Graph Spanners
Def i) $G=(V, E)$ undirected, (turn Righted)
2) $H=\left(V, E_{H}\right), E_{H} \subset E$
is a k-spanner of G if

$$
\forall x, y \in V \quad \operatorname{dist}_{A}(x, y) \leq k \cdot \operatorname{dist}_{G}(x, y)
$$

Note: K is called the stretch factor.
Goal: $\operatorname{Min}\left|E_{A}\right|$ for a given factor k.

Note: Need only consider stretch of edges.

Known:
The $\exists(2 k-1)$-spanner with $1 / 2\left(n^{l+1 / k}\right)$ edges.
Def: The Girth of G is min sine cycle. eg The mesh graph has girth 4.

$$
M_{n}=\# \because \cdot
$$

Thus HI Mn the stretch ≥ 3.
The missing edge will have stretch 3.

Erdos Girth Conjecture 3
Conjecture (Edos) $\exists G=(V, E)$

1) $|E|=\Omega\left(n^{1+1 / k}\right)$
2) Girth $(G) \geqslant 2 k+1$

Thus The is worst case optimal.
Today: $O(m)$ time algor. constructing $(4 k+1)$-spanner with $O\left(n^{1+1 / k}\right)$ edges. we settle for expected stretch \& size.

Toderys Spanner Algorithin
Procedure: Spanner (G, k)

1) Set $\beta=\log n / 2 k$ (thus $2 K=\log n / \beta$)
2) $\left\{C_{1}, \cdots, C_{t}\right\}=E_{\text {xp p }} \operatorname{De}^{1} l_{a y}(G, \beta) \quad$ (clusters)
3) For each C_{i} add BFS forest to H.
4) For each boundry vertex V add one edge to H for each adj cluster. Return H

Ball Growing Using Exponential Delay 5
Procedure: Exp Delay (G, β)

1) Each vertex $V \in V$ draws $X_{V} \sim \operatorname{Exp}(\beta)$
2) Each $V \in V$ computes $S_{V}=X_{\text {max }}-X_{V}$
3) Each $V \in V$ starts a BFS at time S_{V}
a) If v is not owned at time S_{V} then V owns V.
b) Each V is owned by first arrival vertex.

Deft: $\bar{T}_{i}=X_{\text {max }}-T_{i}=X_{i}-\operatorname{dist}\left(v_{i}, c\right)$ (early arrival) (Owen has max \bar{T}_{i})

Since Exp Delay (G, β) is $O(m)$
time so is Spanner $(G, k) O(m)$ time.
To Show:

1) Expected stretch is $4 k+1$
2) Expected size of H is $O\left(n^{1+1 / 22}\right)$.

We start with stretch
Note: Need only consider stretch of edges.
(Case 1) e is internal to a cluster.

$$
\operatorname{str}(e) \leq 2 \operatorname{radius}(C)
$$

$$
\begin{aligned}
& \left.\mathbb{E}\left[M_{\text {as }} \text { radius }\right](C)\right]=\leq \frac{\ln R}{\beta}=2 k \\
& \mathbb{E}\left[s t_{r}(e)\right]=4 k
\end{aligned}
$$

(Case 2) Edge e is between $C \& C^{\prime} 7$ and e is added by tory vertex $V_{\text {. }}$ (Case a) e is only edge from v to C^{\prime}. In this case $e \in E H$.

(Case b) $\exists e^{\prime} \neq e$ l) $e^{\prime} \in E_{H}$
2) e^{\prime} from V to C^{\prime}

$$
s \operatorname{tr}_{r}(e) \leq \operatorname{dia}\left(c^{\prime}\right)+1 ; \mathbb{E}\left[s \operatorname{tr}_{r}(e)\right] \leq 4 k+1
$$

The Expected size of E_{H}
Two types of edges

1) Internal to a cluster (Forest Edges): at most $n-1$ such edges.
2) Intercluster edges:
\#buurdry nodes $\leq n$
\# clusters common to a beery node.
Let $V e V$ consider random variable
$C_{V}=\#$ distinct clusters common to V
The $\mathbb{E}\left[C_{v}\right] \leq e^{2 \beta}$
Thus Expected number of inter cluster

$$
\leqslant n \cdot e^{2 \beta}=n e^{\frac{\ln n}{k}}=n^{(1+1 / k)} \cdot \beta=\frac{\ln n}{2 k}
$$

We need only prove The.

Question: How many clusters will a 9 vertex see (share an edge with).

