
ORIE 6334 Spectral Graph Theory September 20, 2016

Lecture 9
Lecturer: David P. Williamson Scribe: Michael Roberts

In this lecture, we develop and and analyze a randomized approximation algorithm for MAX
CUT. Recall the MAX CUT problem: Given G = (V,E), find S ⇢ V that maximizes �(S).

Definition 1 (Approximation algorithm) A (randomized) ↵-approximation algorithm runs in

(randomized) polynomial time and computes a solution with (expected) value within ↵ of the value

of an optimal solution.

Note that there exists an easy randomized algorithm: Flip a coin for each i 2 V to decide whether
or not i 2 S. Then

E [|�(S)|] =
X

(i,j)2E

Pr[(i, j) 2 S] =
1

2
|E| � 1

2
OPT,

where OPT is the value of an optimal solution to Max-Cut on G.
Today, we will show a .529-approximation algorithm due to Trevisan using a combination of this

naive randomized algorithm and Trevisan’s Cheeger-like inequalities.
Recall from the previous lecture that we defined

�(S) = min
(L,R) a partition of S

2|E(L)|+ 2|E(R)|+ |�(S)|
vol(S)

and
�(G) = min

S⇢V

S 6=;

�(S).

Let �
n

is the smallest eigenvalue of I + A, where A is the normalized adjacency matrix of G.
Last time we showed the following.

Theorem 1 (Trevisan 2009)
1

2
�
n

 �(G)
p

2�
n

.

We note that the proof was algorithmic; given the eigenvector corresponding to the eigenvalue
�
n

, the algorithm returns a set S and a partition of S into L and R such that �(S)
p
2�

n

.

1 Trevisan’s Algorithm for MAX CUT

The main idea of this algorithm is to trade o↵ between two cases:

• If OPT < (1 � ✏)|E|, then we get an approximation ratio from the naive random algorithm
that is better than 1/2.

• If OPT � (1� ✏)|E|, then we can use Trevisan’s inequality to get a better bound.

For Max Cut S⇤, let S = V , L = S⇤, R = V � S⇤. Suppose that OPT � (1� ✏)|E|. Then

�(G) �(S) =
2|E(S⇤)|+ 2|E(V � S⇤)|+ |�(V)|

vol(V)
=

2(|E|� |�(S⇤)|)
2|E|

 2(|E|� (1� ✏)|E|)
2|E|

= ✏.

0This lecture is derived from Lau, Lecture 4 https://cs.uwaterloo.ca/

~

lapchi/cs798/notes/L04.pdf.

9-1

Notice that in this case, then, we can infer that �
n

 2✏.
So if �

n

> 2✏, then OPT < (1� ✏)|E|. So the naive randomized algorithm finds S such that

E [�(S)] =
1

2
|E| � OPT

2(1� ✏)
.

Thus in this case it is a 1
2(1�✏) - approximation algorithm.

Now suppose that �
n

 2✏. We can run the algorithm to find a set S and a partition of S into
L and R such that �(S) is small, namely, at most

p
2�

n

 2
p
✏.

Once we have this S, what should we do to find a large cut? In this case, we will attempt to
improve our bounds by making some recursive calls. We recurse our Max-Cut algorithm on V � S,
to find (L0, R0) that partition S � V .
Consider the following two possible cuts of G (presented as partitions on V):

• (L [L0, R [R0)

• (L [R0, R [L0)

Notice that every edge in �(S) either ”stays on the same side”, going from L to L0 or R to R0, or
else ”crosses sides”, going from L to R0 or R to L0. That means that one of the above cuts must
contain at least 1/2 the edges in �(S). We choose that cut.

Call the size of the cut our algorithm finds on G, ALG(G), and the size of the maximum cut in
G, OPT(G). Then:

ALG(G) � |�(L,R)|+ 1/2�(S) + ALG(G� S),

and
OPT(G) |E(L)|+ |E(R)|+ |�(L,R)|+ |�(S)|+OPT(G� S).

Then
ALG(G)

OPT(G)
� min

⇢
|�(L,R)|+ 1/2�(S)

|E(L)|+ |E(R)|+ |�(L,R)|+ |�(S)| ,
ALG(G� S)

OPT(G� S)

�
.

