Random Walk as a matrix-vector

$$
G=(V, E, w) ; A_{i j}=W_{i j j} D_{i i}=\sum W_{i j}
$$

Let $P_{i}^{(t)} \equiv$ prob at vertex V_{i} $p(0)$ at time t.
$p^{(0)} \equiv$ starting configuration.
$\operatorname{Claim} A^{\top} D^{-1} P^{(t)}=p^{(t+1)}$
$\underline{\text { note }} \operatorname{Prob}\left(V_{i} t_{0} V_{j}\right)=\frac{W_{i i}}{d_{i}}=\left(A^{\top} D^{-1}\right)_{j i}$

Note All col sums in $A^{\top} D^{-1} \equiv 1$
Def $A^{\top} D^{\prime \prime} \equiv$ transition matrix
In our case

$$
A=A^{\top} \& \sum p_{i}^{(0)}=1 \& p_{i}^{(0)} \geq 0
$$

Two Natural Questions

1) \exists dist \bar{P} st. $A D^{-1} \bar{P}=\bar{P}$? (stationary dist)
2) $\forall P_{0} \lim _{n^{2} \rightarrow \infty}\left(A D^{-1}\right)^{13} p^{(0)}=\bar{p}$?

Answers

1) Yes \& no

$$
\begin{array}{ll}
\text { 1) Yes \& no } \\
\text { Let } d=\sum d_{i} & \pi=\left(\begin{array}{c}
d_{1} / d \\
\vdots \\
d_{n} / d
\end{array}\right)=1 / d D\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) ~
\end{array}
$$

pf

$$
\begin{gathered}
A^{T} D^{-1} T P=\bar{A}^{\top} D^{-1}(1 / d) D\left(\begin{array}{l}
1 \\
\vdots \\
1
\end{array}\right)= \\
1 / d A^{\top}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)=1 / d A\left(\begin{array}{c}
d_{1} \\
\vdots \\
\vdots \\
\vdots \\
d_{n}
\end{array}\right)=1 / d
\end{gathered}
$$

thus $\tilde{d}=\left(\begin{array}{c}d_{1} \\ \vdots \\ d_{n}\end{array}\right)$ is an eigen vector In general not unique

$$
\begin{aligned}
& \left.G \equiv \infty \quad A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { note } \lambda(\lambda) \text { 挂 } 1\right\} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{-1}=\binom{-1}{1}=-\binom{1}{-1}
\end{aligned}
$$

2) In general no.

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1} \quad\left(\binom{1}{0}\right. \text { will not converge }
$$

The If G is not bipartite and connected then

$$
\forall p^{(0)}\left|p^{(0)}\right|_{1}=1 \text { \& } p^{(0)} \geq 0 \text { then }
$$

$$
\lim _{k \rightarrow \infty}\left(A D^{-1}\right)^{k} P^{(0)}=\pi
$$

2) We will prove convergence by answering a more general question:

Question How fast does a walk "mix" on G.

Goal: Use Spectral The.
Prob: A symmetric but $A D^{-1}$ not! We do a change of variables

$$
\begin{aligned}
& A D^{-1} \longrightarrow \tilde{A}=D^{-1 / 2} A D^{-1 / 2}\left(\tilde{A}_{\text {sym }}\right) \\
& P^{(k)} \longrightarrow \tilde{P}^{(k)}=D^{-1 / 2} P^{(k)} \\
& \pi \pi \longrightarrow \tilde{\pi}=D^{-1 / 2} \pi
\end{aligned}
$$

Claim $A D^{-1} x=\lambda x$ iff $\tilde{A} y=\lambda y$ where $y=D^{-1 / 2} x$.
$\mathrm{pf}(\Rightarrow)$

$$
\begin{aligned}
\tilde{A} y & =\left(D^{-1 / 2} A D^{-1 / 2}\left(D^{-1 / 2} x\right)=D^{-1 / 2} A D^{-1} x\right. \\
& =\lambda\left(D^{-1 / 2} x\right)=\lambda y
\end{aligned}
$$

(\vDash) same.

