
ORIE 6334 Spectral Graph Theory September 15, 2016

Lecture 8
Lecturer: David P. Williamson Scribe: Victor Reis

In this lecture, we continue the proof of Cheeger’s inequality and explore simi-
lar bounds on the largest eigenvalue of the normalized Laplacian. Recall that the
normalized Laplacian is given by L = D

�1/2
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G

D
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and d(i) is the degree of vertex i. When S ✓ V , we define �(S) as the set of edges
with exactly one endpoint in S, and vol(S) =

P
i2S d(i). The conductance of S is

defined as

�(S) =
|�(S)|

min(vol(S), vol(V � S))
,

and the conductance of G is defined as �(G) = min
S✓V

�(S). Finally, let �
1

 �

2


· · ·  �

n

denote the eigenvalues of L .

1 Cheeger’s Inequality

Theorem 1 (Cheeger’s inequality, upper bound) We have �(G) 
p
2�

2

.

Last time, we showed that, for any vector y 2 Rn with
P

i2V d(i)y(i) = 0, we can

find S

t

✓ supp(y) = {i 2 V : y(i) 6= 0} such that |�(St)|
vol(St)


p

2R(y), where

R(y) =

P
(i,j)2E(y(i)� y(j))2
P

i2V d(i)y(i)2
.

We also saw that �
2

= minR(y). The issue is that we may have vol(S
t

) > vol(V �S

t

).
To fix this, we will modify y so that vol(supp(y))  m (recall that vol(V ) = 2m).

The idea is to pick c such that the two sets {i : y(i) < c} and {i : y(i) > c} both
have volume at most m, then find S

t

for both of them and take the best one.

0
This lecture is derived from Lau’s 2012 notes, Week 2, http://appsrv.cse.cuhk.edu.hk/

~

chi/

csc5160/notes/L02.pdf and Lau’s 2015 notes, Lecture 4, https://cs.uwaterloo.ca/

~

lapchi/

cs798/notes/L04.pdf.
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Claim 2 Let z = y � ce, where e 2 Rn

is the vector of all ones. Then

(i) z

>
Dz � y

>
Dy.

(ii) z

>
L

G

z = y

>
L

G

y.

(iii) Let z

+

(i) = max(0, z(i)) and z�(i) = min(0, z(i)). Then min(R(z
+

), R(z�)) 
R(z)  R(y) and supp(z

+

), supp(z�) both have volume at most m.

Given the claim, we can finish the proof of Cheeger’s inequality. Using the algo-
rithm from last lecture, we find S

+

✓ supp(z
+

), S� ✓ supp(z�) with

min(�(S
+

),�(S�)) = min

✓
|�(S

+

)

vol(S
+

)
,

|�(S�)

vol(S�)

◆
 min(

p
2R(z

+

),
p

2R(z�))


p
2R(y),

so that �(G)  min(�(S
+

),�(S�))  min
p
2R(y) =

p
2�

2

, as desired.

Proof of claim:
(i) Let f(c) = (y � ce)>D(y � ce) =

P
i2V d(i)(y(i)� c)2.

We have f

0(c) =
P

i2V (�2y(i)d(i) + 2cd(i)) = 2c
P

i2V d(i), by
P

i

y(i)d(i) = 0.
Also, f 00(c) = 2

P
i

d(i) > 0, so that f is minimized when f

0(c) = 0 () c = 0, so
that z>Dz � y

>
Dy, as desired.

(ii) Indeed,

z

>
L

G

z =
X

(i,j)2E

(z(i)� z(j))2 =
X

(i,j)2E

((y(i)� c)� (y(j)� c))2

=
X

(i,j)2E

(y(i)� y(j))2 = y

>
L

G

y.

(iii) Note that

z

>
Dz =

X

i2V

d(i)z(i)2 =
X

i2V

d(i)z
+

(i)2 +
X

i2V

d(i)z�(i)
2 = z

>
+

Dz

+

+ z

>
�Dz�,

and
z

>
L

G

z � z

>
+

L

G

z

+

+ z

>
�LG

z�,

if we can show that (z(i) � z(j))2 � (z
+

(i) � z

+

(j))2 + (z�(i) � z�(j))2 for all i, j.
This follows since if z(i) and z(j) have the same sign, then clearly (z(i) � z(j))2 =
(z

+

(i)� z

+

(j))2 + (z�(i)� z�(j))2 (where one of the two terms is zero), while if z(i)
and z(j) have opposite signs then

(z(i)� z(j))2 = z(i)2 � 2z(i)z(j) + z(j)2

� z(i)2 + z(j)2

� (z
+

(i)� z

+

(j))2 + (z�(i)� z�(j))
2

,
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since �2z(i)z(j) is positive in this case. Therefore,

R(y) =
y

>
L

G

y

y

>
Dy

� R(z) =
z

>
L

G

z

z

>
Dz

�
z

>
+

L

G

z

+

+ z

>
�LG

z�

z

>
+

Dz

+

+ z

>
�Dz�

� min(R(z
+

), R(z�)),

and from our choice of c, we have vol(z
+

)  m and vol(z�)  m. ⇤
Renato Paes Leme and David Applegate observe that the cuts generated by con-

sidering the vectors z
+

and z� correspond to sweep cuts in the original vector y, and
so the overall analysis giving the upper bound on �(G) can be thought of as analyzing
the sweep cuts of y.

