
GOLDEN-THOMPSON INEQUALITY

For n ⇥ n complex matrices, the matrix exponential is defined by

Taylor series as

eA
=

1X

k=0

Ak

k!

.

For commuting matrices A and B we see that eA+B
= eAeB

by mul-

tiplying the Taylor series. This identity is not true for general non-

commuting matrices. In fact, it always fails if A and B do not com-

mute, see [2].

Theorem 1 (Golden-Thompson Inequality). For arbitrary self-ajoint

matrices A and B, one has

tr(eA+B
)  tr(eAeB

).

For a survey of Golden-Thompson and other trace inequalities, see

[2]. In the present note, we give a proof of Golden-Thompson inequality

following [1] Theorem 9.3.7.

Remarks. 1. Golden-Thompson inequality holds for arbitrary unitary-

invariant norm replacing the trace, see [1] Theorem 9.3.7.

2. A version of Golden-Thompson inequality for three matrices fails:

tr(eA+B+C
) 6 tr(eAeBeC

).

The proof of Golden-Thompson inequality is based on Lie Product

Formula:

Theorem 2 (Lie Product Formula). For arbitrary matrices A and B,

we have

eA+B
= lim

N!1
(eA/NeB/N

)

N .

Proof. We first compare

XN = e(A+B)/N
and YN = eA/NeB/N .

As N !1, Taylor’s expansion gives

XN = 1 +

A + B

N
+ O(N�2

),

YN =

h
1 +

A

N
+ O(N�2

)

ih
1 +

B

N
+ O(N�2

)

i

= 1 +

A

N
+

B

N
+ O(N�2

).

This shows that

(1) XN � YN = O(N�2
).
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Now, to compare XN
N � Y N

N , we shall use the following bound:

Claim. For arbitrary matrices X and Y , we have

kXN � Y Nk  NMN�1kX � Y k,

where M = max(kXk, kY k).

To prove this claim, we write the telescoping sum

XN � Y N
= (XN �XN�1Y ) + (XN�1Y + XN�2Y 2

) + · · · + (XY N�1 � Y N
)

= XN�1
(X � Y ) + XN�2

(X � Y )Y + · · · + (X � Y )Y N�1.

Each of the N terms in this sum is bounded by MN�1kX � Y k. This

proves Claim.

To complete the proof of Lie Product Formula, we shall use Claim

for X = XN , Y = YN . Since

kXNk  ekA+Bk/N  e(kAk+kBk)/N ,

kYNk  keA/NeB/Nk  e(kAk+kBk)/N ,

we have

MN
= max(kXk, kY k)N  ekAk+kBk.

Therefore, using Claim and the bound (1), we conclude that

kXN � YNk  NekAk+kBkO(N�2
) = O(1/N).

This completes the proof of Lie Product Formula. ⇤

Another ingredient we will need is the following.

Proposition 3. For arbitrary matrix X and a positive integer m, one

has

| tr(Xm
)|  tr(|X|m).

In the right hand side, we use the notation |X| = (X⇤X)

1/2
.

This proposition is a straightforward consequence of Weyl’s Majorant

Theorem, which states eigenvalues of a matrix are dominated by the

singular values:

Theorem 4 (Weyl’s Majorant Theorem). Let A be an n ⇥ n matrix

with singular values s1 � · · · � sn and eigenvalues �1 � · · · � �n

arranged so that |�1| � · · · � |�n|. Let f : R+ ! R+ be a function such

that f(et
) is convex and increasing in t. Then

nX

i=1

f(|�i|) 
nX

i=1

f(si).
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For a proof, see [1] Theorem 2.3.6.

Proposition 3 follows from Weyl’s Majorant Theorem for the function

f(x) = xm
:

| tr(Xm
)| =

���
nX

i=1

�m
i

��� 
nX

i=1

|�i|m 
nX

i=1

sm
i = tr(|X|m).

Proof of Golden-Thompson Inequality. Fix a natural number N and

consider

X = eA/2N
, X = eB/2N

.

To prove Golden-Thompson Inequality, it su�ces to show that

(2) tr((XY )

2N
)  tr(X2N

Y 2N
).

Indeed, if (2) holds then, taking limit as N ! 1 we see that the left

hand side of (2) converges to tr(eA+B
) by Lie Product Formula, while

the right hand side equals tr(eAeB
).

To prove (2), we use Proposition 3 and note that |XY |2 = (XY )

⇤
(XY ) =

Y X2Y . We thus have

tr(XY )

2N  tr(Y X2Y )

2N�1
= tr(X2Y 2

)

2N�1
,

where the last equality follows from the trace property tr(UV ) =

tr(V U).

Continuing this procedure for X2
and Y 2

, we obtain

tr(X2Y 2
)

2N�1  tr(X4Y 4
)

2N�2
.

After N steps, we arrive at the bound (2). This proves Golden-Thompson

Inequality. ⇤
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