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1. Combinatorial Game Theory

Combinatorial Game Theory is a fascinating and rich theory, based on a simple
and intuitive recursive definition of games, which yields a very rich algebraic struc-
ture: games can be added and subtracted in a very natural way, forming an abelian
GROUP (§ 2). There is a distinguished sub-GROUP of games called numbers which
can also be multiplied and which form a FIELD (§ 3): this field contains both the
real numbers (§ 3.2) and the ordinal numbers (§ 4) (in fact, Conway’s definition gen-
eralizes both Dedekind sections and von Neumann’s definition of ordinal numbers).
All Conway numbers can be interpreted as games which can actually be played in
a natural way; in some sense, if a game is identified as a number, then it is under-
stood well enough so that it would be boring to actually play it (§ 5). Conway’s
theory is deeply satisfying from a theoretical point of view, and at the same time
it has useful applications to specific games such as Go [Go]. There is a beautiful
microcosmos of numbers and games which are infinitesimally close to zero (§ 6), and
the theory contains the classical and complete Sprague-Grundy theory on impartial
games (§ 7).

The theory was founded by John H. Conway in the 1970’s. Classical references
are the wonderful books On Numbers and Games [ONAG] by Conway, and Winning
Ways by Berlekamp, Conway and Guy [WW]; they are now appearing in their second
editions. [WW] is a most beautiful book bursting with examples and results but
with less stress on mathematical rigor and exactness of some statements. [ONAG] is
still the definitive source of the theory, but rather difficult to read for novices; even
the second edition shows that it was originally written in one week, and we feel that
the order of presentation (first numbers, then games) makes it harder to read and
adds unnecessary complexity to the exposition. [SN] is an entertaining story about
discovering surreal numbers on an island.

This note attempts to furnish an introduction to Combinatorial Game Theory that
is easily accessible and yet mathematically precise and self-contained, and which pro-
vides complete statements and proofs for some of the folklore in the subject. We
have written this note with readers in mind who have enjoyed looking at books like
[WW] and are now eager to come to terms with the underlying mathematics, before
embarking on a deeper study in [ONAG, GONC] or elsewhere. While this note
should be complete enough for readers without previous experience with combina-
torial game theory, we recommend looking at [WW], [GONC] or [AGBB] to pick up
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the playful spirit of the theory. We felt no need for duplicating many motivating
examples from these sources, and we have no claims for originality on any of the
results.

Acknowledgement. This note grew out of a summer school we taught on the
subject for students of the Studienstiftung des deutschen Volkes in 2001 (in La Villa).
We would like to thank the participants for the inspiring and interesting discussions
and questions which eventually led to the writing of this note.

2. The GROUP of Games

2.1. What is a game? [ONAG, §§ 7, 0], [WW, §§ 1, 2]
Our notion of a game tries to formalize the abstract structure underlying games

such as Chess or Go: these are two-person games with complete information; there
is no chance or shuffling. The two players are usually called Left (L) and Right (R).
Every game has some number of positions, each of which is described by the set of
allowed moves for each player. Each move (of Left or Right) leads to a new position,
which is called a (left or right) option of the previous position. Each of these options
can be thought of as another game in its own right: it is described by the sets of
allowed moves for both players.

From a mathematical point of view, all that matters are the sets of left and right
options that can be reached from any given position — we can imagine the game
represented by a rooted tree with vertices representing positions and with oriented
edges labeled L or R according to the player whose moves they reflect. The root
represents the initial position, and the edges from any position lead to another rooted
(sub-)tree, the root of which represents the position just reached.

Identifying a game with its initial position, it is completely described by the sets
of left and right options, each of which is another game. This leads to the recursive
Definition 2.1 (1). Note that the sets L and R of options may well be infinite or
empty. The Descending Game Condition (2) simply says that every game must
eventually come to an end no matter how it is played; the number of moves until
the end can usually not be bounded uniformly in terms of the game only.

Definition 2.1 (Game). (1) Let L and R be two sets of games. Then the or-
dered pair G := (L, R) is a game.

(2) (Descending Game Condition (DGC)). There is no infinite sequence of games
Gi = (Li, Ri) with Gi+1 ∈ Li ∪Ri for all i ∈ N.

Note that this definition does not tell you what games are, but it tells you what
important properties they are assumed to have.

Definition 2.2 (Options and Positions).

(1) (Options). The elements of L and R are called left resp. right options of G.
(2) (Positions). The positions of G are G and all the positions of any option

of G.

In the recursive definition of games, a game consists of two sets of games. Before
any game is ‘created’, the only set of games we have is the empty set: the simplest
game is the ‘zero game’ 0 = ({ }, { }) with L = R = { }: in this game, no player
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has a move. Now that we have a non-empty set of games, the next simpler games
are 1 = ({0}, { }) (whose name indicates that it represents one free move for Left),
−1 = ({ }, {0}) (a free move for Right) and ∗ = ({0}, {0}) (a free move for whoever
gets to take it first).

Notation. We simplify (or abuse?) notation as follows: let L = {GL1 , GL2 , . . . }
and R = {GR1 , GR2 , . . . } be two arbitrary sets of games (we do not mean to indicate
that L or R are countable or non-empty); then for

G = (L, R) =
(
{GL1 , GL2 , . . . }, {GR1 , GR2 , . . . }

)
we write G =

{
GL1 , GL2 , . . . | GR1 , GR2 , . . .

}
. Hence a game is really a set with

two distinguished kinds of elements: the left respectively right options1. With this
notation, the four simplest games introduced so far can be written more easily as

0 = { | } 1 = {0 | } − 1 = { | 0} ∗ = {0 | 0} .

Eventually, we will want the two players to move alternately: that will be formal-
ized in § 2.2; but the Descending Game Condition will be needed to hold even when
players do not move alternately, see § 2.3.

The simple recursive (and at first mind-boggling) definition of games has its coun-
terpart in the following equally simple induction principle that is used in almost
every proof in the theory.

Theorem 2.3 (Conway Induction). Let P be a property which games might have,
such that any game G has property P whenever all left and right options of G have
this property. Then every game has property P .

More generally, for n ≥ 1, let P (G1, . . . , Gn) be a property which any n-tuple of
games might have (i.e., an n-place relation). Suppose that P (G1, . . . , Gi, . . . , Gn)
holds whenever all P (G1, . . . , G

′
i, . . . , Gn) hold (for all i ∈ {1, . . . , n} and all left and

right options G′
i ∈ Li ∪Ri). Then P (G1, . . . , Gn) holds for every n-tuple of games.

Proof: Suppose there is a game G which does not satisfy P . If all left and right
options of G satisfy P , then G does also by hypothesis, so there is an option G′

of G which does not satisfy P . Continuing this argument inductively, we obtain a
sequence G, G′, G′′, . . . of games, each an option of its predecessor, which violates
the Descending Game Condition. Note that formalizing this argument needs the
Axiom of Choice.

The general statement follows similarly: if P (G1, . . . , Gi, . . . , Gn) is false, it follows
that some P (G1, . . . , G

′
i, . . . , Gn) (for some i and some G′

i ∈ Li ∪Ri) is also false, so
either some P (G1, . . . , G

′′
i , . . . , Gn) or some P (G1, . . . , G

′
i, . . . , G

′
j, . . . , Gn) is false,

and it is easy to extract an infinite sequence of games Gi, G
′
i, G

′′
i , . . . which are

options of their predecessors, again a contradiction. 2

Note that Conway Induction does not need an explicit induction base (as opposed
to ordinary induction for natural numbers which must be based at 0): the empty
game 0 = { | } satisfies property P automatically because all its options do—there
is no option which might fail property P .

1It is customary to abuse notation and write {L | R} for the ordered pair (L,R). We will try
to avoid that in this paper.
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As a typical illustration of how Conway Induction works, we show that its first
form implies the Descending Game Condition.

Proposition 2.4. Conway Induction implies the Descending Game Condition.

Proof: Consider the property P (G): there is no infinite chain of games G, G′, G′′, . . .
starting with G so that every game is followed by one of its options. This property
clearly is of the kind described by Conway Induction, so it holds for every game. 2

Conway’s definition of a game [ONAG, §§ 0, 7] consists of part (1) in Definition 2.1,
together with the statement ‘all games are constructed in this way’. One way of
making this precise is by Conway Induction: a game is ‘constructed in this way’ if
all its options are, so Conway’s axiom becomes a property which all games enjoy.
We have chosen to use the equivalent Descending Game Condition in the definition
in order to treat induction for one or several games on an equal footing.

Another easy consequence of the Conway Induction principle is that the positions
of a game form a set (and not a proper CLASS).

2.2. Winning a game. [ONAG, §§ 7, 0], [WW, § 2]
From now on, suppose that the two players must move alternately. When we play

a game, the most important aspect usually is whether we can win it or will lose it.
In fact, most of the theory is about deciding which player can force a win in certain
kinds of games. So we need some formal definition of who wins and who loses; there
are no ties or draws in this theory2. The basic decision we make here is that we
consider a player to have lost a game when it is his turn to move but he is unable
to do so (because his set of options is empty): the idea is that we cannot win if we
do not have a good move, let alone no move at all. This Normal Play Convention,
as we will see, leads to a very rich and appealing theory.

There is also a Misère Play Convention that the loser is the one who makes the
last move; with that convention, most of our theory would fail, and there is no
comparably rich theory known: our fundamental equality G = G for every game
G very much rests on the normal play convention (Theorem 2.10); see also the
end of Section 7 for the special case of impartial games. Another possible winning
convention is by score; while scores are not built into our theory, they can often be
simulated: see the remark after Definition 5.4 and [WW, Part 3].

