Random Walk as a matrix-vector

$$\frac{\text{Claim}}{\text{Note}} \quad \text{Prob} \left(\bigvee_{i} \text{ to} \bigvee_{i} \right) = \frac{\text{Wii}}{\text{di}} = \left(\frac{\text{Tr}}{\text{Tr}} \right)_{ii}$$

$$\frac{\text{Tr}}{\text{Wi}} - \text{Wi}}{\text{Wi}} - \text{Wi}} = \begin{pmatrix} \text{Wii} \\ \text{O} \end{pmatrix}_{ii}$$

$$\frac{\text{di}}{\text{Wi}} - \text{Wi}}{\text{O}} = \begin{pmatrix} \text{Wii} \\ \text{O} \end{pmatrix}_{ii}$$

2

Note All col sums in $ATD^{2} = 1$ Def $ATD^{2} = transition matrix$ In our case $A = AT & \sum_{i=1}^{(6)} 2i & P_{i}^{(6)} \ge 0$

Two Natural Questions

1) Edist Ps.t. ADP=P? (Stationary dist) 2) YP, lim (AD') P=P?

$$AD'T = AD'VAD(!) = VA(!) = VA(!) = T$$

$$VAA'(!) = VAA(!) = VA(!) = T$$

thus $d = \begin{pmatrix} d_1 \\ \vdots \\ d_n \end{pmatrix}$ is an eigen vector with value 1.

In general not unique

$$G = \bigcap_{N \to \infty} A = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ note } \lambda(\lambda) \neq 1$$

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = -\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

2) We will prove convergence by answering a more general question:

Question How fast does a walk "mix" on G.

Goal: Use Spectral Thm.

Prob: A symmetric but AD' not!

We do a change of variables

$$AD' \longrightarrow \widetilde{A} = D^{1/2}AD^{1/2} (\widetilde{A} \text{ sym})$$

$$P^{(K)} \longrightarrow \widetilde{P}^{(K)} = D^{1/2}P^{(K)}$$

$$T \longrightarrow \widetilde{T} = D^{1/2}T$$

Claim $AD^{-1}x = \lambda x$ iff $AY = \lambda y$ where $Y = D^{-1/2}x$.

 $\frac{D^{2}}{A} (\Rightarrow)$ $\frac{A}{A} = (D^{1/2}A D^{1/2}(D^{1/2}X) = D^{1/2}AD^{1/2}X)$ $= \lambda (D^{1/2}X) = \lambda y$ $(\Leftarrow) Same.$

Mixing as fon of Broom Thus $\widehat{A}\widehat{\pi} = \widehat{\pi}$

Der (New def of error!)

Error: $\vec{\epsilon}^{(k)} = \vec{\pi} - \vec{A}^{(k)} \vec{p}^{(k)} = \vec{\pi} - \vec{p}^{(k)}$ Question? $(\vec{\xi}^{(k)} = \vec{h}^{(k)})$

How first does Ex go to O with k? (If at all!)

 $\frac{N_{\text{ote}}}{\widehat{A}}\widehat{\xi}^{(k)} = \widehat{A}\widehat{\widehat{\Pi}} - \widehat{A}^{(k)}\widehat{\widehat{\rho}}^{(0)}$ $= \widehat{\widehat{\Pi}} - \widehat{A}^{(k)}\widehat{\widehat{\rho}}^{(0)} = \widehat{\xi}^{(k+1)}$

Thus $\mathcal{E}^{(k)} = \widehat{A}^{(k)} \mathcal{E}^{(0)}$

A much simpler recurrence!