2 Bounds on largest eigenvalue

In the last lecture, we proved that �
n

 2. Note that

�

n

= max
x2Rn

x

>L x

x

>
x

= max
x2Rn

x

>
D

�1/2

L

G

D

�1/2

x

x

>
x

= max
y2Rn

y

>
L

G

y

y

>
Dy

,

where we take y = D

�1/2

x. We also claim the following

Claim 3 �

n

= 2 if and only if G has a bipartite component.

We can easily show the if direction. If G has a bipartite component S with sides L,R,
define a vector y 2 Rn as y(i) = 1 if i 2 L, y(i) = �1 if i 2 R and y(i) = 0 otherwise.

If �(A,B) denotes the set of edges with one endpoint in A and another in B, we
have

y

>
L

G

y

y

>
Dy

=

P
(i,j)2E(y(i)� y(j))2
P

i2V d(i)y(i)2
=

4�(L,R)

vol(S)
= 2.

Now we’ll show a statement stronger than the converse: G has a bipartite com-
ponent when �

n

= 2, and has an “almost” bipartite component when �

n

is close to
2. To make this more precise, consider the quantity

�(G) = min
S✓V

S=L[R
L\R=;

2|E(L)|+ 2|E(R)|+ |�(S)|
vol(S)

,

where E(X) denotes the set of edges with both endpoints in X. Alternatively,

�(G) = min
y2{�1,0,1}n

P
(i,j)2E |y(i) + y(j)|
P

i2V d(i)|y(i)| ,

where L = {i : y(i) = 1}, R = {i : y(i) = �1} and S = L [R.
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Since �

n

is the largest eigenvalue of L , �
n

= 2� �

n

is the smallest eigenvalue of
2I � L = 2I � (I � A ) = I + A . Hence

�

n

= min
x2Rn

x

>(I + A )x

x

>
x

= min
x2Rn

x

>
D

�1/2(D + A )D�1/2

x

x

>
x

= min
y2Rn

y

>(D + A)y

y

>
Dy

;

that is,

�

n

= min
y2Rn

P
(i,j)2E(y(i) + y(j))2
P

i2V d(i)y(i)2
.

Trevisan proves the following very nice analogy to the Cheeger inequality.

Theorem 4 (Trevisan 2009)

1

2
�

n

 �(G) 
p
2�

n

.

Proof: For the first inequality, simply note that

�

n

= min
y2Rn

P
(i,j)2E(y(i) + y(j))2
P

i2V d(i)y(i)2
 min

y2{�1,0,1}n

P
(i,j)2E(y(i) + y(j))2
P

i2V d(i)y(i)2

 min
y2{�1,0,1}n

P
(i,j)2E 2|y(i) + y(j)|
P

i2V d(i)y(i)2
= 2�(G),

by noticing that (y(i) + y(j))2  2|y(i) + y(j)| for y(i), y(j) 2 {�1, 0,+1}.
For the second inequality, pick y 2 Rn satisfying �

n

= y

>
(D+A)y

y

>
y

and assume that

max
i

y

2(i) = 1 (if this is not true, scale y accordingly). Choose t 2 [0, 1] uniformly
at random, and set x(i) = 1 if x(i) �

p
t, x(i) = �1 if x(i)  �

p
t and x(i) = 0

otherwise.

Claim 5 E[|x(i) + x(j)|]  |y(i) + y(j)| · (|y(i)|+ |y(j)|) for all (i, j) 2 E.

Proof of claim: Without loss of generality suppose y(i)2 � y(j)2. If y(i), y(j)
have the same sign then

E[|x(i) + x(j)|] = 1 · P[y(j)2  t  y(i)2] + 2 · P[t  y(j)2]

= y(i)2 + y(j)2

 |y(i) + y(j)| · (|y(i)|+ |y(j)|).

Otherwise, y(i), y(j) have di↵erent signs, so

E[|x(i) + x(j)|] = 1 · P[y(j)2  t  y(i)2]

= y(i)2 � y(j)2

= (y(i) + y(j))(y(i)� y(j))  |y(i) + y(j)| · (|y(i)|+ |y(j)|),
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as claimed. ⇤
Summing over all (i, j) 2 E and using Cauchy-Schwarz gives

E

2

4
X

(i,j)2E

|x(i) + x(j)|

3

5 
X

(i,j)2E

|y(i) + y(j)| · (|y(i)|+ |y(j)|)


s X

(i,j)2E

(y(i) + y(j))2
s X

(i,j)2E

(|y(i)|+ |y(j)|)2


s
�

n

X

i2V

d(i)y(i)2
s X

(i,j)2E

2(y(i)2 + y(j)2)

=
p

2�
n

X

i2V

d(i)y(i)2

=
p

2�
n

E[
X

i2V

d(i)|x(i)|],

so that there exists x 2 {�1, 0, 1}n with

�(G) 
P

(i,j)2E |x(i) + x(j)|
P

i2V d(i)|x(i)| 
p

2�
n

,

as desired. As with the proof of the Cheeger inequality, we can find such an x easily
because there are only n possible di↵erent vectors x produced by the algorithm, and
these correspond to t = y(i)2 for all i 2 V . ⇤

8-5