Every game G will be of one of the following four outcome classes: (1) Left can
enforce a win, no matter who starts; (2) Right can enforce a win, no matter who
starts; (3) the first player can enforce a win, no matter who it is; (4) the second
player can enforce a win, no matter who. We will abbreviate these four possibilities
by G > 0, G < 0, G 0, and G = 0, respectively: here, G 0 is usually read ‘G is
fuzzy to zero’; the justification for the notation G = 0 will become clear in § 2.3. We
can contract these as usual: G ≥ 0 means G > 0 or G = 0, i.e. Left can enforce a
win (at least) if he is the second player; G ≤ 0 means that Right can win as second
player; similarly, G � 0 means G > 0 or G 0, i.e. Left can win as first player (‘G is
greater than or fuzzy to zero’), and G � 0 means that Right can win as first player.

2This is one reason why Chess does not fit well into our theory; another one is that addition is
not natural for Chess. The game of Go, however, fits quite well.
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It turns out that only G ≥ 0 and G ≤ 0 are fundamental: if G ≥ 0, then Left
wins as second player, so Right has no good opening move. A good opening move
for Right would be an option GR in which Right could win; since Left must start in
GR, this would mean GR ≤ 0. This leads to the following formal definition:

Definition 2.5 (Order of Games). We define:

• G ≥ 0 unless there is a right option GR ≤ 0;
• G ≤ 0 unless there is a left option GL ≥ 0;

The interpretation of winning needs to be based at games where Left or Right
win immediately: this is the Normal Play Convention that a player loses when it is
her turn but she has no move available. Formally, if Left has no move at all in G,
then clearly G ≤ 0 by definition, so Right wins when Left must start but cannot
move. Note that the convention ‘both players move alternately’ enters the formal
theory in Definition 2.5.

As so often, Definition 2.5 is recursive: in order to decide whether or not G ≥ 0,
we must know whether GR ≤ 0 etc. The Descending Game Condition makes this
well-defined: if there was a game G for which G ≥ 0 or G ≤ 0 was not well-defined,
then this could only be so because there was an option GL or GR for which these
relations were not well-defined etc., and this would eventually violate the DGC.

It is convenient to introduce the following conventions.

Definition 2.6 (Order of Games). We define:

• G = 0 if G ≥ 0 and G ≤ 0, i.e. there are no options GR ≤ 0 or GL ≥ 0;
• G > 0 if G ≥ 0 but not G ≤ 0, i.e. there is an option GL ≥ 0 but no GR ≤ 0;
• G < 0 if G ≤ 0 but not G ≥ 0, i.e. there is an option GR ≤ 0 but no GL ≥ 0;
• G 0 if neither G ≥ 0 nor G ≤ 0, i.e. there are options GL ≥ 0 and GR ≤ 0.
• G � 0 if G ≤ 0 is false, i.e. there is a left option GL ≥ 0;
• G � 0 if G ≥ 0 is false, i.e. there is a right option GR ≤ 0;

A game G such that G = 0 is often called a ‘zero game’ (not to be confused with
the zero game 0 = { | }!).

All these cases can be interpreted in terms of winning games; for example, G �

0 means that Left can win when moving first: indeed, the condition assures the
existence of a good opening move for Left to GL ≥ 0 in which Left plays second.

Note that these definitions immediately imply the claim made above that for
every game G exactly one of the following statements is true: G = 0, G > 0, G < 0
or G 0. They are the four cases depending on the two independent possibilities
∃GL ≥ 0 and ∃GR ≤ 0, see also Figure 1.

if Right starts, then
Left wins Right wins

if Left starts, Left wins G > 0 G 0

then Right wins G = 0 G < 0

Figure 1. The four outcome classes.
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When we say ‘Left wins’ etc., we mean that Left can enforce a win by optimal
play; this does not mean that we assume a winning strategy to be actually known,
or that Right might not win if Left plays badly. For example, for the beautiful game
of Hex [Hex1, Hex2], there is a simple proof that the first player can enforce a win,
though no winning strategy is known unless the board size is very small — and there
are serious Hex tournaments.3

The existence of a strategy for exactly one player (supposing that it is fixed who
starts) is built into the definitions: to fix ideas, suppose that Right starts in a game
G ≥ 0. Then there is no right option GR ≤ 0, so either G has no right option at all
(and Left wins effortlessly), or all GR � 0, so every GR has a left option GRL ≥ 0:
whatever Right’s move, Left has an answer leading to another game GRL ≥ 0, so Left
will never be the one who runs out of moves when it is his turn. By the Descending
Game Condition, the game eventually stops at a position where there are no options
left for the player whose turn it is, and this must be Right. Therefore, Left wins.
Note that this argument does not assume that a strategy for Left is known, nor does
it provide an explicit strategy.

We will define equality of games below as an equivalence relation. What we have
so far is equality of games in the set-theoretic sense; to distinguish notation, we use
a different word for this and say that two games G and H are identical and write
G ≡ H if they have the same sets of (identical) left resp. right options.

For the four simplest games, we have the following outcome classes. We have
obviously 0 = 0, since no player has a move; then it is easy to see that 1 > 0,
−1 < 0 and ∗ 0.

A note on set theory. Definition 2.1 might look simple and innocent, but the
CLASS of games thus defined is a proper CLASS (as opposed to a set): one way to
see this is to observe that every ordinal number is a game (§ 4.1). We have adopted
the convention (introduced in [ONAG]) of writing GROUP, FIELD etc. for algebraic
structures that are proper classes (as opposed to sets).

The set-theoretic foundations of our theory are the Zermelo-Fraenkel axioms, in-
cluding the axiom of choice (ZFC), and expanded by proper classes. It is a little
cumbersome to express our theory in terms of ZFC: a game is a set with two kinds of
elements, and it might be more convenient to treat combinatorial game theory as an
appropriately modified analog to ZFC. See the discussion in [ONAG, Appendix to
Part 0], where Conway argues that “the complicated nature of these constructions
[expressing our theory in terms of ZFC] tells us more about the nature of formaliza-
tions within ZF than about our system of numbers . . . [formalization within ZFC]
destroys a lot of its symmetry”. In this note, we will not go into details concerning
such issues; we only note that our Descending Game Condition in Definition 2.1
corresponds to the Axiom of Foundation in ZFC.

2.3. Adding and comparing games. [ONAG, §§ 7, 1], [WW, § 2]

3The rules are usually modified to eliminate the first player’s advantage. With the modified
rules, one can prove that the second player can enforce a win (if he only knew how!), and the
situation is then similar.
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Let us now introduce one of the most important concepts of the theory: the sum
of two games. Intuitively, we put two games next to each other and allow each player
to move in one of the two according to his choice, leaving the other game unchanged;
the next player can then decide independently whether to move in the same game
as her predecessor. The negative of a game is the same game in which the allowed
moves for both players are interchanged (in games like chess, they simply switch
colors). The formal definitions are given below. Note that at this point it is really
necessary to require the DGC in its general form (rather than only for alternating
moves) in order to guarantee that the sum of two games is again a game (which
ends after a finite number of moves).

Definition 2.7 (Sum and Negative of Games). Let G =
{
GL, . . . | GR, . . .

}
and

H =
{
HL, . . . | HR, . . .

}
be two games. Then we define

G + H :≡
{
GL + H, G + HL, . . . | GR + H, G + HR, . . .

}
,

−G :≡
{
−GR, . . . | −GL, . . .

}
and

G−H :≡ G + (−H) .

These are again recursive definitions. The definition of G + H requires knowing
several sums of the form GL +H etc. which must be defined first. However, all these
additions are easier than G + H: recursive definitions work by induction without
base, similarly as Conway Induction (this time, for binary relations): the sum G+H
is well-defined as soon as all options GL+H etc. are well-defined4. To see how things
get off the ground, note that the set of left options of G + H is

(2.1)
⋃
GL

{
GL + H

}
∪

⋃
HL

{
G + HL

}
where GL and HL run through the left options of G and H. If G and/or H have
no left options, then the corresponding unions are empty, and there might be no
left options of G + H at all, or they might be all of the form GL + H (or G + HL).
Therefore, G + H and −G are games.

As an example, −1 ≡ { | 0} is really the negative of 1 ≡ {0 | }, justifying our
notation. Also, ∗ + ∗ ≡ {∗ | ∗}, and the latter is easily seen to be a zero game
(whoever begins, loses), so ∗ + ∗ = 0. The following properties justify the name
‘addition’ for the operation just defined.

Theorem 2.8. Addition is associative and commutative with 0 ≡ { | } as zero
element. Moreover, all games G and H satisfy −(−G) ≡ G and −(G + H) ≡
(−G) + (−H).

Proof: By (2.1), the left (right) options of G + { | } are GL + { | } (GR + { | })
only, so the claim ‘G + { | } ≡ G’ follows by Conway Induction.

4More formally, one could consider G + H a formal pair of games and then prove by Conway
Induction that every such formal pair is in fact a game: if all formal pairs GL + H, G + HL,
GR + H and G + HR are games, then clearly so is G + H. Similar remarks apply to the definition
of multiplication and elsewhere.
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Commutativity uses induction too (in the second equality):

G + H ≡
{
GL + H, G + HL, . . . | GR + H, G + HR, . . .

}
≡

{
H + GL, HL + G, . . . | H + GR, HR + G, . . .

}
≡ H + G .

Associativity works similarly (we write only left options):

(G + H) + K ≡
{
(G + H)L + K, (G + H) + KL, . . . | . . .

}
≡

{
(GL + H) + K, (G + HL) + K, (G + H) + KL, . . . | . . .

}
≡

{
GL + (H + K), G + (HL + K), G + (H + KL), . . . | . . .

}
≡

{
GL + (H + K), G + (H + K)L, . . . | . . .

}
≡ G + (H + K) .

