GOLDEN-THOMPSON INEQUALITY

For n x m complex matrices, the matrix exponential is defined by
Taylor series as
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For commuting matrices A and B we see that eAt? = e4e® by mul-
tiplying the Taylor series. This identity is not true for general non-
commuting matrices. In fact, it always fails if A and B do not com-

mute, see [2].

Theorem 1 (Golden-Thompson Inequality). For arbitrary self-ajoint
matrices A and B, one has

tr(e?8) < tr(ee?).

For a survey of Golden-Thompson and other trace inequalities, see
[2]. In the present note, we give a proof of Golden-Thompson inequality
following [1] Theorem 9.3.7.

Remarks. 1. Golden-Thompson inequality holds for arbitrary unitary-
invariant norm replacing the trace, see [1] Theorem 9.3.7.

2. A version of Golden-Thompson inequality for three matrices fails:
tr(eATBFC) £ tr(etebe’).

The proof of Golden-Thompson inequality is based on Lie Product
Formula:

Theorem 2 (Lie Product Formula). For arbitrary matrices A and B,
we have

AP = lim (
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Proof. We first compare

Xy =eWHB/N and Yy = eNeB/N,
As N — oo, Taylor’s expansion gives

A+ B

Xy=1+ +O(N7?),
A i B .
Yy = [1+N+O(N )][1+W+O(N )

A B ,

—1+N+N—|—O(N )

This shows that

(1) Xy — Yy =O(N7?).
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Now, to compare X¥ — Y, we shall use the following bound:
Claim. For arbitrary matrices X and Y, we have
IXY =y < NMYTHIX - Y,
where M = max(||X]||, ||Y]|)-
To prove this claim, we write the telescoping sum
XNy N = (xN - XNy 4 (xVy 4 XNV g (XY NSy )
=XV X -+ XV AX Y)Y 4+ (X Y)YV L

Each of the N terms in this sum is bounded by M™~1||X — Y||. This
proves Claim.

To complete the proof of Lie Product Formula, we shall use Claim
for X = Xy, Y =Yy. Since

| X || < elA+BIN < UAI+IBIN/AN.
1Yn || < ||eNeP/N|| < eUAIHIBIN,
we have
MY = max(| X[, [[Y )Y < el4I+181.
Therefore, using Claim and the bound (1), we conclude that
| Xn — Yy < NelAIFIBIO(N=2) = O(1/N).
This completes the proof of Lie Product Formula. 0

Another ingredient we will need is the following.

Proposition 3. For arbitrary matriz X and a positive integer m, one
has

[ tr(X™)| < tr(|X]™).
In the right hand side, we use the notation | X| = (X*X)'/2.

This proposition is a straightforward consequence of Weyl’s Majorant
Theorem, which states eigenvalues of a matrix are dominated by the
singular values:

Theorem 4 (Weyl’s Majorant Theorem). Let A be an n X n matric
with singular values s; > --- > s, and eigenvalues Ay > --- > A\,
arranged so that |A\1| > +-- > |\,|. Let f: Ry — Ry be a function such
that f(e') is convex and increasing in t. Then

Zf(\w < Zf(si)-



For a proof, see [1] Theorem 2.3.6.

Proposition 3 follows from Weyl’s Majorant Theorem for the function

flz) =a™
(X)) = | 3N

<D NS = (X,
=1 =1

Proof of Golden-Thompson Inequality. Fix a natural number N and
consider
X =M X = B2V
To prove Golden-Thompson Inequality, it suffices to show that
(2) tr((XY)?") < tr(X2"y?Y),
Indeed, if (2) holds then, taking limit as N — oo we see that the left
hand side of (2) converges to tr(e*#) by Lie Product Formula, while
the right hand side equals tr(e“e?).
To prove (2), we use Proposition 3 and note that [ XY > = (XY)*(XY) =
Y X?Y. We thus have
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tr(XY)? <tr(YX?Y)? ' = tr(X2Y?)?
where the last equality follows from the trace property tr(UV) =
tr(VU).
Continuing this procedure for X? and Y2, we obtain

oN-1

tr(X?Y2)? T < (XY
After N steps, we arrive at the bound (2). This proves Golden-Thompson
Inequality. U
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