
15-859N Spectral Graph Theory and The Laplacian
Paradigm, Fall 2018

Homework 3 Due: Friday Dec 7

Gary Miller TAs: TBA

Instructions. Collaboration is permitted in groups of size at most three. You must write
the names of your collaborators on your solutions and must write your solutions alone.

Question Points Score

1 25

2 25

3 25

4 25

Total: 100

1.(25) Resistance Theorem

In this problem we show that if we have a graph G with two attachment vertices a and b
and we only have attachment to these two vertices then we can replace the entire graph
with a single edge from a to b with resistance Rab in G.

Prove the following theorem.

Theorem 0.1. Let a and b be two vertices of a graph G with Laplacian L. Let Rab the
effective resistance in G from a to b and Hab the Laplacian of the unit weight single edge
graph from a to b, i.e., Hab = χabχ

T
ab. Then for all x ∈ <n,

xTHabx ≤ Rab · xTLx (1)

and there exist an x such that for all α, the inequality holds with equality for x+ α1̄.

Hint: First prove the theorem for x = L+w. At some point in your proof you will need
to use Cauchy-Schwartz.

%

2.(25) Leverage Scores and Resistors

Recall that much of this class has focused on the theorems regrading effective resistance
of graphs. The goal of this problem is to determine if we can generalized these theorems



to arbitrary matrices. Let B be the edge by vertex matrix of a connected graph G with
a diagonal conductance matrix C then the Laplacian of G is BTCB. If bi is the ith row
of B corresponding to the ith edge ei of G then the effective resistance from one end of ei
to the other is bi(B

TCB)†bTi . If we define B̄ = C1/2B then the resistance is bi(B̄
T B̄)†bTi .

This motivates to following definition.

Let Am×n be a matrix of rank n.

Definition 1. The Leverage Score σ(A, a) where a is a column vector of size n is
aT (ATA)†a where † is the pseudoinverse. If ai is the ith row of A the σi(A) = σ(A, aTi ).

The goal of this problem is to determine what if any of the properties of effective resis-
tance carry over the leverage scores.

1. Show that the leverage score of a nonzero row vector with itself is one.

2. Show that the column space Col(A) of A and the left null space NullL(A) of A form
an orthogonal bases of Rm. We will think of these vectors in f ∈ Rm as the flows.
In the case when A =

√
CB what kind of flows are the Col(A) and the NullL(A)?

3. We next prove a generalization of Foster’s Theorem. Show that the sum of the row
leverage scores of A is rank(A). In this problem assume that A is not of full rank.

4. We next prove a generalization of Thomsons Principle. Suppose that x is a solution
to the system ATAx = b were b is in the column space of AT . Show that the flow
f = Ax is the unique minimum energy flow such that ATf = b. We define the
energy of f to be fTf .

5. We next prove a generalization of Rayleigh’s Monotonicity Law. If we increase a
row of A by scaling it by 1 + c for c > 0 or add a new row then no leverage score
except the changed one will increase.

6. We next prove a generalization of Spielman-Srivastava Graph Sparsification The-
orem. We say that ATA ≈ε BTB if (1 − ε)ATA 4 BTB 4 (1 + ε)ATA. Prove
that that there exist a matrix QB where B is a subset of m′ rows of A and Q
is a nonnegative diagonal matrix where m′ = cn log n for some constant c and
ATA ≈ε BTB.

7. Prove a variant of the fact that conductors add when placed in parallel. In particular
prove a relationship between σ(a, a), σ(A, a), and σ(Ā, a) where Ā is the matrix A
with row a appended.

Hint: Consider the Sherman-Morrison formula.

Can you find a more general formula?

Research questions:

1. We also showed that the effective resistance forms a metric over the vertices.
Thus in our generalization we should be looking for a metric on the columns of A.
Suppose we define the score between two columns as Dij = χTij(A

TA)−1χij where
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χij is the column vector with a 1 and −1 at i and j respectively. Does our score
say anything interesting about the relationship of two columns? Is Dij a metric on
the columns of A.

2. Is there theory of random walks for leverage scores, either on the clumns or rows
of A?

3. If there in such a theory as randoms walks does commute time make sense and is
related to leverage score?

3.(25) Linear Sized Sparsifier

In this problem we prove a step that helps us show that every Laplacian (graph) has
linear-sized 1 + ε sparsifiers. You can assume the following lemma is true.

Lemma 1. Given vectors v1, v2, ..., vm ∈ Rn with∑
i≤m

viv
T
i = In

then there exists scalars si ≥ 0 with |{i : si 6= 0}| ≤ 4n so that

In �
∑
i≤m

siviv
T
i � 9In

.

With the help of the above lemma, prove that for every weighted graph G there exists
a subgraph H ⊆ G with at most 4n edges such that LG � LH � 9LG.

4.(25) Loewner Inequalities

1. Using the path embedding argument prove that for any spanning tree T of a con-
nected unweighted graph G,

LT � LG � strT (G)LT

where strT (G) is the stretch of G in T .

2. Let A and B be symmetric positive definite n by n matrices.
Show that A � αB if and only if λmax(B

−1A) ≤ α

3. Let G = (V,E,w) and H = (V,E ′, w′) be two weighted graphs. Lets define the
stretch between of G in H as

strH(G) =
∑
e∈E

wG(e) · ERH(e)

Using Part 2 prove that for any subgraph H of a connected weighted graph G,

LH � LG � strH(G)LH

where strH(G) is the stretch of G in H.
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4. Let that G = (V,E,w) and H = (V ′, E ′, w′) be two weighted graphs such that
W ⊂ V ∩ V ′.
Definition 2. Let x vary over column vectors corresponding to the vertices in
W , y vary over column vectors corresponding to the vertices V \W , and y′ vary
over column vectors corresponding to the vertices V ′ \W . We define the Lowener
inequality LG �W LH if for all x:

min
y

(
x
y

)T
LG

(
x
y

)
≤ min

y′

(
x
y′

)T
LH

(
x
y′

)
(a) Let G = (V,E,w) be a weighted graph over the vertices V . Suppose that A

is the Schur complement of LG after pivoting out some single vertex/variable,
say, vn from LG. Show that A is the Laplacian of a graph, say H on the vertices
V1, . . . , Vn−1.

(b) Furthermore, suppose we pivoted out from G = (V,E,w) all the vertices v ∈
W ⊂ V . Denote the residual graph with H = (V ′, E ′, w′) where V ′ = V \W .
Show that:

LH �V ′ LG �V ′ LH

Page 4