Moreover, omitting dots from now on,

−(−G) ≡ −
{
−GR | −GL

}
≡

{
−(−GL) | −(−GR)

}
≡

{
GL | GR

}
≡ G

where again induction was used in the third equality. Finally,

−(G + H) ≡ −
{
GL + H, G + HL | GR + H, G + HR

}
≡

{
−(GR + H),−(G + HR) | −(GL + H),−(G + HL)

}
≡

{
(−GR) + (−H), (−G) + (−HR) | (−GL) + (−H), (−G) + (−HL)

}
≡

{
(−G)L + (−H), (−G) + (−H)L | (−G)R + (−H), (−G) + (−H)R

}
≡ (−G) + (−H)

where −GR means −(GR), etc. The third line uses induction again. 2

Conway calls inductive proofs like the preceding ones ‘one-line proofs’ (even if
they do not fit on a single line): resolve the definitions, apply induction, and plug
in the definitions again.

Note that

G−H :≡ G + (−H) ≡
{
GL −H, . . . , G−HR, . . . | GR −H, . . . , G−HL, . . .

}
.

From now on, we will omit the dots in games like this (as already done in the
previous proof).

As examples, consider the games 2 :≡ 1 + 1 ≡ {0 + 1, 1 + 0 | } ≡ {1 | }, 3 :≡
2 + 1 ≡ {1 + 1, 2 + 0 | } ≡ {2 | }, 4 ≡ {3 | } etc., as well as −2 ≡ { | −1} etc.

Definition 2.9. We will write G = H if G−H = 0, G > H if G−H > 0, G H
if G−H 0, etc.

It is obvious from the definition and the preceding result that these binary rela-
tions extend the unary relations G = 0 etc. defined earlier.

Theorem 2.10. Every game G satisfies G = G or equivalently G − G = 0. More-
over, GL � G for all left options GL and G � GR for all right options GR of G.

Proof: By induction, we may suppose that GL − GL ≥ 0 and GR − GR ≤ 0 for
all left and right options of G. By definition, we have G−GR ≥ 0 unless there is a
right option (G−GR)R ≤ 0, and indeed such an option is GR −GR ≤ 0. Therefore,
G−GR � 0 or G � GR. Similarly GL � G.
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Now G−G ≡
{
GL −G, G−GR | GR −G, G−GL

}
≥ 0 unless any right option

(G − G)R ≤ 0; but we just showed that the right options are GR − G � 0 and
G − GL � 0, so indeed G − G ≥ 0 and similarly G − G ≤ 0, hence G − G = 0 and
G = G. 2

The equality G − G = 0 means that in the sum of any game with its negative,
the second player has a winning strategy: indeed, if the first player makes any move
in G, then the second player has the same move in −G available and can copy the
first move; the same holds if the first player moves in −G because −(−G) ≡ G.
Therefore, the second player can never run out of moves before the first does, so the
Normal Play Convention awards the win to the second player. This is sometimes
paraphrased like this: when playing against a Grand Master simultaneously two
games of chess, one with white and one with black, then you can force at least one
win (if draws are not permitted, as in our theory)! In Misère Play, we would not
have the fundamental equality G = G.

The following results show that the ordering of games is compatible with addition.

Lemma 2.11.

(1) If G ≥ 0 and H ≥ 0, then G + H ≥ 0.
(2) If G ≥ 0 and H � 0, then G + H � 0.

Note that G � 0 and H � 0 implies nothing about G + H: the sum of two fuzzy
games can be in any outcome class. (Find examples!)
Proof: We prove both statements simultaneously using Conway Induction (with
the binary relation P (G, H): ‘for the pair of games G and H, the statement of the
Lemma holds’). The following proof can easily be rephrased in the spirit of ‘Left
has a winning move unless. . . ’.

(1) G ≥ 0 and H ≥ 0 mean there are no GR ≤ 0 and no HR ≤ 0, so all GR � 0
and all HR � 0. By the inductive hypothesis, all H + GR � 0 and G + HR � 0, so
G + H has no right options (G + H)R ≤ 0 and thus G + H ≥ 0.

(2) Similarly, H � 0 means there is an HL ≥ 0. By the inductive hypothesis,
G + HL ≥ 0, so G + H has a left option G + HL ≥ 0 and thus G + H � 0. 2

Theorem 2.12. The addition of a zero game never changes the outcome: if G = 0,
then H > 0 or H < 0 or H = 0 or H 0 iff G + H > 0, G + H < 0, G + H = 0 or
G + H 0, respectively.

Proof: If H ≥ 0 or H ≤ 0, then G + H ≥ 0 or G + H ≤ 0 by Lemma 2.11, and
similarly if H � 0 or H � 0, then G+H � 0 or G+H � 0. Since H = 0 is equivalent
to H ≥ 0 and H ≤ 0, H > 0 is equivalent to H ≥ 0 and H � 0, etc., the ‘only if’
direction follows. The ‘if’ direction then follows from the fact that every game is in
exactly one outcome class. 2

Corollary 2.13. Equal games are in the same outcome classes: if G = H, then
G > 0 iff H > 0 etc.

Proof: Consider G + (H − H) ≡ H + (G − H), which by Theorem 2.12 has the
same outcome class as G and H. 2
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Corollary 2.14. Addition respects the order: for any triple of games, G > H is
equivalent to G + K > H + K, etc.

Proof: G+K > H +K ⇐⇒ (G−H)+(K−K) > 0 ⇐⇒ G−H > 0 ⇐⇒ G > H.
2

Theorem 2.15. The relation ≥ is reflexive, antisymmetric and transitive, and
equality = is an equivalence relation.

Proof: Reflexivity of ≥ and = is Theorem 2.10, and antisymmetry of ≥ and
symmetry of = are defined. Transitivity of ≥ and thus of = follows like this: G ≥ H
and H ≥ K implies G − H ≥ 0 and H − K ≥ 0, hence G − K + (H − H) ≥ 0 by
Lemma 2.11. By Theorem 2.12, this implies G−K ≥ 0 and G ≥ K. 2

Theorem 2.16. The equivalence classes formed by equal games form an additive
abelian GROUP in which the zero element is represented by any game G = 0.

Proof: First we have to observe that addition and negation are compatible with
respect to the equivalence relation: if G = G′ and H = H ′ then G − G′ = 0 and
H −H ′ = 0, hence (G + H)− (G′ + H ′) ≡ (G−G′) + (H −H ′) = 0 by Lemma 2.11
and G + H = G′ + H ′ as needed. Easier yet, G = G′ implies 0 = G − G′ ≡
−(−G) + (−G′) ≡ (−G′)− (−G), hence −G′ = −G.

For every game G, the game −G represents the inverse equivalence class by The-
orem 2.10. Finally, addition is associative and commutative by Theorem 2.8. 2

It is all well to define equivalence classes of games, but their significance sits in
the fact that replacing a game by an equivalent one never changes the outcome, even
when this happens for games that are themselves parts of other games.

Theorem 2.17 (Equal Games). If H = H ′, then G+H = G+H ′ for all games G.
If G =

{
GL1 , GL2 , . . . | GR1 , GR2 , . . .

}
and H =

{
HL1 , HL2 , . . . | HR1 , HR2 , . . .

}
are

two games such that GLi = HLi and GRi = HRi for all left and right options,
then G = H: replacing any option by an equivalent one (or any set of options by
equivalent options) yields an equivalent game.

Proof: The first part is self-proving: (G+H)−(G+H ′) = (G−G)+(H−H ′) = 0.
The second part is similar, but easier to write in words: in G−H, Left might move
in G to some GL −H or in H to some G−HR, and Right’s answer will be either in
H to a GL −HL′

= 0 (with HL′
chosen so that HL′

= GL), or Right answers in G
to a GR′ −HR = 0. The situation is analogous if Right starts. 2

2.4. Simplifying games. [WW, § 3], [ONAG, § 10]
Since equality of games is a defined equivalence relation, there are many ways

of writing down a game that has a certain value (i.e., lies in a certain equivalence
class). Some of these will be simpler than others, and there may even be a simplest
or canonical form of a game. In this section, we show how one can simplify games
and that simplest forms exist for an interesting class of games.

Definition 2.18 (Gift Horse). Let G and H be games. If H � G, then H is a left
gift horse for G; if H � G, then H is a right gift horse for G
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Lemma 2.19 (Gift Horse Principle). If HL, . . . are left gift horses and HR, . . . are
right gift horses for G =

{
GL, . . . | GR, . . .

}
, then{

HL, . . . , GL, . . . | HR, . . . , GR, . . .
}

= G .

(Here, {HL, . . . } and {HR, . . . } can be arbitrary sets of games.)

Proof: Let G′ ≡
{
HL, . . . , GL, . . . | HR, . . . , GR, . . .

}
. Then G′ −G ≥ 0, since the

right options are GR −G � 0 (by Theorem 2.10), HR −G � 0 (by assumption), and
G′ −GL, which has the left option GL −GL = 0, so G′ −GL � 0. In the same way,
we see that G′ −G ≤ 0, and it follows that G′ = G. 2

This ‘Gift Horse Principle’ tells us how to offer extra options to a player without
changing the value of a game (since no player really wants to move to these options),
so we know how to make games more complicated. Now we want to see how we
can remove options and thereby make a game simpler. Intuitively, an option that is
no better than another option can as well be left out, since a reasonable player will
never use it. This is formalized in the following definition and lemma.

Definition 2.20 (Dominated Option). Let G be a game. A left option GL is
dominated by another left option GL′

if GL ≤ GL′
. Similarly, a right option GR is

dominated by another right option GR′
if GR ≥ GR′

.

Lemma 2.21 (Deleting Dominated Options). Let G be a game with fixed left and
right options GL and GR. Then the value of G remains unchanged if some or all left
options which are dominated by GL are removed, and similarly if some or all right
options which are dominated by GR are removed.

