Probability 101
Random Variable: Samples $\rightarrow R$
For discrete Random Variable the definition is straight forward.
Ex: Sample space $=\{H, T\} ; R V X$

$$
\begin{aligned}
& \operatorname{Prob}[X=17]=1 / 2 \\
& \operatorname{Prob}[X=T]=1 / 2
\end{aligned}
$$

In the continuous case one needs some care in general:
We will assume they a given by 1) Prob Density Fan
2) Cumulative Dist

The Exponential Distribution
Prob Density Fen
Dat The Exponential RV $X_{\beta}$.

$$
\operatorname{Prob}\left[X_{\beta}=\mu\right]= \begin{cases}\beta e^{-\beta \mu} & \mu \geqslant 0 \\ 0 & 0, w\end{cases}
$$

More Formally:

$$
\operatorname{Prob}\left[X_{\beta} \in[u, u+d x]\right]=\left\{\begin{array}{cc}
\beta e^{-\beta u} d x & \mu \geqslant 0 \\
0 & 0 . \omega
\end{array}\right.
$$

Cumulative Dist
Def $F_{\beta}(y) \equiv \operatorname{Prob}\left[x_{\beta} \leqslant y\right]$
For the Exponential

$$
F_{\beta}(y)=\int_{0}^{y} \beta e^{-\beta x} d x \Xi\left[-e^{-\beta \gamma}\right]_{0}^{y}=1-e^{-\beta \gamma}
$$

$\qquad$

Def
Expected Value

$$
\mathbb{E}_{x}[x]=\int_{-\infty}^{\infty} y \operatorname{Pr}[x=y] d y
$$

Two ways to compute $\mathbb{E}\left[X_{\beta}\right]$.

1) Def $\mathbb{E}\left[x_{\beta}\right]=\int_{0}^{\infty} y \beta e^{-\beta y} d y=1 / \beta$ Using integration by parts.
2) $\mathbb{E}\left[X_{\beta}\right]=\int_{0}^{\infty} P_{r o b}\left[X_{\beta} \geqslant y\right] d y$

For the Exponential
Now Prob $\left[x_{\beta} \geqslant y\right]=e^{-\beta y}$
thus $\left.\mathbb{E}\left[x_{\beta}\right]=\int_{0}^{\infty} e^{-\beta y}=-\frac{1}{\beta} e^{-\beta y}\right]_{0}^{\infty}=1 / \beta$

Order Statistics
Suppose $X_{1}, \ldots, X_{n}$ random variables
Def $X_{(k)} \equiv \operatorname{Select}_{k}\left(X_{1, \ldots}, X_{n}\right)$
if $X_{(1)} \leqslant X_{(3)} \leqslant \cdots \leqslant X_{\text {M }}$

Suppose $X_{1}, \ldots, X_{n}$ are cid st

1) $\left.f(u)=\operatorname{Prob}\left[x_{i}=u\right] \quad(P D) F\right)$
2) $F(u)=\operatorname{Prob}\left[0 \leqslant x_{i} \leqslant u\right]$

Then

$$
\operatorname{Prob}\left[X_{(1)}=u\right]=n(1-F(u))^{n-1} f(u)
$$

If $x_{1}, \ldots, x_{n}$ are cid exponential.

$$
\begin{aligned}
& \operatorname{Prob}\left[X_{(1)}=u\right]=n\left(e^{-\beta u}\right)_{\beta C^{-\beta u}}^{n-1}=n \beta e^{-n \beta u} \\
& X_{(1)} \equiv \operatorname{Exp}(n \beta) \text { Thus } \mathbb{E x p}\left[X_{(1)}\right]=\frac{1}{n \beta}
\end{aligned}
$$

Conditional Probability
Suppose that $A \& B$ events
Def Prob[A/B] $\equiv \operatorname{Prob}[A \cap B] / \operatorname{Prob}[B]$
Memoryless Property

$$
\operatorname{Prob}\left[x_{\beta}>m+n \mid X_{\beta}>n\right]=\frac{e^{-\beta(n+m)}}{e^{-\beta n}}=e^{-\beta m}
$$

po Event $A \equiv X_{\beta}>m+n$ \& Event $B \equiv X_{\beta}>n$

$$
\begin{aligned}
& \operatorname{Prob}[A \cap B]=\operatorname{Prob}[A]=e^{-\beta(n+m)} \\
& \operatorname{Prob}[A \cap B] / \operatorname{Prob}[B]=\operatorname{Prob}[A] / / \operatorname{mol}[B]=\frac{e^{-\beta(n+m)}}{e^{-\beta n}}=e^{-\beta m}
\end{aligned}
$$

