GOLDEN-THOMPSON INEQUALITY

For $n \times n$ complex matrices, the matrix exponential is defined by Taylor series as

$$
e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!} .
$$

For commuting matrices A and B we see that $e^{A+B}=e^{A} e^{B}$ by multiplying the Taylor series. This identity is not true for general noncommuting matrices. In fact, it always fails if A and B do not commute, see [2].

Theorem 1 (Golden-Thompson Inequality). For arbitrary self-ajoint matrices A and B, one has

$$
\operatorname{tr}\left(e^{A+B}\right) \leq \operatorname{tr}\left(e^{A} e^{B}\right)
$$

For a survey of Golden-Thompson and other trace inequalities, see [2]. In the present note, we give a proof of Golden-Thompson inequality following [1] Theorem 9.3.7.
Remarks. 1. Golden-Thompson inequality holds for arbitrary unitaryinvariant norm replacing the trace, see [1] Theorem 9.3.7.
2. A version of Golden-Thompson inequality for three matrices fails: $\operatorname{tr}\left(e^{A+B+C}\right) \not \leq \operatorname{tr}\left(e^{A} e^{B} e^{C}\right)$.

The proof of Golden-Thompson inequality is based on Lie Product Formula:

Theorem 2 (Lie Product Formula). For arbitrary matrices A and B, we have

$$
e^{A+B}=\lim _{N \rightarrow \infty}\left(e^{A / N} e^{B / N}\right)^{N}
$$

Proof. We first compare

$$
X_{N}=e^{(A+B) / N} \quad \text { and } \quad Y_{N}=e^{A / N} e^{B / N}
$$

As $N \rightarrow \infty$, Taylor's expansion gives

$$
\begin{aligned}
X_{N} & =1+\frac{A+B}{N}+O\left(N^{-2}\right), \\
Y_{N} & =\left[1+\frac{A}{N}+O\left(N^{-2}\right)\right]\left[1+\frac{B}{N}+O\left(N^{-2}\right)\right] \\
& =1+\frac{A}{N}+\frac{B}{N}+O\left(N^{-2}\right)
\end{aligned}
$$

This shows that

$$
\begin{equation*}
X_{N}-Y_{N}=O\left(N^{-2}\right) \tag{1}
\end{equation*}
$$

Now, to compare $X_{N}^{N}-Y_{N}^{N}$, we shall use the following bound:
Claim. For arbitrary matrices X and Y, we have

$$
\left\|X^{N}-Y^{N}\right\| \leq N M^{N-1}\|X-Y\|
$$

where $M=\max (\|X\|,\|Y\|)$.
To prove this claim, we write the telescoping sum

$$
\begin{aligned}
X^{N}-Y^{N} & =\left(X^{N}-X^{N-1} Y\right)+\left(X^{N-1} Y+X^{N-2} Y^{2}\right)+\cdots+\left(X Y^{N-1}-Y^{N}\right) \\
& =X^{N-1}(X-Y)+X^{N-2}(X-Y) Y+\cdots+(X-Y) Y^{N-1}
\end{aligned}
$$

Each of the N terms in this sum is bounded by $M^{N-1}\|X-Y\|$. This proves Claim.

To complete the proof of Lie Product Formula, we shall use Claim for $X=X_{N}, Y=Y_{N}$. Since

$$
\begin{aligned}
\left\|X_{N}\right\| & \leq e^{\|A+B\| / N} \leq e^{(\|A\|+\|B\|) / N} \\
\left\|Y_{N}\right\| & \leq\left\|e^{A / N} e^{B / N}\right\| \leq e^{(\|A\|+\|B\|) / N},
\end{aligned}
$$

we have

$$
M^{N}=\max (\|X\|,\|Y\|)^{N} \leq e^{\|A\|+\|B\|} .
$$

Therefore, using Claim and the bound (1), we conclude that

$$
\left\|X_{N}-Y_{N}\right\| \leq N e^{\|A\|+\|B\|} O\left(N^{-2}\right)=O(1 / N) .
$$

This completes the proof of Lie Product Formula.
Another ingredient we will need is the following.
Proposition 3. For arbitrary matrix X and a positive integer m, one has

$$
\left|\operatorname{tr}\left(X^{m}\right)\right| \leq \operatorname{tr}\left(|X|^{m}\right)
$$

In the right hand side, we use the notation $|X|=\left(X^{*} X\right)^{1 / 2}$.
This proposition is a straightforward consequence of Weyl's Majorant Theorem, which states eigenvalues of a matrix are dominated by the singular values:

Theorem 4 (Weyl's Majorant Theorem). Let A be an $n \times n$ matrix with singular values $s_{1} \geq \cdots \geq s_{n}$ and eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$ arranged so that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a function such that $f\left(e^{t}\right)$ is convex and increasing in t. Then

$$
\sum_{i=1}^{n} f\left(\left|\lambda_{i}\right|\right) \leq \sum_{i=1}^{n} f\left(s_{i}\right)
$$

For a proof, see [1] Theorem 2.3.6.
Proposition 3 follows from Weyl's Majorant Theorem for the function $f(x)=x^{m}$:

$$
\left|\operatorname{tr}\left(X^{m}\right)\right|=\left|\sum_{i=1}^{n} \lambda_{i}^{m}\right| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|^{m} \leq \sum_{i=1}^{n} s_{i}^{m}=\operatorname{tr}\left(|X|^{m}\right)
$$

Proof of Golden-Thompson Inequality. Fix a natural number N and consider

$$
X=e^{A / 2^{N}}, \quad X=e^{B / 2^{N}}
$$

To prove Golden-Thompson Inequality, it suffices to show that

$$
\begin{equation*}
\operatorname{tr}\left((X Y)^{2^{N}}\right) \leq \operatorname{tr}\left(X^{2^{N}} Y^{2^{N}}\right) \tag{2}
\end{equation*}
$$

Indeed, if (2) holds then, taking limit as $N \rightarrow \infty$ we see that the left hand side of (2) converges to $\operatorname{tr}\left(e^{A+B}\right)$ by Lie Product Formula, while the right hand side equals $\operatorname{tr}\left(e^{A} e^{B}\right)$.

To prove (2), we use Proposition 3 and note that $|X Y|^{2}=(X Y)^{*}(X Y)=$ $Y X^{2} Y$. We thus have

$$
\operatorname{tr}(X Y)^{2^{N}} \leq \operatorname{tr}\left(Y X^{2} Y\right)^{2^{N-1}}=\operatorname{tr}\left(X^{2} Y^{2}\right)^{2^{N-1}}
$$

where the last equality follows from the trace property $\operatorname{tr}(U V)=$ $\operatorname{tr}(V U)$.

Continuing this procedure for X^{2} and Y^{2}, we obtain

$$
\operatorname{tr}\left(X^{2} Y^{2}\right)^{2^{N-1}} \leq \operatorname{tr}\left(X^{4} Y^{4}\right)^{2^{N-2}}
$$

After N steps, we arrive at the bound (2). This proves Golden-Thompson Inequality.

References

[1] R. Bhatia, Matrix analysis. Graduate Texts in Mathematics, 169. SpringerVerlag, New York, 1997. xii+347 pp.
[2] , D. Petz, A survey of trace inequalities, in Functional Analysis and Operator Theory, 287-298, Banach Center Publications, 30 (Warszawa 1994). Online at http://www.renyi.hu/~petz/pdf/64.pdf