Proof: Let G′ be the game obtained from G by removing all or some left options
that are dominated by GL (but keeping GL itself). Then all the deleted options are
left gift horses for G′, since for such an option H, we have H ≤ GL � G′. We can
therefore add all these options to G′, thereby obtaining G, without changing the
value. The same argument works for dominated right options. 2

As simple examples, we have 2 ≡ {1 | } = {0, 1 | }, 3 ≡ {2 | } = {0, 1, 2 | } etc., so
we recover von Neumann’s definition of natural numbers. Another example would
be {0, 1 | 2, 3} = {1 | 2}. Note that it is possible that all options are dominated,
but this does not mean that all options can be removed: as an example, consider
ω :≡ {0, 1, 2, . . . | }.

There is another way of simplifying a game that does not work by removing
options, but by introducing shortcuts. The idea is as follows. Suppose Left has a
move GL which Right can counter to some fixed GLR ≤ G, a position at least as
good for Right as G was. The claim is that replacing the single option GL by all
left options of GLR does not change the value of G: this does not hurt Left (if Left
wants to move to GL, then he must expect the answer GLR and then has all left
options of GLR available); on the other hand, it does not help Left if G is replaced
by GLR ≤ G. Precise statements are like this.

Definition 2.22 (Reversible Option). Let G be a game. A left option GL is called
reversible (through GLR) if GL has a right option GLR ≤ G. Similarly, a right
option GR is called reversible (through GRL) if GR has a left option GRL ≥ G.
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Lemma 2.23 (Bypassing Reversible Options). If G has a left option H that is
reversible through K = HR, then

G =
{
H, GL, . . . | GR, . . .

}
=

{
KL, . . . , GL, . . . | GR, . . .

}
(here, GL runs through all left options of G other than H). In words: the value
of G is unchanged when we replace the reversible left option H by all the left options
of K. A similar statement holds for right options.

Proof: Let G′ =
{
KL, . . . , GL, . . . | GR, . . .

}
and G′′ =

{
H, KL, . . . , GL, . . . | GR, . . .

}
.

We claim that H is a left gift horse for G′. This can be seen as follows. First, for
all KL we have KL � G′, since KL is a left option of G′. Also, K ≤ G � GR, so
K � GR for all GR. These statements together imply that K ≤ G′. Since K is a
right option of H, this in turn says that H � G′, as was to be shown. By the Gift
Horse Principle, we now have G′ = G′′. On the other hand, KL � K ≤ G, so all the
KL are left gift horses for G, whence G = G′′ = G′. 2

One aspect of reversible options might be surprising: if GL is reversible through
GLR, this means that Left may bypass the move to GL and Right’s answer to GLR

and move directly to some left option of GLR; but what if there was another right
option GLR′

which Right might prefer over GLR: is Right deprived of her better
move? For the answer, notice that { | 1} = { | 100} = 0: although Right might
prefer that her only move was 1 rather than 100, the first player to move will always
lose, which is all that counts. Similarly, depriving Right of her better answer GLR′

would make a difference only if there was a game S such that G + S ≤ 0 but
GLR +S � 0 (our interest is in the case that Left starts: these conditions mean that
Left cannot win in G + S, but he can when jumping directly to GLR); however, the
first condition and the hypothesis imply GLR + S ≤ G + S ≤ 0, contradicting the
second condition.

Given the simplifications of games described above, the question arises whether
there is a simplest form of a game: a form that cannot be further simplified by
removing dominated options and bypassing reversible options. The example ω =
{0, 1, 2, . . . | } shows that this is not the case in general. But such a simplest form
exists if we impose a natural finiteness condition which is satisfied by most real-life
games.

Definition 2.24 (Short). A game G is called short if it has only finitely many
positions.

Theorem 2.25 (Normal Form). In each equivalence class of short games, there is
a unique game that has no dominated or reversible positions.

Proof: Since both ways of simplifying games reduce the number of positions, we
eventually reach a game that cannot be simplified further. This proves existence.

To prove uniqueness, we assume that G and H are two equal (short) games both
without dominated and reversible positions. We have to show that G ≡ H. Let GL

be some left option of G. Since GL �G = H, there must be a right option GLR ≤ H
or a left option HL such that GL ≤ HL. The first is impossible since GL is not
reversible. Similarly, there is some GL′

such that HL ≤ GL′
, so GL ≤ GL′

. But



AN INTRODUCTION TO CONWAY’S GAMES AND NUMBERS 13

there are no dominated options either, so GL = HL = GL′
. By induction, GL ≡ HL.

In that way, we see that G and H have the same set of (identical) left options, and
the same is true for the right options. 2

3. The FIELD of Numbers

3.1. What is a number? [ONAG, §§ 0,1], [WW, § 2]
We already have encountered games like 0, 1, −1, 2 that we have denoted by

numbers and that behave like numbers. In particular, they measure which player
has got how many free moves left and therefore are easy to compare. We now want
to extend this to a class of games that is as large as possible (and which are to be
called numbers).

The guiding idea is that numbers should be totally ordered, i.e. no two numbers
should ever be fuzzy to each other. Recall that by Thm. 2.10 we always have GL �G
and G � GR. If G, GL and GR are to be numbers, this forces GL < G < GR, so we
must at least require that GL < GR. In order for numbers to be preserved under
playing, we need to require that all options of numbers are numbers. This leads to
the following definition.

Definition 3.1 (Number). A game x =
{
xL, . . . | xR, . . .

}
is called a number if all

left and right options xL and xR are numbers and satisfy xL < xR.

As it turns out, this simple definition leads not only to a totally ordered additive
subGROUP of games but even to an algebraically closed FIELD which simultane-
ously contains the real and ordinal numbers!

We will use lowercase letters x, y, z, . . . to denote numbers. The simplest numbers
are 0, 1 and −1. A slightly more interesting number is 1

2
:≡ {0 | 1} (one checks

easily that 1
2

+ 1
2

= 1, justifying the name). There are also ‘infinite numbers’ like
ω = {0, 1, 2, . . . | }.

Lemma 3.2. Every number x =
{
xL, . . . | xR, . . .

}
satisfies xL < x < xR.

Proof: The left options of xL − x are of the form xL − xR or xLL − x. Since x
is a number, we have xL − xR < 0. We use the inductive hypothesis xLL < xL

and xL − x � 0 from Theorem 2.10. Therefore, Lemma 2.11 implies xLL − x =
(xLL − xL) + (xL − x) � 0.

If xL−x�0 was true, we would need some (xL−x)L ≥ 0, which we just excluded.
Hence xL ≤ x for all left options xL of x, and similarly x ≤ xR for all right options
xR. The claim now follows because xL � x � xR from Theorem 2.10. 2

Theorem 3.3. If x and y are numbers, then x + y and −x are numbers, so (equiv-
alence classes of) numbers form an abelian subGROUP of games.

Proof: Since −x =
{
−xR, . . . | −xL, . . .

}
, we have (−x)L = −xR < −xL = (−x)R,

so the options of −x are ordered as required. Conway Induction now shows that −x
is a number.

In x + y =
{
xL + y, x + yL, . . . | xR + y, x + yR, . . .

}
, we have the inequalities

xL + y < xR + y and x + yL < x + yR by Corollary 2.14. By Lemma 3.2, we also
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have xL + y < x + y < x + yR and x + yL < x + y < xR + y, so x + y is a number as
soon as all its options are, and Conway Induction applies. 2

Theorem 3.4. Numbers are totally ordered: every pair of numbers x and y satisfies
exactly one of x < y, x > y, or x = y.

Proof: Suppose there was a number z 0. This would imply the existence of
options zL ≥ 0 ≥ zR, which is excluded by definition: numbers are never fuzzy.

Now if there were two numbers x y, then x − y would be a number by Theo-
rem 3.3 and x− y 0, but this is impossible, as we have just shown. 2

3.2. Short numbers and real numbers. [ONAG, § 2], [WW, § 2]
A short number is simply a number that is a short game, i.e. a game with only

finitely many positions. In particular, it then has only finitely many options, and
since numbers are totally ordered, we can eliminate dominated options so as to leave
at most one left, resp. right option.

By the definition of negation, addition and multiplication (see below in Sec-
tion 3.3), it is easily seen that the set (!) of (equivalence classes of) short numbers
forms a unitary ring.

Theorem 3.5. The ring of short numbers is (isomorphic to) the ring Z[1
2
] of dyadic

fractions.

Proof: We have already seen that {0 | 1} = 1
2
, therefore Z[1

2
] is contained in the

ring of short numbers. For the converse, see [ONAG, Theorem 12]. The main step
in proving the converse is to show that{

m

2n

∣∣∣∣ m + 1

2n

}
=

2m + 1

2n+1

for integers m and natural numbers n. 2

Let S denote the ring of short numbers (or dyadic fractions). We can represent
every element x of S in the form

x = {y ∈ S : y < x | y ∈ S : y > x} ,

where both sets of options are nonempty. In fact, the set of all numbers satisfying
this property is exactly the field R of real numbers: we are taking Dedekind sections
in the ring S. (More precisely, this is the most natural model of the real numbers
within our Conway numbers: it is the only one where all real numbers have all their
options in S. There are other embeddings that are obtained by choosing a basis of R
as a Q-vector space and then changing the images of this basis by some infinitesimal
amounts.) For some more discussion, see [ONAG, Chapter 2].

3.3. Multiplication of numbers. In order to turn numbers into a FIELD, we
need a multiplication.
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Definition 3.6 (Multiplication). Given two numbers x =
{
xL, . . . | xR, . . .

}
and

y =
{
yL, . . . | yR, . . .

}
, we define the product

x · y :=
{
xL · y + x · yL − xL · yL, xR · y + x · yR − xR · yR, . . .

∣∣
xL · y + x · yR − xL · yR, xR · y + x · yL − xR · yL, . . .

