalling that the sets W1, . . . ,Wh can overlap. However,
the only way sets Wj and Wk with j < k can overlap is if the set Wj was formed at step 3.c.ii,
and the vertex v becomes part of Wk after it is returned by a call to sub. In this situation, no
edge is assigned to Wj for having v as an end-point. That is, the only edges of form (x, v) that
can be assigned to Wj must have x ∈ Wj. So, these edges will not appear in G{W1,...,Wh}.

Accordingly, for each j we define

Xj =

{
Wj − v if Wj was formed at step 3.c.ii, and

Wj otherwise.

We have shown that G{W1,...,Wh} = G{X1,...,Xh}. Moreover, the sets X1, . . . ,Xh are disjoint. Our
proof would now be finished, if only each subgraph of G induced by a set Xj were connected.
While this is not necessarily the case, we can make it the case by adding edges to E.

The only way the subgraph of G induced on a set Xj can fail to be connected is if Wj is
formed at line 3.c.ii from the union of v with a collection sets Ui for i0 ≤ i ≤ i1 returned by
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recursive calls to sub. Now, consider what happens if we add edges of the form (vi, vi+1) to the
graph for i0 ≤ i < i1, whenever they are not already present. As the vertices vi0 , . . . , vi1 appear
in clock-wise order around v, the addition of these edges preserves the planarity of the graph.
Moreover, their addition makes the induced subgraphs on each set Xj connected, so we may
conclude that G{X1,...,Xh} is in fact planar.

D The Pseudo-Inverse of a Factored Symmetric Matrix

We recall that B† is the pseudo-inverse of B if and only if it satisfies

BB†B = B (41)

B†BB† = B† (42)

(BB†)T = BB† (43)

(B†B)T = B†B. (44)

We now prove that if B = XCXT , where X is a non-singular matrix and C is symmetric,
then

B† = ΠX−T C†X−1Π,

where Π is the projection onto the span of B. We will prove that by showing that ΠX−T C†X−1Π
satisfies axioms (41–44). Recall that Π = BB† = B†B and that ΠB = B.

To verify (41), we compute

B(ΠX−T C†X−1Π)B = BX−TC†X−1B

= (XCXT )X−T C†X−1(XCXT )

= XCC†CXT

= XCXT

= B.

To verify (42), we compute

(ΠX−T C†X−1Π)B(ΠX−T C†X−1Π) = ΠX−T C†X−1BX−T C†X−1Π

= ΠX−T C†X−1XCXT X−T C†X−1Π

= ΠX−T C†CC†X−1Π

= ΠX−T C†X−1Π.
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To verify (43), it suffices to verify that BΠX−T C†X−1Π is symmetric, which we now do:

B(ΠX−T C†X−1Π) = ΠBX−T C†X−1Π

= Π(XCXT )(X−T C†X−1Π)

= ΠXCC†X−1Π

= B†BXCC†X−1BB†

= B†XCXT XCC†X−1XCXT B†

= B†XCXT XCC†CXT B†

= B†XCXT XCXT B†

= B†BBB†,

which is symmetric as B is symmetric.
As B and ΠX−T C†X−1Π are symmetric, it follows that (44) is satisfied as well.
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