Mixing as fen of Error
Thus $\tilde{A} \tilde{\pi}=\tilde{\pi}$
Dee (New def of error!)
Error: $\tilde{\varepsilon}^{(k)}=\tilde{\pi}-\vec{A}^{k} \tilde{p}^{(0)}=\tilde{\pi}-\tilde{p}^{(k)}$
Question? $\left.\quad\left(\tilde{\varepsilon}^{(k)}=1\right)^{-1 / 2} \varepsilon^{(k)}\right)$
How fuss does $\hat{\xi}^{k}$ go to O with k ?
(If at all!)
Note

$$
\begin{aligned}
\widehat{A} \tilde{\varepsilon}^{(k)} & =\tilde{A} \tilde{T}-\hat{A}^{(l)+} \tilde{p}^{(0)} \\
& =\widetilde{\pi}-\tilde{A}^{(l)} \tilde{\rho}^{(0)}=\tilde{\varepsilon}^{(k+1)}
\end{aligned}
$$

Thus $\quad \tilde{\varepsilon}^{(k)}=\hat{A}^{(1)} \varepsilon^{(0)}$
A much simp lee recurrence!

Claim $\widehat{\varepsilon}^{(0)} \perp \widehat{\widetilde{T}}$ ie $\varepsilon^{(0) T} \widetilde{T}=0$

$$
\text { i.e. }\left(\tilde{\pi}-\hat{p}^{(0)}\right)^{\top} \widetilde{\pi}=0
$$

to show: $\pi^{T} \pi /=p^{(0) T} \tilde{\pi}$

$$
\begin{aligned}
& \widetilde{\pi}=D^{-1 / 2} \pi=\left(\begin{array}{llll}
\frac{1}{d_{d_{1}}} & & & \\
& \ddots & \\
& & 1 / \sqrt{d_{p}}
\end{array}\right)\left(\begin{array}{c}
d_{1} / d \\
1 \\
1 \\
d_{n} / d
\end{array}\right)=\left(\begin{array}{c}
\sqrt{d_{1}} / d \\
\vdots \\
\\
\\
\sqrt{d_{n}} / d
\end{array}\right) \\
& \widetilde{\pi}^{\top} \widetilde{\pi}=\sum\left(\sqrt{d_{i}} / d\right)^{2}=\sum \frac{d_{i}}{d^{2}}=1 / d \\
& =\sum P_{i} / d=\left(\Sigma P_{i}\right) / d=Y / d
\end{aligned}
$$

$\left(\right.$ since $\left.\sum P_{i}=1\right)$

Spectral The
If A is real sym matrix then

1) Eigenvalues of A are real. ie. $A x=\lambda X \Rightarrow \lambda$ is real
2) If $A x=\lambda x$ \& $A y=\mu y$ \& $\lambda \neq u$ then $x^{\top} y=0$ is $x \perp y_{0}$
3) \exists orthonormal bases Y_{1}, \cdots, y_{n} (eigenvectors)
st $A=\left(\begin{array}{cc}1 & 1 \\ y_{1} & \cdots y_{n} \\ 1 & j\end{array}\right)\left(\begin{array}{cc}\lambda_{2} & 0 \\ 0 & \lambda_{n}\end{array}\right)\left(\begin{array}{c}-y_{r}^{\top}- \\ \vdots \\ -y_{n}^{\top}-\end{array}\right)$
4) $A=\sum_{i=1}^{n} \lambda_{i} Y_{i} Y_{i}^{\top}$

Perron-Frobenius The
Suppose $A^{n \times n} \geq 0$
Graph (G) is strongly conn ected,
Def $z=a+i b \in \mathbb{C}$

$$
|z|=\sqrt{z^{*} z}=\sqrt{s^{2}+b^{2}}
$$

Spectral Radius $\rho(A)=\max _{\lambda \in \lambda(A)}|\lambda|$

$$
\lambda \in \lambda(A)
$$

e.g.