}
As with addition in (2.1), the left and right options are all terms as in the definition
that can be formed with left and right options of x and y. More precisely, the left
options are indexed by pairs (xL, yL) and pairs (xR, yR), and similarly for the right
options. In particular, this means that if x has no left options (say), then x · y will
not have left and right options of the first type shown. We will usually omit the dot
and write xy for x · y.

While this definition might look complicated, it really is not. It is motivated by
xL < x < xR and yL < y < yR, so we want multiplication to satisfy (x−xL)(y−yL) >
0, hence xy > xLy + xyL − xLyL, which motivates the first type of left options. The
other three types are obtained in a similar way.

One might try the simpler definition xy =
{
xLy, xyL | xRy, xyR

}
for multiplica-

tion, motivated by xL < x < xR and yL < y < yR. But the inequalities would
be wrong for negative numbers. In fact, this would be just a different notation for
addition!

Recall the two special numbers 0 ≡ { | } and 1 ≡ {0 | }.

Theorem 3.7. For all numbers x, y, z, we have the identities

0 · x ≡ 0 , 1 · x ≡ x , xy ≡ yx , (−x)y ≡ y(−x) ≡ −xy

and the equalities

(x + y)z = xz + yz , (xy)z = x(yz) .

Proof: The proofs are routine ‘1-line-proofs’; the last two are a bit lengthy and
can be found in [ONAG, Theorem 7]. 2

The reason why multiplication is defined only for numbers, not for arbitrary
games, is that there are games G, G′, H with G = G′ but GH 6= G′H. For ex-
ample, we have {1 | } = {0, 1 | }, but {1 | } · ∗ = {∗ | ∗} = 0, whereas {0, 1 | } · ∗ =
{0, ∗ | 0, ∗} 0. (Note that we have 0 ·G = 0 and 1 ·G = G for any game G. Fur-
thermore, since games form an abelian GROUP, we always have integral multiples
of arbitrary games.)

The following theorem shows that our multiplication behaves as expected. Its
proof is the most complicated inductive proof in this paper. It required quite some
work to produce a concise version of the argument in the proof, even with Conway’s
[ONAG, Theorem 8] at hand. The main difficulty is to organize a simultaneous
induction for three different statements with different arguments.

Theorem 3.8.

(1) If x and y are numbers, then so is xy.
(2) If x1, x2, y are numbers such that x1 = x2, then x1y = x2y.
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(3) If x1, x2, y1, y2 are numbers such that x1 < x2 and y1 < y2,
then x1y2 + x2y1 < x1y1 + x2y2.
In particular, if y > 0, then x1 < x2 implies x1y < x2y.

Proof: We will prove most of the statements simultaneously using Conway In-
duction. More precisely, let P1(x, y), P2(x1, x2, y) and P3(x1, x2, y1, y2) stand for the
statements above. For technical reasons, we also introduce the statement P4(x, y1, y2):

(4) If x, y1, y2 are numbers with y1 < y2, then P3(x
L, x, y1, y2) and P3(x, xR, y1, y2)

hold for all options xL, xR of x.

We begin by proving P1, P2 and P4 simultaneously. For this part, we assume
that all occurring numbers are positions in a fixed number z (we can take z =
{x, x1, x2, y, y1, y2 | }). Then for a position z′ in z, we define n(z′) to be the distance
between z′ and the root z in the rooted tree representing the game z: that is the
number of moves needed to reach z′ from the starting position z (a non-negative

integer). Formally, we set n(z) = 0 and, if z′ is a position in z, n(z′L) = n(z′) + 1,

n(z′R) = n(z′) + 1.
For each statement P1, P2, P4, we measure its ‘depth’ by a pair of natural numbers

(r, s) (where s = ∞ is allowed) as follows.

• The depth of P1(x, y) is (n(x) + n(y),∞).
• The depth of P2(x1, x2, y) is (min{n(x1), n(x2)}+ n(y), max{n(x1), n(x2)}).
• The depth of P4(x, y1, y2) is (n(x) + min{n(y1), n(y2)}, max{n(y1), n(y2)}).

The inductive argument consists in showing that each statement follows from state-
ments that have greater depths (in the lexicographic ordering) and only involve
positions of the games occurring in the statement under consideration. If the state-
ment was false, it would follow that there was an infinite chain of positions z′ in z
of unbounded depth n(z′), each a position of its predecessor; this would contradict
the Descending Game Condition.

Properties of addition will be used without explicit mention.
(1) We begin with P1(x, y). We may assume that all terms xLy, xyL, xLyL etc. are

numbers, using P1(x
L, y) etc.; therefore all options of xy are numbers. It remains

to show that the left options are smaller than the right options. There are four
inequalities to show; we treat one of them in detail (the others being analogous).
We show that

xL1y + xyL − xL1yL < xL2y + xyR − xL2yR .

There are three cases. First suppose that xL1 = xL2 . Then using P2(x
L1 , xL2 , y) and

P2(x
L1 , xL2 , yR), the statement is equivalent to P3(x

L1 , x, yL, yR), which is in turn a
special case of P4(x, yL, yR).

Now suppose that xL1 < xL2 . Then we use P3(y
L, y, xL1 , xL2), which follows from

P4(y, xL1 , xL2), and P3(x
L2 , x, yL, yR), which follows from P4(x, yL, yR), to get

xL1y + xyL − xL1yL < xL2y + xyL − xL2yL < xL2y + xyR − xL2yR .

Similarly, if xL1 > xL2 , we use P4(x, yL, yR) and P4(y, xL2 , xL1) to get

xL1y + xyL − xL1yL < xL1y + xyR − xL1yR < xL2y + xyR − xL2yR .
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(2) For P2(x1, x2, y), note that z1 = z2 if zL
1 < z2 < zR

1 and zL
2 < z1 < zR

2

for all relevant options. So we have to show a number of statements of the type
(x1y)L < x2y or x2y < (x1y)R. We carry this out for the left option (x1y)L =
xL

1 y + x1y
L − xL

1 yL; the other possible cases are done in the same way. Statement
P2(x1, x2, y

L) gives x1y
L = x2y

L and P4(y, xL
1 , x2) gives xL

1 y + x2y
L < xL

1 yL + x2y,
which together imply (x1y)L < x2y.

(3) We now consider P4(x, y1, y2). Since y1 < y2, there is some yR
1 such that

y1 < yR
1 ≤ y2, or there is some yL

2 such that y1 ≤ yL
2 < y2. We consider the first

case; the second one is analogous. First note that from P1(x, y1), we get (xy1)
L <

xy1 < (xy1)
R for all left and right options of xy1. We therefore obtain the inequalities

(3.1) xy1 + xLyR
1 < xLy1 + xyR

1 and xRy1 + xyR
1 < xy1 + xRyR

1 .

Now if yR
1 = y2, then by P2(y

R
1 , y2, x), P2(y

R
1 , y2, x

L) and P2(y
R
1 , y2, x

R) we are done.
Otherwise, yR

1 < y2 and P4(x, yR
1 , y2) says

(3.2) xLy2 + xyR
1 < xLyR

1 + xy2 and xy2 + xRyR
1 < xyR

1 + xRy2 .

Adding the left resp. right inequalities in (3.1) and (3.1) and canceling like terms
proves the claim.

This shows that every statement P1(x, y), P2(x1, x2, y), and P4(x, y1, y2) follows
from similar statements which use the same arguments or some of their options, and
it is easily verified that all used statements have greater depths. This proves P1, P2

and P4.
(4) It remains to show P3(x1, x2, y1, y2). This is done by Conway Induction in the

normal way, using the statements we have already shown.
Since x1 < x2, there is some xR

1 ≤ x2 or some xL
2 ≥ x1. Assume the first possibility

(the other one is treated in the same way). If xR
1 = x2, then we apply P2 to get

xR
1 y1 = x2y1 and xR

1 y2 = x2y2. Using P4(x1, y1, y2), we also have x1y2 + xR
1 y1 <

x1y1 + xR
1 y2; together, these imply the desired conclusion. Finally, if xR

1 < x2,
then by induction (P3(x

R
1 , x2, y1, y2)), we get xR

1 y2 + x2y1 < xR
1 y1 + x2y2 and, using

P4(x1, y1, y2) again, also x1y2 + xR
1 y1 < x1y1 + xR

1 y2. Adding them together and
canceling like terms proves our claim. 2

3.4. Division of numbers. The definition of division is more complicated than
that of addition or multiplication — necessarily so, since for example 3 = {2 | } is a
very simple game with only finitely many positions, while 1

3
=

{
1
4
, 5

16
, 21

64
, . . . | . . . , 11

32
, 3

8
, 1

2

}
has infinitely many positions which must all be ‘generated’ somehow from the posi-
tions of 3.

It suffices to find a multiplicative inverse for every x > 0. It is convenient to
rewrite positive numbers as follows.

Lemma 3.9. For every number x > 0, there is a number y without negative options
such that y = x.

Proof: To achieve this, we simply add the left Gift Horse 0 and then delete all
negative left options, which are now dominated by 0. 2
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Theorem 3.10. For a number x > 0 without negative options, define

y =
{

0,
1 + (xR − x)yL

xR
,
1 + (xL − x)yR

xL

∣∣∣ 1 + (xL − x)yL

xL
,
1 + (xR − x)yR

xR

}
where all options xL 6= 0 and xR of x are used. Then y is a number with xy = 1.

Note that this definition is recursive as always: in order to find y = 1/x, we
need to know 1/xL and 1/xR first. However, this time we also need to know left
and right options of y. We view this really as an algorithmic definition: initially,
make 0 a left option of y. Then, for every left option yL generated so far, produce
new left and right options of y with all xL and all xR; similarly, for every right
option yR already generated, do the same. This step is then iterated (countably)
infinitely often. More precisely, we define a sequence of pairs of sets of numbers
Y L

n , Y R
n recursively as follows.

