

Spectral Graph Theory

15-859 NN
2/1/21

The Interplay between:

- 1) Graph Theory
- 2) Linear Algebra
- 3) Numerical Computing

Upside: Faster Algorithms

- 1) Single Source Shortest Paths
(possibly negative edge weights)

Bellman-Ford: $O(m \cdot n)$ time

$m = \# \text{edges}$ & $n = \# \text{vertices}$

2016: New Method $O(m^{10/7})$

2

Regression Prob.

Simpliest Case: Over Constrained System

e.g.

$$\boxed{A} \boxed{x} = \boxed{b}$$

Goal $\min_x \left\| Ax - b \right\|_2^2$

Standard Answer.

Solve $A^T A = A^T b$

Prob: Computing $A^T A$ is $O(mn^2)$

New Methods: Find B st $B^T B x^* = B^T b$

then $x \approx x^*$

Faster than $O(mn^2)$ time.

We will introduce leverage scores!

Graph Sparsifiers

3

Input: Graph $G = (V, E)$

Output: Weighted subgraph $H \subseteq G$

s.t. $\forall S \subseteq V$

$$\text{Cut}_G(S, \bar{S}) \approx \text{Cut}_H(S, \bar{S})$$

. Known bounds on number
of edges in H .

1) $\mathcal{O}(n \log n)$ edges will do?

2) $\mathcal{O}(n)$ edges Maybe do?

Topics We Hope to Cover

- 1) Graph as a network of Resistors.
- 2) Random walks and resistance
- 3) Matrix theory 101
 - a) Eigenvalues & eigenvectors
 - 1) Spectral theorem
 - 2) Perron-Frobenius
 - 3) Courant-Fischer
- 4) Graph Cuts & eigenvalues
 - a) Cheeger Thm
- 5) Estimating Eigenvalues
 - a) Path embedding
 - b) Hardy Inequality
- 6) Differential Equations & Matrix Exponentials.
- 7) Matrix Theory 102
 - a) Singular values & vectors
 - 1) Weyl's Majorant Theorem.
 - b) Matrix Chernoff Bounds
 - 1) Golden-Thompson

- 8) Graph Sparsifiers
 - a) Sampling by effective resistance
- 9) Numerical Methods
 - a) Basic Iterative Method
 - b) Conjugate Gradient
 - c) Preconditioned Methods.
 - d) Fast Laplacian solvers.
- 10) Understanding the fundamental Eigenvector.
 - a) Fiedler's Thm.
- 11) Random Walks & Random Spanning Trees.
 - a) Markov Chain Tree Theorem
- 12) Approx Max Cut using Spectral Methods
- 13) Random Walks with resets.
- 14) Directed Laplacians
 - 1) Counting Trees
 - 2) Making them symmetric.
- 15) Low Stretch Spanning Trees.
- 16) Regression & Leverage Scores.