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

$w \equiv 3$ rd root of unity

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
w \\
w^{2}
\end{array}\right)=\left(\begin{array}{c}
w \\
w^{3} \\
1
\end{array}\right)=w\left(\begin{array}{l}
1 \\
w \\
w^{2}
\end{array}\right)
$$

$\Rightarrow W$ is en eijenvalue

$$
\lambda(A)=1, w, w^{2}
$$

The (PF)

1) $p(A)$ is a simple eigenvalue of A. If x is its eigenvector then

$$
\operatorname{sign}\left(x_{i}\right)=\operatorname{sign}\left(x_{j}\right) \neq 0 \quad \forall i, j
$$

2) $\theta \in \lambda(A) \&|\theta|=P(A)$ then $\Theta / \rho(A)$ is an moth root of unity and all cycles in $G(A)$ hare length a multiple of m.
3) Only non-neg eigenvector is X.
pf Maybe?

Bark to the symmetric case.
Suppose eigenvalues are

$$
-1<\lambda_{1} \leqslant \cdots \leqslant \lambda_{n}=1\left(\begin{array}{c}
-1<\lambda_{1} \text { true } \\
\text { by sym emerson } \\
\text { next lecture }
\end{array}\right)
$$

Orthonormal vectors are

$$
Y_{1}, \ldots, Y_{n}=\widetilde{\pi} \cdot d
$$

We know that

$$
\begin{aligned}
& \tilde{\varepsilon}^{(0)}=\alpha_{1} Y_{1}+\cdots+\alpha_{n-1} Y_{n-1} \\
& \tilde{\varepsilon}^{(1)}=\tilde{A} \tilde{\varepsilon}^{(0)}=\lambda_{1} \alpha_{1} Y_{1}+\cdots+\lambda_{n-1} \alpha_{n-1} Y_{n-1} \\
& \tilde{\varepsilon}^{(k)}=\lambda_{1}^{k} \alpha_{1} Y_{1}+\cdots+\lambda_{n-1}^{k} \alpha_{n-1} Y_{n-1}
\end{aligned}
$$

We will show they?
The mixing rate determined by

$$
\lambda=\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{n-1}\right|\right\}
$$

What norm do we want our error?

$$
|\varepsilon|_{1},|\varepsilon|_{2},|\varepsilon|_{\infty} ?
$$

Consider $\left|\tilde{\varepsilon}^{(k)}\right|_{2} \quad$ (How clops it compare to $\left.\mid \varepsilon_{0}^{(k))_{2} \text { ? }}\right)$ Since $y_{i \text { 's }}$ are orthonormal

$$
\left|\varepsilon^{(0)}\right|_{2}=\sqrt{\sum \alpha_{L}^{2}\left|y_{i}\right|_{2}}=\sqrt{\sum \alpha_{i}^{2}}
$$

pick k sot $\lambda^{k} \leqslant 1 / 2$ (G not bipartite.)

$$
\begin{aligned}
\left|\tilde{\varepsilon}^{(k)}\right|_{2} & =\sqrt{\sum \lambda_{i}^{2 k} \alpha_{l}^{2}} \leqslant \sqrt{\sum \lambda^{2 k} \alpha_{l}^{2}} \\
& =\lambda^{k} \sqrt{\sum \alpha_{2}^{2}} \leq \frac{1}{2} \sqrt{\Sigma \alpha_{i}^{2}}=\frac{1}{2}\left|\tilde{\varepsilon}^{(0)}\right|_{2}
\end{aligned}
$$

Thus every 13 steps error goes down by $1 / 2$.
Def Mixing rate

$$
\operatorname{Min}_{k} 2\left\|\xi^{(k)}\right\| \leq\left\|\varepsilon^{(0)}\right\|
$$

Linorm \& Canchy-Schwartz

$$
\begin{aligned}
& (C S) a, b \in \mathbb{R}^{n} \\
& \left(a^{\top} b\right)^{2} \leqslant\left(a^{\top} a\right)\left(b^{\top} b\right)
\end{aligned}
$$

Def: If $a=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$ thes $|a|=\left(\begin{array}{c}\left(a_{1} \mid\right. \\ \vdots \\ \vdots \\ a_{n}\end{array}\right)$
e.g. $b=\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)$ a arbitrary

$$
\begin{aligned}
|a|_{1}^{2}=|a|^{\top} \cdot b & \left.\leq|a|^{\top}\right] a \mid \cdot n \\
& =a^{\top} a \cdot n
\end{aligned}
$$