Y L
0 = {0}, Y R

0 = ∅

Y L
n+1 = Y L

n ∪
⋃
xR

{1 + (xR − x)yL

xR
: yL ∈ Y L

n

}
∪

⋃
xL

{1 + (xL − x)yR

xL
: yR ∈ Y R

n

}
Y R

n+1 = Y R
n ∪

⋃
xL

{1 + (xL − x)yL

xL
: yL ∈ Y L

n

}
∪

⋃
xR

{1 + (xR − x)yR

xR
: yR ∈ Y R

n

}
Then

y =
{⋃

n∈N

Y L
n

∣∣∣ ⋃
n∈N

Y R
n

}
.

If x is a real number (which always can be written with at most countably many
options), we generate in every step new sets of left and right options, the suprema
and infima of which converge to 1/x. In this case, we have a convergent (infinite)
algorithm specifying a Cauchy sequence of numbers. General numbers x might need
arbitrarily big sets of options, so the option sets of y can become arbitrarily big too.
However, the necessary number of iteration steps in the construction of y is still at
most countable.
Proof: (Compare [ONAG, Theorem 10].) By induction, all the options of y are
numbers (there are of course two inductive processes involved, one with respect to x,
and the other with respect to n above). We now prove that we have xyL < 1 < xyR

for all left and right options of y. This is done by induction on n. The statement
is obvious for n = 0. We give one of the four cases for the inductive step in detail:
suppose yL = (1 + (xR − x)yL′

)/xR with yL′ ∈ Y L
n , then by induction we have

xyL′
< 1, so (by Theorem 3.8) (xR − x)xyL′

< xR − x, which is equivalent to the
claim.

In order to prove that y is a number, we must show that the left options are
smaller than the right options. It is easy to see that the right options are positive: for
(1+(xL−x)yL)/xL, this follows from 1−xyL > 0; for (1+(xR−x)yR)/xR, it follows
by induction (yR > 0). There are then four more cases involving the two different
kinds of generated left resp. right options. We look at two of them, the other two
are dealt with analogously. So suppose we want to show that (1+(xR−x)yL1)/xR <
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(1 + (xL − x)yL2)/xL. This is equivalent to

xR(1 + (xL − x)yL2)− xL(1 + (xR − x)yL1) > 0 .

The left hand side of this equation can be written in each of the following two ways:

(xR − xL)(1− xyL1) + (yL1 − yL2)xR(x− xL)

= (xR − xL)(1− xyL2) + (yL2 − yL1)xL(xR − x) ,

showing that it is always positive. Now suppose we want to show that
(1 + (xR1 − x)yL)/xR1 < (1 + (xR2 − x)yR)/xR2 . This is equivalent to

xR1(1 + (xR2 − x)yR)− xR2(1 + (xR1 − x)yL) > 0 .

Again, the left hand side can be written as

(yR − yL)xR1(xR2 − x) + (xR1 − xR2)(1− xyL)

= (yR − yL)xR2(xR1 − x) + (xR2 − xR1)(xyR − 1) ,

showing that it is always positive. Note that we are using the inductive result that
the ‘earlier’ options yR and yL satisfy yR > yL.

Finally, to prove that xy = 1, we have to show that (xy)L < 1 < (xy)R (since
0 = 1L < xy trivially). For example, take

(xy)R = xRy + xyL − xRyL

= 1 + xR

(
y − 1 + (xR − x)yL

xR

)
= 1 + xR(y − yL′

) > 1 .

2

Corollary 3.11. The (equivalence classes of) numbers form a totally ordered FIELD.

In fact, this field is real algebraically closed. This is shown in [ONAG, Chapter 4].

4. Ordinal numbers

4.1. Ordinal Numbers. [ONAG, § 2]

Definition 4.1 (Ordinal Number). A game G is an ordinal number if it has no right
options and all of its left options are ordinal numbers.

We will use small Greek letters like α, β, γ, . . . to denote ordinal numbers.
An ordinal number is really a number in our sense, as the following lemma shows.

Lemma 4.2.

(1) Every ordinal number is a number.
(2) If α is an ordinal number, then the class of all ordinal numbers β < α is a

set.
(3) If α is an ordinal number, then α = {β : β < α | }, where β runs through the

ordinal numbers.
(4) If α is an ordinal number, then α + 1 = {α | }.



20 DIERK SCHLEICHER AND MICHAEL STOLL

Proof: Note that β < α implies that there is an αL such that β ≤ αL. This follows
from α− β =

{
αL − β | . . .

}
and the definition of G � 0.

(1) Proof by induction. By hypothesis, all αL are numbers. Since there are
no αR, the condition αL < αR for all pairs (αL, αR) is trivially satisfied;
hence α is itself a number.

(2) We claim that {β : β < α} = {αL} ∪
⋃

αL{β : β < αL}. The statement
follows from this by induction and the fact that the union of a family of sets
indexed by a set is again a set.

The RHS is certainly contained in the LHS, since all αL < α. Now let
β < α. Then β ≤ αL for some αL, hence β < αL or β = αL, showing that β
is an element of the RHS.

(3) Let γ = {β : β < α | } (this is a game by what we have just shown). Then
α−γ =

{
αL − γ | α− γL

}
(there are no right options of α or γ). Since all αL

are ordinal numbers and αL < α, every αL is a left option of γ, hence αL < γ
and all (α − γ)L < 0. By definition of γ, all γL < α, so all (α − γ)R > 0.
Therefore α− γ = 0.

(4) We have α + 1 =
{
α, αL + 1 |

}
, so we have to show that αL + 1 ≤ α for

all αL. Let β = αL. By induction, β + 1 = {β | } ≤ {β, . . . | } = α.

2

Simple examples of ordinal numbers are the natural numbers: 0 = { | }, 1 = {0 | },
2 = {1 | } = {0, 1 | }, . . . . The next ordinal number after all the natural numbers is
quite important; it is ω = {0, 1, 2, . . . | }, the smallest infinite ordinal.

Recall that an ordered set or class is called well-ordered if every nonempty subset
or subclass has a smallest element. This is equivalent to the requirement that there
be no infinite descending chain of elements x0 > x1 > x2 > . . . .

Proposition 4.3. The class of ordinal numbers is well-ordered.

Proof: Let C be some nonempty class of ordinal numbers. Then there is some
α ∈ C. Replace C by the set S = {β ∈ C : β ≤ α}; then it suffices to show that the
set {β : β ≤ α} is well-ordered. But every descending chain in this set is a chain of
options of {α | } and therefore must be finite by the DGC. 2

The principle of Conway Induction applied to ordinal numbers results in the
Theorem of Ordinal Induction (sometimes called ‘transfinite induction’).

Theorem 4.4 (Ordinal Induction). Let P be a property which ordinal numbers
might have. If ‘β satisfies P for all β < α’ implies ‘α satisfies P ’, then all ordinal
numbers satisfy P .

Proof: Apply Conway Induction to the property ‘if G is an ordinal number, then
G satisfies P ’, and recall that α = {β < α | }. 2

On the other hand, one could use the concept of birthdays (see below) to prove
the principle of Conway Induction from the Theorem of Ordinal Induction.

Of course, we then also have a principle of Ordinal Recursion. For example, we
can recursively define the following numbers.
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Definition 4.5. 2−α :=
{
0 | 2−β : β < α

}
(where α and β are ordinal numbers).

These numbers are all positive and approach zero, in a similar way as the ordinal
numbers approach infinity — for every positive number z > 0, there is some ordinal
number α such that 2−α < z. As an example, we have 2−ω = ω−1. The notation is
justified, since one shows easily that 2 · 2−(α+1) = 2−α.

Finally, there is another important property of the ordinal numbers, which is sort
of dual to the well-ordering property.

Proposition 4.6. Every set of ordinal numbers has a least upper bound within the
ordinal numbers.

Proof: Let S be such a set. Then α = {S | } is an ordinal number5 and an
upper bound for S. Hence the class of ordinal upper bounds is nonempty, therefore
(because of well-ordering) there is a least upper bound. 2

4.2. Birthdays. The concept of birthday of a game is a way of making the history of
creation of numbers and games precise. It assigns to every game an ordinal number
which can be understood as the ‘number of steps’ that are necessary to create this
game ‘out of nothing’ (i.e., starting with the empty set).

Definition 4.7 (Birthday). Let G be a game. The birthday of G, b(G) is defined
recursively by b(G) =

{
b(GL), b(GR) |

}
.

For example, b(0) = 0, b(1) = b(−1) = b(∗) = 1; more generally, for ordinal
numbers α, one has b(α) = α. A game is short if and only if its birthday is finite
(see below). All non-short real numbers have birthday ω. The successive ‘creation’
of numbers with the first few birthdays is illustrated by the ‘Australian Number
Tree’ in [WW, § 2, Fig. 2] and [ONAG, Fig. 0].

By definition, the birthday is an ordinal number. It has the following simple
properties.

Lemma 4.8. Let G be a game. Then b(GL) < b(G) for all GL and b(GR) < b(G)
for all GR. Furthermore, b(−G) = b(G).

Proof: Immediate from the definition. 2

Note that two games that are equal can have different birthdays. For example,
{−1 | 1} = 0, but the first has birthday 2, whereas b(0) = 0. But there is a well-
defined minimal birthday among the games in an equivalence class.

Proposition 4.9. A game G is short if and only if it has birthday b(G) < ω (i.e.,
b(G) = n for some n ∈ N = {0, 1, . . . }).

Proof: If G is short, then by induction all its finitely many options have finite
birthdays. Let b be the maximum of these. Then b(G) = {b | } = b + 1 < ω. The
reverse implication follows from the fact that there are only finitely many games
with any given finite birthday (this is easily seen by ordinary induction). 2

The birthday is sometimes useful if one needs a bound on a game.