Let $S_{i}=X_{(i+1)}-X_{(i)}$ for $i \geqslant 0$
By Memoryless property $S_{i}=E_{x p}((n-i) \beta)$
Pf: Consider $S_{1}=X_{(2)}-X_{(1)}$
Suppose $X_{1}=X_{(1)}$ than

$$
x_{2}, \cdots, x_{n} \geq x_{(2)}
$$

Thus $x_{i} \equiv x_{L}^{\prime}+x_{(1)} \quad x_{i}^{\prime}$ new exponential
Thus $\mathbb{E}\left[S_{i}\right]=\frac{1}{(n-i) \beta}$
By Linearity of expectation.

$$
\begin{aligned}
\mathbb{E}[X(n)]=\sum_{i=0}^{n-1} \mathbb{E}\left[S_{i}\right] & =\frac{1}{\beta}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) \\
& =\frac{H_{n}}{\beta} \\
& \approx \frac{\ln n}{\beta}
\end{aligned}
$$

Thus $E\left[x_{(1)}\right]=\frac{1}{n \beta}$

$$
\mathbb{E}\left[x_{(m)}\right]=\frac{\ln n+0(1)}{\beta}
$$

Concentration for $X(n)$ ?

$$
\operatorname{Pr}\left[x_{i} \geq \frac{c \ln n}{\beta}\right]=c^{-\beta c \ln n} \beta=e^{-c \ln n}=n^{-c}
$$

by union bound we get.

$$
\operatorname{Pr}\left[X_{(n)} \geq \frac{c \ln n}{\beta}\right] \leq n \cdot n^{-c}=\frac{1}{n^{(-)}}
$$

then

$$
P_{r}\left[X_{(n)} \geq \frac{2 \ln n}{\beta}\right] \leq \frac{1}{n}
$$

Generating Dist or Random Variables
Let $X_{f}$ be the random variable of
PDF $f: R \rightarrow R^{+}$where $\int_{-\infty}^{\infty} f(x) d x=1$
Note Not clear that RV exist.
But we can ask if we have one can we generate more.
Def: $f, g \in$ PSF's with RV Variable $X_{f} \& X_{g}$
we say $f \leq g$ if $\exists \operatorname{det}$ process $D$ st $X_{f}=D\left(X_{g}\right)$
Let $U$ be uniform $R V$ with PDF $U$. is $u(x)= \begin{cases}1 & \text { if } \\ & x \in[0,1] \\ 0 & 0, w .\end{cases}$

Let $U_{2}$ be uniform $[0,2]$ then

$$
\begin{aligned}
x_{u_{2}}=2 x_{u} \text { the } u_{2} & \leq u \\
\& & \leq u_{2} \text { ? }
\end{aligned}
$$

Generating Exponential Dist from Uniform.

$$
\begin{aligned}
& P D F \equiv f(x)=\beta e^{-\beta x} \text { for } 0<\beta \& x \geq 0 \\
& F(x)=\int_{0}^{x} f(x) d x=1-e^{-\beta x}
\end{aligned}
$$

Thus $F:[0, \infty] \longrightarrow[0,1] 1-1)$ onto
We get that $F\left(X_{f}\right)$ in uniform $[0,1]$
Thus: $u \leq f$ bat we want $f \leq u$
Lets find $F^{-1}$ is
Solve for $x$ in $y=F(x)=1-e^{-\beta X}$
inf $e^{-\beta x}=1-y$
if $-\beta X=\ln (1-y)$
Af $x=-1 / \beta \ln (1-y)$ but $1-y$ is uniform $[0,1]$

$$
x=\frac{-\ln \left(X_{u}\right)}{\beta}=\chi_{\text {Rap }}
$$

Thus $X_{E \times P} \leq X_{u}$
Alg Given RV $U$ uniform $[0,1]$

$$
\text { Return } \frac{-\ln U}{\beta}
$$

Generating Normal Dist
The PDF: $f(x)=\frac{1}{\nabla \sqrt{2 \pi}} e^{-x^{2} / 2 \sigma^{2}}$ Setting $\sigma=1$ we get Gauss's Unit Normal

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

What if we try computing CDF!

$$
\text { il } F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-x^{2} / 2} d x
$$

The $F(x)$ is not an elementary fen!