Since �
n

 2✏, using Trevisan’s inequalities we bound:

2
p
✏ � 2|E(L)|+ 2|E(R)|+ |�(S)|

vol(S)

=
2|E(L)|+ 2|E(R)|+ |�(S)|

2|E(L)|+ 2|E(R)|+ |�(S)|+ 2|�(L,R)|

= 1� |�(L,R)|
|E(L)|+ |E(R)|+ 1/2|�(S)|+ |�(L,R)| .

Thus

|�(L,R)|+ 1/2�(S)

|E(L)|+ |E(R)|+ |�(L,R)|+ |�(S)|
|�(L,R)|

|E(L)|+ |E(R)|+ |�(L,R)|+ 1/2|�(S)| 1� 2
p
✏.

So, we can conclude that

ALG(G)

OPT(G)
� min

⇢
1� 2

p
✏,
ALG(G� S)

OPT(G� S)

�
.

The same must hold true for G�S recursively. But note that for some subgraph of G we consider
in some recursive step, it may be possible that �

n

� 2✏. Thus we conclude that:

ALG(G)

OPT(G)
� min

⇢
1� 2

p
✏,

1

2(1� ✏)

�
.

9-2

These two expressions are equal for ✏ ⇡ .0554, at which point the ratio is about .529. So this is a
.529-approximation algorithm.1

Better analyses were given in Trevisan 2009, which improved the bound to .531, and in Soto
2015, which improved it to .614.

2 Discussion

Goemans, W (1995) gave a .878-approximation algorithm for MAX CUT by using semidefinite
programming (SDP). So why do we care about Trevisan’s spectral algorithm?

• Computing eigenvectors is a lot easier than solving SDP. (Although, Trevisan’s algorithm
makes recursive calls that require recomputing new vectors).

• This method may be more powerful than LP. Chan, Lee, Raghavendra, Steurer FOCS ’13
shows you need superpolynomial-sized LPs to do better than a 1/2-approximation algorithm.
In a forthcoming paper Kothari, Meka and Raghavedra, this result is improved to showing
that exponentially-sized LPs are required to get better than a 1/2-approximation algorithm.

These observations raise some research questions:

• The current bound on the algorithm’s performance doesn’t seem tight - is it?

• Is there a“one-shot” spectral algorithm, one that doesn’t require recursive calls? The recursion
makes it hard to analyze the algorithm, and forces recomputation of eigenvectors.

• Can we apply this algorithm to other problems with a similar structure (called 2-CSP)? For
instance, the MAX DICUT problem (MAX CUT in directed graphs) and the MAX 2SAT
problem have this structure. In the MAX 2SAT problem, we are given n boolean variables
x1, . . . , xn

, and some number of clauses with at most two variables (e.g. x̄1, x2 _ x̄3, etc.) The
goal is to find a setting of the variables to true or false so as to maximize the total number of
satisfied clauses.

Some progress has been made on this last question.

Definition 2 (Balanced MAX E2SAT) Balanced MAX E2SAT is a subclass of MAX 2SAT in-

stances such that each clause has exactly two literals in it (i.e. variables or their negations) and for

all i, the number of clauses in which x
i

appears is exactly equal to the number of clauses in which

x̄
i

appears.

Paul, Poloczek, W (2016) use Trevisan’s algorithm to obtain a .81-approximation algorithm for
Balanced MAX E2SAT, which is better than a .75-approximation algorithm that can be obtained
via a naive randomized algorithm.

3 Other Cheeger-Like Inequalities

We previously claimed that �
k

(L
G

) = 0 i↵ G has at least k connected components, and made a
similar clame for �

k

(L). So, we may be interested in Cheeger-like inequalities for � other than �2.
We define the k-way conductance of a graph G as

�
k

(G) = min
S1,S2...Sn⇢V

All Si disjoint

max
i

�(S
i

).

Some relatively recent papers have proved a bound on the k-way conductance via �
k

. These in-
equalities are called higher-order Cheeger inequalities.

1Lau, in his lecture notes, attributes this analysis to Nick Harvey.

9-3

Theorem 2 (Lee, Oveis Gharan, Trevisan ’12)

�
k

2
 �

k

(G) O(k2)
p

�
k

.

The following has also been shown, in which the dependence on k is improved, but the eigenvalue
in the inequality is weakened to be �2k rather than �

k

.

Theorem 3 (Lee et al ’12; Louis, Raghavedra, Tetali, Vempala ’12)

�
k

(G) = O(polylog(k))
p
�2k.

But it is an open question whether or not one can have both things at once; that is, whether one
can show that

�
k

(G) = O(polylog(k))
p

�
k

.

9-4