Thus $|a|_{1} \leqslant \sqrt{n}|a|_{2}$

Claim Mixing rate in L, is

$$
O\left(\log n\left(\text { mixing in } L_{2}\right)\right.
$$

(Better estimates for Li error are haveler!)
pf note

$$
|a|_{2} \leq|a|_{1}
$$

$$
\begin{aligned}
\left|\varepsilon_{\log n \cdot k}\right|_{1} & \leq \sqrt{n}\left|\varepsilon_{\operatorname{lo} n \cdot k}\right|_{2} \\
& \leq\left(1 / 2^{\lg n}\right) \sqrt{n}\left|\varepsilon_{0}\right|_{2} \\
& \leq 1 / 2\left|\varepsilon_{0}\right|_{2} \leq 1 / 2\left|\varepsilon_{0}\right|_{1}
\end{aligned}
$$

PROOF OF SPECTRAL THEOREM

Theorem 1 (Spectral Theorem). Let $A \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. Then
(1) All eigenvalues of A are real.
(2) There exists an orthogonal matrix Q and a diagonal matrix Λ such that $A=Q \Lambda Q^{T}$.
Proof. We have proved (1) in the class. Only need to prove (2). We make an induction on n.
When $n=1$, the claim is obvious. Now assume that the claim is valid for $n=m$, that is, for any $m \times m$-real symmetric matrix A, there exists an orthogonal matrix Q and diagonal matrix Λ such that $A=Q \Lambda Q^{T}$. Let us consider $(m+1) \times(m+1)$-real symmetric matrix A. By (1), A has a real eigenvalue λ with eigenvector α. We see that all entries of α must be real numbers. By Gram-Schmidt process, we may assume that there exists an orthonormal basis q_{1}, \ldots, q_{n} with $q_{1}=\alpha$. Let $P:=\left(q_{1} q_{2} \cdots q_{n}\right)$ and $C:=P^{T} A P=\left(c_{i j}\right)_{(m+1) \times(m+1)}$. We claim that $c_{11}=\lambda$ and $c_{i 1}=0$ for $i \neq 1$. In fact, note that P is an orthogonal matrix, we have $A P=P C$, that is, $A\left(q_{1} q_{2} \cdots q_{n}\right)=\left(q_{1} q_{2} \cdots q_{n}\right) C$. Therefore, we have $A q_{1}=\sum_{i=1}^{m+1} c_{i 1} q_{i}$. But $q_{1}=\alpha$ is an eigenvector,so $\lambda q_{1}=\sum_{i=1}^{m+1} c_{i 1} q_{i}$. Since q_{1}, \cdots, q_{n} are linearly independent. So $c_{11}=\lambda$ and $c_{i 1}=0$ for $i \neq 1$. So C has four blocks like $\left(\begin{array}{ll}\lambda & \star \\ 0 & \tilde{A}\end{array}\right)$. Note that $C=P^{T} A P$ is symmetric(why ?), thus $\star=0$. So $C=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \tilde{A}\end{array}\right)$ and \tilde{A} has to be symmetric matrix with the size $m \times m$. By induction, there exists an orthogonal matrix Q and diagonal matrix Λ such that $\tilde{A}=Q \Lambda Q^{T}$. Therefore

$$
C=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \tilde{A}
\end{array}\right)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & Q \Lambda Q^{T}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & Q
\end{array}\right)\left(\begin{array}{cc}
\lambda & 0 \\
0 & \Lambda
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & Q
\end{array}\right)^{T}
$$

Therefore

$$
A=P C P^{T}=P\left(\begin{array}{cc}
1 & 0 \\
0 & Q
\end{array}\right)\left(\begin{array}{ll}
\lambda & 0 \\
0 & \Lambda
\end{array}\right)\left(P\left(\begin{array}{ll}
1 & 0 \\
0 & Q
\end{array}\right)\right)^{T}
$$

and we easily check $P\left(\begin{array}{ll}1 & 0 \\ 0 & Q\end{array}\right)$ is an orthogonal matrix and we are done.

Consider Randow walks on path grap $\equiv \rho_{n} \quad 16$
We will show that $\lambda=\lambda\left(P_{n}\right)=\left(1-1 / n^{2}\right)$
Note $\left(1-1 / n^{2}\right)^{n^{2}} \approx 1 / c$
Thus mixing rate for P_{n} is $\approx n^{2}$?