1) It will belong to one cluster.
2) How many edges to distinct clusters.

Back to horse racing.
Consider early arrivals to V.

Note: A vertex must arrive within 2 units of first arrival
to possibly own a neighbor of v.
$t \equiv$ time of first arrival to x
Gap is $1 / 2$
Time tel

Possible Neighboring Clusters to V.

We prove a move general the:
Suppose B is a ball of G with
D) center V.
2) diameter d.

Consider random variable

$$
C_{B}=C \text { luster }(B)=\mid\{\text { cluster } \mid \text { cluster } \cap B \neq \varnothing\} \mid
$$

Th $\mathbb{E}\left[C_{\beta}\right] \leq e^{d \beta}$
$A_{B} \equiv$ number of arrivals to V within d time of first to v.

Note: $C_{B} \leqslant A_{\beta}$
Claim: $\operatorname{Prob}\left[A_{\beta} \geq t\right]=\left(1-e^{-\alpha \beta}\right)^{t-1}$ pf of clan

Consider time of the early arrived ie. $\bar{T}_{(n-t+1)}=T_{t}$

We give two proofs.
The first we consider time $\bar{T}_{(n-t+1)}$ and we look forward in Time

Lets use the light bulb analogy. Formally: the event $A_{\beta} \geqslant t$ is true if the time-window $[\bar{T}(n)-d, \bar{T}(n)]$ hoo at least t failures.

That is: $\bar{T}(n)-\bar{T}(n-t+1) \leq d$ if A_{β} at

View 2: From time $\bar{T}(n-t+1)$ the remaining $t-1$ bubs must fail by time $\bar{T}(n-t+1)+d$.

At time $\bar{T}(n-t+1)$ there are $t-1$ memory less id exponential ranelom variables, one for each first $t-1$ carly arrivals. Each must take a value $\leq d$ which will happen with prob ($1-e^{-d \beta}$)
By y independence we get $\left(1-e^{-d \beta}\right)^{t-1}$ is the prob they all are $\leqslant d$.

Proof 2: Consider the order statistics

$$
\bar{T}_{(n)} \leqslant \cdots \leqslant \bar{T}_{(n-1)} \leqslant \bar{T}_{(n)}
$$

Consider random varichles $G A P_{i}=\bar{T}_{(n-i+1)} \tilde{T}(n-i)$ is $G A P_{1}=\bar{T}_{(n)}-\bar{T}_{(n-1)}$

In Probability-101 lecture we showed that

$$
G A P_{i} \approx \operatorname{Exp}(i \beta)
$$

Thus $\operatorname{Prob}\left[A_{\beta} \geq t\right]=\operatorname{Prob}\left[\sum_{i=1}^{t-1} G A P_{i} \leq d\right]$
Lets do case $t=3$

$$
f(x)=\operatorname{Prob}\left[G A P_{1}+G A P_{2}=x\right]
$$

Since Gaps are independent.

$$
\begin{aligned}
f(x) & =\int_{0}^{x} \beta e^{-\beta y} \cdot 2 \beta e^{-2 \beta(x-y)} d y \\
& =2 \beta e^{-2 \beta x} \int_{0}^{x} \beta e^{\beta y} d y
\end{aligned}
$$

$$
\begin{aligned}
& =2 \beta e^{-2 \beta x}\left[e^{\beta x}-1\right] \\
f(x) & =2 \beta e^{-\beta x}-2 \beta e^{-2 \beta x} \\
F(y)=\int_{0}^{y} f(x) & =2\left(1-e^{-\beta y}\right)-\left(1-e^{-2 \beta y}\right) \\
& =1-2 e^{-\beta y}+e^{-2 \beta y} \\
& =\left(1-e^{-\beta y}\right)^{2}
\end{aligned}
$$

setting $y=d$ and $t=3$ we get

$$
\operatorname{Prob}\left[A_{\beta} \geq 3\right]=\left(1-e^{-\beta d}\right)^{2}
$$

(this argument generalized to t)

$$
\begin{aligned}
& \mathbb{E}\left[A_{\beta}\right]=\sum_{t=0}^{\infty} P_{r o b}\left[A_{\beta} \geq t\right]=\sum_{t=1}^{\infty}\left(1-e^{-d \beta}\right)^{t-1} \\
& =\frac{1}{1-\left(1-e^{-d \beta}\right)}=e^{d \beta}
\end{aligned}
$$

$Q E D$
We use fact that $\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha}$