5This is the customary abuse of notation: we mean the ordered pair α = (S, { }) = {s : s ∈ S | }.
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Proposition 4.10. If G is a game, then −b(G) ≤ G ≤ b(G).

Proof: It suffices to prove the upper bound; the lower bound follows by replacing
G with −G, since both have the same birthday.

Let α = b(G). G ≤ α means that for all GL, we have GL � α, and for all αR, we
have G � αR. But there are no αR, so we can forget about the second condition.
Now by induction, GL ≤ b(GL) < b(G) = α, giving the first part. 2

5. Games and Numbers

In some sense, numbers are the simplest games — since they are totally ordered,
we know exactly what happens (i.e., who wins) when we add games that are numbers.
It is much more difficult to deal with general games. In order to make life easier,
we try to get as much mileage as we can out of comparing games with numbers.
References for this chapter are [ONAG, §§ 8, 9], [WW, §§ 2, 6].

5.1. When is a game already a number? If we want to compare games with
numbers, the first question we have to answer is whether a given game is already
(equal to) a number. The following result gives a general recipe for deciding that
two games are equal; it can be used to provide a criterion for when a game is a
number.

Proposition 5.1 (General Simplicity Theorem). Let G and H be games such that

(1) ∀GL : GL � H and ∀GR : H � GR;
(2) ∀HL∃GL : HL ≤ GL and ∀HR∃GR : HR ≥ GR.

Then G = H.

Proof: By the first assumption, all GL are left gift horses for H, and all GR are
right gift horses for H. So H = K, where K is the game whose set of left (resp.
right) options is the union of the left (resp. right) options of G and of H. Then by
the second assumption, all the options in K that came from H are dominated by
options that came from G, so we can eliminate all the options coming from H and
get H = K = G. 2

Note that if H is a number, then the second condition means that the first con-
dition does not hold with H replaced by an option of H. This gives the usual
statement of the Simplicity Theorem for comparing games with numbers (the last
claim in the following corollary).

Corollary 5.2. Suppose G be a game and x a number such that ∀GL : GL � x and
∀GR : x � GR. Then G is equal to a number; in fact, G equals a position of x.

If no option of x satisfies the assumption in place of x, then G = x.

Proof: (See also [ONAG, Thm. 11].) The second statement is a special case of
Prop. 5.1. If there is an option x′ of x such that GL �x′�GR, then replace x with x′

and use induction. 2

The notion of ‘simple’ games is defined in terms of birthdays: the earlier a game
is created (i.e. the smaller its birthday), the simpler it is. The simplest game is
0 = { | } which is created first, and subsequently more and more complicated games
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with later birthdays are created out of simpler (older) ones. The name ‘Simplicity
Theorem’ for the last statement in the corollary above comes from the fact that in
this case, x is the ‘simplest’ number satisfying the assumption (because none of its
options do). If G is a number, the statement can then be interpreted as saying that
G equals the simplest number that fits between G’s left and right options.

For example, a game that has no right options must equal a number, since GL ≤
b(GL) < b(G). In fact, this number is a position of b(G), hence G is even an ordinal
number.

Note that a game G such that for all pairs (GL, GR) we have GL < GR is not
necessarily a number. A simple counterexample is given by G = {0 | ↑}, where
↑ = {0 | ∗}, which is a positive game smaller than all positive (Conway) numbers
(an all small game, see below in Section 6), but we have 0 < ↑.

5.2. How to play with numbers. It is clear how one has to play in a number:
choose an option which is as large (or as small) as possible. It is always a disadvan-
tage to move in a number because one has to move to a position worse than before.
In any case, we can easily predict from the sign of the number who will win the
game, and in order to achieve this win, it is only necessary to choose options of the
correct sign. As far as playing is concerned, numbers are pretty boring! But what
is good play in a sum G + x, where x is a number and G is not?

Theorem 5.3 (Weak Number Avoidance Theorem). If G is a game that is not equal
to a number and x is a number, then

x � G ⇐⇒ ∃GL : x ≤ GL .

Proof: The implication ‘⇐’ is trivial. Now assume x � G. This means that either
∃GL ≥ x (and we are done), or ∃xR ≤ G, and we can assume that for all GL, we
have x�GL. Since G is not equal to a number by assumption, Cor. 5.2 implies that
there is some GR with x ≥ GR. But then we get G ≥ xR > x ≥ GR, in contradiction
to the basic fact G � GR. 2

If we apply this to G and −x, it says G + x � 0 ⇐⇒ GL + x ≥ 0 for some GL.
In words, this means that if there is a winning move in the sum G + x, then there
is already a winning move in the G component. In short:

In order to win a game, you do not have to move in a number, unless
there is nothing else to do.

This does not mean, however, that the other options G + xL are redundant (i.e.,
dominated or reversible). This is only the case in general when G is short. In order
to prove this stronger version of the Number Avoidance Theorem, we need some
preparations.

Definition 5.4 (Left and Right Stops). Let G be a short game. We define (short)
numbers L(G) and R(G), the left and right stops of G, as follows.

If G is (equal to) a number, we set L(G) = R(G) = G. Otherwise,

L(G) = max
GL

R(GL) and R(G) = min
GR

L(GR) .
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Since G has only finitely many options, the maxima and minima exist. Note that
G must have left and right options; otherwise G would be a number.

One can think of L(G) as the best value Left can achieve as first player in G, at
the point when the game becomes a number. Similarly, R(G) is the best value Right
can achieve when moving first. (Since numbers are pretty uninteresting games, we
can stop playing as soon as the game turns into a number; this number can then
conveniently be interpreted as the score of the game.)

Proposition 5.5. Let G be a short game.

(1) If y is a number, then the following implications hold.

y > L(G) =⇒ y > G , y < L(G) =⇒ y � G ,

y < R(G) =⇒ y < G , y > R(G) =⇒ y � G .

(2) If z > 0 is a positive number and G is not equal to a number, then G < GL+z
for some GL.

Proof:

(1) If G is a number, then G = L(G) = R(G), and the statements are trivially
true. If G is not a number, we proceed by induction.

Assume y > L(G). Then by definition, we have y > R(GL) for all GL.
By induction hypothesis, this implies y � GL for all GL. By Thm. 5.3, this
means y ≥ G, hence y > G, since y cannot equal G (y is a number, but G is
not).

Now assume y < L(G). Then by definition, y < R(GL) for some GL. By
induction hypothesis, y < GL for this GL. But this implies y � G.

The other two statements are proved analogously.
(2) Let y = L(G) + z/2. By the first part, we then have y > G and y − z � G.

By Thm. 5.3, there is a GL with y − z ≤ GL. Hence G < y ≤ GL + z.

2

The first part of the preceding proposition can be interpreted as saying that
the confusion interval of G (the set of numbers G is fuzzy to) extends from R(G)
to L(G). (The endpoints may or may not be included; this depends on who has
the move when the game reaches its stopping position; compare the Temperature
Theory of games in [ONAG, § 9] and [WW, § 6].)

With these preparations, we can now state and prove the Number Avoidance
Theorem in its strong form.

Theorem 5.6 (Strong Number Avoidance Theorem). If G is a short game that is
not equal to a number and x is a number, then G + x =

{
GL + x | GR + x

}
.

Proof: (Compare [ONAG, Thm. 90].)
We have G + x =

{
GL + x, G + xL | GR + x, G + xR

}
. Consider an option G + xL.

By the second part of Prop. 5.5, applied to z = x− xL, there is some GL such that
G < GL + x − xL. Therefore G + xL < GL + x is dominated and can be removed.
An analogous argument applies to G + xR. 2
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Let us demonstrate that the assumption on G is really necessary. Consider the
game

G = {Z | Z} = {. . . ,−2,−1, 0, 1, 2, . . . | . . . ,−2,−1, 0, 1, 2, . . . } .

Then
{
GL + 1 | GR + 1

}
= {Z + 1 | Z + 1} = {Z | Z} = G, but (of course) G+ 1 6=

G, since 1 6= 0.
This game G also provides a counterexample to the second part of Prop. 5.5 for

non-short games. It is easily seen that G n for all integers n, hence G < GL + 1
is impossible.

The deeper reason for this failure is that it is not possible to define left and right
stops for general games. And this is because there is nothing like a supremum of an
arbitrary set of numbers (for example, Z has no least upper bound). This should
be contrasted with the situation we have with ordinal numbers, where every set of
ordinal numbers has a least upper bound within the ordinal numbers.

6. Infinitesimal games [WW, § 8]

If a game is approximately the size of a positive (or negative) number, we know
that Left (or Right) will win it. But there are games which are less than all positive
numbers and greater than all negative numbers, and we do not get a hint as to who
is favored by the game. Such a game is called infinitesimal.

Definition 6.1 (Infinitesimal).

(1) A game G is called infinitesimal if−2−n < G < 2−n for all natural numbers n.
(2) A game G is called strongly infinitesimal if −z < G < z for all positive

numbers z.

An example of an infinitesimal, but not strongly infinitesimal game is given by
2−ω = {0 | 2−n : n ∈ N}. The standard example of a positive strongly infinitesimal
game is ↑ = {0 | ∗} (pronounced ‘up’). More examples are provided by the following
class of games.

Definition 6.2 (All Small). A game G is called all small if every position of G that
has left options also has right options and vice versa.

Since a game without left (or right) options is a number, this definition is equiv-
alent to ‘no number other than 0 occurs as a position of G’. The simplest all small
games are 0, ∗, ↑ = {0 | ∗} and ↓ = {∗ | 0} (note that {∗ | ∗} = 0). They show that
an all small game can fall into any of the four outcome classes.

Proposition 6.3. If G is an all small game, then G is strongly infinitesimal.