Claim
$$\mathcal{E}^{(6)} \perp \widehat{T}^{i} = \mathcal{E}^{(6)} \widehat{T}^{i} = 0$$

i.e. $(\widehat{T} - \widehat{P}^{(6)})^{T} \widehat{T}^{i} = 0$

to show: $\widehat{T}^{T} \widehat{T}^{i} = \widehat{P}^{(6)} \widehat{T}^{i}$
 $\widehat{T}^{i} = \widehat{D}^{i} = \widehat{T}^{i} = \widehat{T}^{(6)} \widehat{T}^{i} = \widehat{T}^{(6)$

Spectral Thm

If A is real sym matrix then

1) Eigenvalues of A are real .

i.e. $Ax = \lambda X = \lambda \lambda$ is real

2) If $A_X = \lambda_X & A_Y = M_Y & \lambda_{A_Y}$ then $X^TY = 0$ is $X \perp Y$.

3) = orthonormal bases

Y, ---, /n (eigenrectors)

St A = (// --//n)(// 0) /n (-//-)

 $4) \ \triangle = \sum_{i=1}^{n} \lambda_i Y_i Y_i^T$

9

Perron-Frobenius Thm

Suppose Anxn 20

Graph (G) is strongly connected.

Def 3 = 97 ib E C |3| = \(3 \div 3 \) = \(\G^2 \div b^3 \)

Spectral Radius p(A) = max 121
XEXA)

W = 3rd voot of unity

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ w^2 \\ w^2 \end{pmatrix} = \begin{pmatrix} w \\ w^2 \\ 1 \end{pmatrix} = W \begin{pmatrix} w \\ w^2 \\ w^2 \end{pmatrix}$$

=> Wis en eigenvalue

$$\lambda(A) = 1, w, w^2$$

Thm (PF)

1) P(A) is a <u>simple</u> eigenvalue of A.

If X is its eigenvector then

Sign $(X_i) = Sign(X_i) \neq 0$ $\forall i, j$

2) $\Theta \in \mathcal{A}(A)$ & 101 = p(A) then $\Theta_p(A)$ is an inth root of unity and all eyeles in G(A) have length a multiple of M.

3) Only non-neg eigenvector
15 X.

Do Maybe?

Back to the symmetric case.

Suppose eigenvalues are -122, <---- <\lambda_n=1 (-122, true)
by Sym Perron-F,
next lecture

Orthonormal vectors are

Y, ---, Y = Tr.d

We know that

 $\tilde{\xi}^{(0)} = q_1 \chi_{1} + \dots + q_{n-1} \chi_{n-1}$ F(1)=Ã (0) = \ , Q, Y, 7 - - + \ h-1 < h-1 / n-1 $\widehat{\xi}^{(k)} = \lambda_1^k \alpha_1 \gamma_1 + \cdots + \lambda_{n-1}^k \alpha_{n-1} \gamma_{n-1}^k$

We will show that! The mixing vote determined by >= max {) >, | , | > m-1 }

What norm do we want our 181,, 1812, 181 Consider | E (14) 2 (How does it compare to) Since Yis are orthonormal $\left| \mathcal{E}^{(0)} \right|_{2} = \sqrt{\sum_{i} |\gamma_{i}|_{2}} = \sqrt{\sum_{i} |\gamma_{i}|_{2}}$ pick Kst XK < 1/2 (Gnot hipartite.) $\left| \widetilde{\mathcal{E}}^{(k)} \right|_{2} = \sqrt{\sum_{i} \chi_{i}^{2}} \leq \sqrt{\sum_{i} \chi_{i}^{2}} \leq \sqrt{\sum_{i} \chi_{i}^{2}}$ $= \lambda^{k} \sqrt{2 \lambda_{2}^{2}} \leq \frac{1}{2} \left[2 \lambda_{1}^{2} = \frac{1}{2} \left[2 \lambda_{1}^{2} \right] \right]_{2}$

Thus every K steps error goes down by 1/2.