$$
\text { Question: } \frac{L}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2} d x:=1
$$

note $f(x)=x e^{-x^{2} / 2}$ is $0 k$ since

$$
\frac{d}{d x}\left(-e^{-x^{2} / 2}\right)=x e^{-x^{2} / 2}
$$

Trick compute 2D normal.
Let $f(x, y)=\frac{1}{2 \pi} e^{-x^{2} / 2} \cdot e^{-y^{2} / 2}$

$$
\begin{aligned}
& =\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2} \\
& =\frac{1}{2 \pi} e^{-r^{2} / 2} \text { (in polar) }
\end{aligned}
$$



In Polar: $f(r, \theta)=\frac{1}{2 \pi} e^{-r^{2} / 2}$ (Symmetric)
Lets compute the Cumulative that is Prob $f(r, \theta)$ is in a disk of radius $r$.

$$
\begin{aligned}
D(R) & =\int_{0}^{R} \frac{2 \pi r}{2 \pi} e^{-r^{2} / 2} d r=\int_{0}^{R} r e^{-r^{2} / 2} d r \\
& \left.=-e^{-r^{2} / 2}\right]_{0}^{R}=1-e^{-R^{2} / 2}
\end{aligned}
$$

$$
\begin{aligned}
& Y=1-e^{-R^{2} / 2} \\
& e^{-R^{2} / 2}=1-Y \\
& -R^{2} / 2=\ln (1-Y) \\
& R=\sqrt{-2 \ln (1-y)} \\
& R=\sqrt{-2 \ln (Y)}
\end{aligned}
$$

Alg Pick $u, v$ uniform $[0,1]$ (In polar) return $(\theta, r)$ Where

$$
\theta=2 \pi u
$$

$$
r=\sqrt{-2 \ln (v)}
$$

Or return:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Do we need to compute

$$
\cos \theta \& \sin \theta ?
$$

Yet another Normal Dist Alg 14
Let $B \equiv\left\{(x, y) \in R^{2} \mid x^{2}+y^{2} \leq 1\right\}$
The unit ball
Note: Area (B) $=\pi$
Consider RV D

$$
\begin{aligned}
& \operatorname{Prob}[D=(x, y) \in B]=1 / \pi \\
& \operatorname{Prob}[D=(x, y) \notin B]=0
\end{aligned}
$$

Alg $U B[n, v]$ where $U$ \& $V$ are uniform $[0,1]$

1) Set $u=2 u-1 \& v=2 V-1$ "U $U V$ are uniform $[-1,1]$ "
2) Set $w=U^{2}+v^{2}$
3) Return ( $u, v$ ) if $W \leq 1$ else restart (Try again)

Observe that
$(u, v)$ is uniform over $B$.
What can we say bout $w$ ? Lets stark with the RV $\sqrt{w}$.
Claim PDF of $\sqrt{w}$ is $2 r$.
if


Thus $\operatorname{CDF}(\sqrt{w}) \equiv \int_{0}^{R} 2 r d r=R^{2}$
Conger: RV $W=(\sqrt{w})^{2}$
Question How do we get CDF of $W$ from $\sqrt{w}$

We look at the preimage


$$
\operatorname{CD} F_{w}(R)=\underset{\sqrt{w}}{\operatorname{CDF}}(\sqrt{R})=R
$$

Thus $W$ is uniform $[0,1]$
Note $(u, v) / \sqrt{w}$ is uniform on unit circle

The Box-Muller Alg
Alg $B M(u, v)$ where $u \& v$ are uniform $[0,1]$.

1) Set $u=2 u-1$ \& $v=2 v-1 \quad$ (uniform $[-1,1]$ )
2) Set $w=u^{2}+v^{2}$
is $w>1$ then restart.
Note: $(u, v)$ is uniform over unit disk.
3) Set $A=\sqrt{-2 \ln w}$ w $\quad$ (scaling)
4) Return $T_{1}=A u \& T_{2}=A v$

Claim: BM generator 2D unit Gaussian.
After step 2

1) $(u, v)$ is uniform over $\beta$.
2) $\left(W / w_{w}, V / \sqrt{w}\right)$ is uniform over unit crete.
3) $W$ is uniform $[0,1]$

Since $W$ is $[0,1]$ uniform The Radial RV $R$ is just

$$
R=\sqrt{-2 \ln W}
$$

For the angle $R V \theta$ we need $\cos \theta, \sin \theta$

But thess are

$$
u / \sqrt{w} \& V / \sqrt{w}
$$

Thus We return

$$
\left(\frac{R}{\sqrt{w}} U, \frac{R}{\sqrt{w}} V\right)
$$