Proof: If G is a number, then G = 0, and the claim holds trivially. Otherwise, G
has left and right options, all of which are strongly infinitesimal by induction. Let
z > 0 be a number. Let zR be some right option of z. Then for all and hence for
some GR, we have GR < z < zR and so G�zR. On the other hand, we have GL < z
for all GL. Together, these two facts imply that G ≤ z. The inequality G ≥ −z is
shown in the same way. 2
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Not all strongly infinitesimal games are all small. Examples are provided by
‘tinies’ and ‘minies’ like {0 | {0 | −1}} [WW, § 5].

We will see in a moment that for short games, ‘infinitesimal’ and ‘strongly infin-
itesimal’ are the same. More precisely, the following theorem tells us that a short
infinitesimal game is already bounded by some integral multiple of ↑. (This is men-
tioned in [WW, § 20: ‘The Paradox’], but we do not know of a published proof.)
For example, we have ∗ < 2↑, and so also 2↑+ ∗ > 0.

Theorem 6.4. Let G be a short game.

(1) If G � 2−n for all positive integers n, there is some positive integer m such
that G � m↑.

(2) If G ≤ 2−n for all positive integers n, there is some positive integer m such
that G ≤ m↑.

Proof: We can assume that G is not a number, because otherwise the assumption
implies in both cases that G ≤ 0. We use induction.

(1) G � 2−n means by Thm. 5.3 that there is some GR with GR ≤ 2−n. Since
there are only finitely many GR (G is short), there must be one GR that
works for infinitely many and hence for all n. By induction, we conclude
that GR ≤ m↑ for this GR and some m and therefore G � m↑ for this m.

(2) (a) If G ≤ 2−n, then G < 2−(n−1). Hence G satisfies the assumption of the
first part, and we conclude that there is some m0 such that G � m↑ for
all m ≥ m0.

(b) G ≤ 2−n implies that for all GL, we have GL � 2−n. By induction, for
every GL, there is some m such that GL � m↑. Since there are only
finitely many GL (G is short), there is some m1 such that GL � m1↑ for
all GL.

(c) Now let m = max{m1, m0 + 3}. By (a), we know that G � (m− 3)↑ <
(m − 1)↑ + ∗ = (m↑)R. By (b), we know that GL � m↑ for all GL.
Together, these imply G ≤ m↑.

2

The apparent asymmetry in this proof is due to the lack of something like an ‘Up
Avoidance Theorem’.

This result says that infinitesimal short games can be measured in (short) units
of ↑. This is the justification behind the ‘atomic weight calculus’ described in [WW,
§§ 7, 8].

Remark 6.5. It is perhaps tempting to think that a similar statement should be
true for strongly infinitesimal general games. If one tries to mimic the above proof,
one runs into two difficulties. In the first part, we have used that any finite set
of positive short numbers has a positive short lower bound. The corresponding
conclusion would still be valid, since any set of positive numbers has a positive
lower bound (which is a number). (For z > 0 it is easy to see that z ≥ 2−b(z); the
claim then follows from the statement on upper bounds for sets of ordinals.) In the
second part, we have used that any finite set of natural numbers (or multiples m↑)
has an upper bound. This does not seem to generalize easily.
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7. Impartial Games [WW, § 3], [ONAG, § 11]

7.1. What is an impartial game? An impartial game is one in which both players
have the same possible moves in every position. Formally, this reads as follows.

Definition 7.1 (Impartial Game). An impartial game is a game for which the sets
of left and right options are equal, and all options are impartial games themselves.

It follows that every impartial game G satisfies G = −G, hence G + G = 0.
Therefore, G = 0 or G 0. There is no need to distinguish the sets of left and
right options, so we simply write G = {G′, G′′, . . . }, where {G′, G′′, . . . } is the set
of options of G (again, this notation is not meant so suggest that the set of options
should be countable or non-empty).

The standard examples include the game of Nim: it consists of a finite collection
of heaps H1, . . . , Hn, each of which is an ordinal number (some number of coins,
matches, etc.; if this makes you feel more comfortable, think of natural numbers
only). A move consists of reducing any single heap by an arbitrary amount (i.e.,
replacing one of the ordinal numbers by a strictly smaller ordinal number), leaving
all other heaps unaffected. A move in the ordinal number 0 is of course impossible,
so the game ends when all heaps are reduced to 0. As usual, winner is the one who
made the last move. Note that a single heap game is trivial: if the heap is non-zero,
then the winning move consists in reducing the heap to zero, leaving no legal move
to the opponent. A game with several heaps is the sum (in our usual sense) of its
heaps: it is H1 + H2 + · · ·+ Hn.

Conway coined the term nimber for a single Nim heap, and he writes ∗n for a heap
of size n (where n is of course an ordinal number). The rules of Nim can then simply
be written as ∗0 = 0, ∗n = {∗0, ∗1, . . . , ∗(n−1)} (if n is finite) or ∗n = {∗k : k < n}
(in general).

We have ∗n = ∗k if and only n = k: the equality ∗n = ∗k means 0 = ∗n− ∗k =
∗n + ∗k (note that ∗k = −∗k since nimbers are impartial games), and in ∗n + ∗k
with n 6= k the first player wins by reducing the larger heap so as to leave two heaps
of equal size to the opponent). The nimbers inherit a total ordering from the ordinal
numbers so that every set of nimbers is well-ordered (Proposition 4.3). But note
that this is not the same as the ordering of general games restricted to impartial
games: a Nim heap ∗n of size n > 0 has ∗n 0, not ∗n > 0!

7.2. Classification of impartial games. There is a well-known classification of
impartial games, due to Sprague and Grundy, which says that every impartial game
is equal to a well-defined nimber ∗n, hence equal to a Nim game with a single
heap, which has trivial winning strategy. Unfortunately, this does not make every
impartial game easy to analyze: in practice, it might be hard to tell exactly which
nimber an impartial game is equal to; as an example, we mention the game of Sylver
Coinage6 [WW, § 18].

The theory of impartial games is based on the following definition.

6Sylver Coinage is usually played in misère play; however, one can equivalently declare the
number 1 illegal and use the normal winning convention.
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Definition 7.2 (The mex: minimal excluded nimber). Let G be a set of nimbers.
Then mex(G) is the least nimber not contained in G.

Note that every set of nimbers has an upper bound by Proposition 4.6, and the
well-ordering of nimbers implies that every set of nimbers has a well-defined minimal
excluded nimber, so the mex is well-defined.

The first and fundamental step of the classification is the following observation.

Proposition 7.3 (Bogus Nim). Let G be any set of nimbers. Then G = mex(G).

Some remarks might be in order here. First, G is of course an impartial game
itself, describing its set of options which are all nimbers. Now mex(G) is a particular
nimber, and the result asserts that the game G is equal as a game to the nimber
mex(G).
Proof: All we need to show is that G − mex(G) = G + mex(G) = 0. The main
trick is to write this right: mex(G) = ∗n = {∗k : k < n} for an ordinal number n,
while G = ∗n ∪ G′ where G′ is the set of options of G exceeding ∗n (note that by
assumption ∗n is not an option of G). The first player has three kinds of possible
moves: move in mex(G) = ∗n to some ∗k < ∗n, move in G to an option ∗k < ∗n,
or move in G to an option ∗k > ∗n. The first leads to G + ∗k and is countered by
the move in G to ∗k + ∗k = 0; the second kind leads to ∗k + ∗n and is countered by
the move in ∗n to ∗k + ∗k = 0; finally, the third leads to ∗k + ∗n (this time, with
k > n) and is countered by a move in ∗k to ∗n + ∗n = 0. In all three cases, the
second player moves to 0 and wins. 2

The name ‘Bogus Nim’ refers to the following interpretation of this game: the
game G really is a Nim heap ∗n (offering moves to all ∗k with k < n), but in addition
it is allowed to increase the size of the heap. This increasing is immediately reversed
by the second player, bringing the heap back to ∗n (in which no further increase is
possible), so all increasing moves are reversible moves.

A rather obvious corollary is the following: G = ∗0 if and only if no legal move
in G leads to ∗0 (if ∗0 is no option of G, then clearly mex(G) = ∗0): if G has the
option ∗0, then this is a winning move for the first player, hence G 0; otherwise,
all options of G (if any) lead to nimbers ∗n 6= ∗0 from which the second player wins.

Theorem 7.4 (The Classification of Impartial Games).
Every impartial game is equal to a unique nimber.

Proof: We use Conway induction: write G = {G′, G′′, . . . }, listing all options of
G. By the inductive hypothesis, every option of G is equal to a nimber, hence (using
Theorem 2.17)

G = {∗k : there is an option of G which equals ∗k} .

Therefore, all options of G are equal to nimbers, hence by Proposition 7.3 G is equal
to the mex of all its options, which is a nimber. Uniqueness is clear. 2

We should mention that for the game Nim, there is a well-known explicit strategy,
at least for heaps of finite size: in the game G = ∗n1 + ∗n2 + · · · + ∗ns, write each
heap size ni in binary form and form the exclusive or (XOR) of them. Then
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G = 0 if and only if the XOR is zero in every bit: in the latter case, it is easy to see
that every option of G is non-zero, while if the XOR is non-zero, then every heap
which contributes a 1 to the most significant bit of the XOR can be reduced in size
so as to turn the game into a zero game.

Nim is often played in Misère play, and the binary strategy as just described works
in this form almost without difference, except very near the end when there are at
most two heaps of size exceeding one. It is sometimes wrongly concluded that there
was a general theory of impartial games in Misère play similarly as Theorem 7.4.
However, this is false: the essential difference is the use of Theorem 2.17 which allows
us to replace an option by an equivalent one, and this is based on the usual winning
convention. There is no analog in Misère play to the Sprague-Grundy-Theory: for
any two impartial games G and H without reversible options which are different
in form (i.e., G 6≡ H), there is another impartial game K such that the winners of
G + K and H + K are different; see [ONAG, Chapter 12].
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