Def Mixing rate

Mon 2 | E(2) | 4 | E(0) |

L, norm & Cauchy-Schwartz

$$(CS)$$
 $a,b \in \mathbb{R}^n$

$$(a^Tb)^2 \leq (a^Ta)(b^Tb)$$

Def: If
$$G = \begin{pmatrix} G_1 \\ \vdots \\ G_n \end{pmatrix}$$
 then $|G| = \begin{pmatrix} |G_1| \\ |G_n| \end{pmatrix}$

$$|\alpha|_1^2 = |\alpha|^T \cdot b \leq |\alpha|^T \cdot |\alpha| \cdot n$$

$$= \alpha^T \alpha \cdot n$$

Claim Mixing rate in L, is

O(logh (Mixing in L2)

(Better estimates for L, error are harder!)

 $\frac{\text{Pf note}}{|\alpha|_{2} \leq |\alpha|_{1}} = \frac{|\alpha|_{2} \leq |\alpha|_{1}}{|\alpha|_{2} \leq |\alpha|_{1}} = \frac{|\alpha|_{2} \leq |\alpha|_{1}}{|\alpha|_{2} \leq |\alpha|_{2}} = \frac{|\alpha|_{2} \leq |\alpha|_{1}}{|\alpha|_{2} \leq |\alpha|_{1}} = \frac{|\alpha|_{2} \leq |\alpha|_{1}}{|\alpha|_{2}} = \frac{|\alpha|_{2}}{|\alpha|_{2}} =$

PROOF OF SPECTRAL THEOREM

Theorem 1 (Spectral Theorem). Let $A \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. Then

(1) All eigenvalues of A are real.

(2) There exists an orthogonal matrix Q and a diagonal matrix Λ such that $A=Q\Lambda Q^T$.

Proof. We have proved (1) in the class. Only need to prove (2). We make an induction on n.

When n=1, the claim is obvious. Now assume that the claim is valid for n=m, that is, for any $m\times m$ -real symmetric matrix A, there exists an orthogonal matrix Q and diagonal matrix Λ such that $A=Q\Lambda Q^T$. Let us consider $(m+1)\times (m+1)$ -real symmetric matrix A. By (1), A has a real eigenvalue λ with eigenvector α . We see that all entries of α must be real numbers. By Gram-Schmidt process, we may assume that there exists an orthonormal basis q_1,\ldots,q_n with $q_1=\alpha$. Let $P:=(q_1q_2\cdots q_n)$ and $C:=P^TAP=(c_{ij})_{(m+1)\times (m+1)}$. We claim that $c_{11}=\lambda$ and $c_{i1}=0$ for $i\neq 1$. In fact, note that P is an orthogonal matrix, we have AP=PC, that is, $A(q_1q_2\cdots q_n)=(q_1q_2\cdots q_n)C$. Therefore, we have $Aq_1=\sum_{i=1}^{m+1}c_{i1}q_i$. But $q_1=\alpha$ is an eigenvector, so $\lambda q_1=\sum_{i=1}^{m+1}c_{i1}q_i$. Since q_1,\cdots,q_n are linearly independent. So $c_{11}=\lambda$ and $c_{i1}=0$ for $i\neq 1$. So C has four blocks like $\begin{pmatrix} \lambda & \star \\ 0 & \tilde{A} \end{pmatrix}$. Note that

 $C = P^T A P$ is symmetric (why?), thus $\star = 0$. So $C = \begin{pmatrix} \lambda & 0 \\ 0 & \tilde{A} \end{pmatrix}$ and

 \tilde{A} has to be symmetric matrix with the size $m \times m$. By induction, there exists an orthogonal matrix Q and diagonal matrix Λ such that $\tilde{A} = Q\Lambda Q^T$. Therefore

$$C = \begin{pmatrix} \lambda & 0 \\ 0 & \tilde{A} \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & Q \Lambda Q^T \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \Lambda \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix}^T$$

Therefore

$$A = PCP^T = P \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \Lambda \end{pmatrix} (P \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix})^T$$

and we easily check $P\begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix}$ is an orthogonal matrix and we are done.

Consider Randow walks on path grap = P_n We will show that $\lambda = \lambda(P_n) = (1 - 1/n^2)$ Note $(1 - 1/n^2) \approx 1/c$ Thus mixing rate for P_n is $\approx n^2$.