Appendix 1: Utility Theory

Much of the theory presented is based on utility theory at a fundamental level. This
theory gives a justification for our assumptions (1) that the payoff functions are numerical
valued and (2) that a randomized payoff may be replaced by its expectation. There are
many expostions on this subject at various levels of sophistication. The basic theory was
developed in the book of Von Neumann and Morgenstern (1947). Further developments
are given in Savage (1954), Blackwell and Girshick (1954) and Luce and Raiffa (1957).
More recent expositions may be found in Owen (1982), Shubik (1984), Straffin (1993).
Here is a brief description of the basics of utility theory.

The method a ‘rational’ person uses in choosing between two alternative actions, a;
and ag, is quite complex. In general situations, the payoff for choosing an action is not
necessarily numerical, but may instead represent complex entities such as “you receive a
ticket to a ball game tomorrow when there is a good chance of rain and your raincoat is
torn” or “you lose five dollars on a bet to someone you dislike and the chances are that he
is going to rub it in”. Such entities we refer to as payoffs or prizes. The ‘rational’ person
in choosing between two actions evaluates the value of the various payoffs and balances it
with the probabilities with which he thinks the payoffs will occur. He may do, and usually
does, such an evaluation subconsciously. We give here a mathematical model by which
such choices among actions are made. This model is based on the notion that a ‘rational’
person can express his preferences among payoffs in a method consistent with certain
axioms. The basic conclusion is that the value to him of a payoff may be expressed as a
numerical function, called a wutility, defined on the set of payoffs, and that the preference
between actions giving him a probability distribution over the payoffs is based only on the
expected value of the utility of the action.

Let P denote the set of payoffs of the game. We use P, P;, P>, and so on to denote
payoffs (that is, elements of P).

Definition. A preference relation on P, or simply preference on P, is a (weak) linear
ordering, <, on P; that is,

(a) (linearity) if P, and P, are in P, then either P, < P or P, < Py (or both), and
(b) (transitivity) if P1, P, and Ps are in P, and if P} < P and P> < Ps, then P; < Ps.
If Py < P, and P, < Py, then we say P; and P, are equivalent and write P, >~ P.

We assume that our ‘rational’ being can express his preferences over the set P in a
way that is consistent with some preference relation. The statement P; < P> means that
our rational person either prefers P, to P; or he is indifferent between them. If P; ~ P,
we say that he is indifferent between P; and Ps.

Unfortunately, just knowing that a person prefers P, to P;, gives us no indication
of how much more he prefers P, to P;. In fact, the question does not make sense until
a third point of comparison is introduced. We could, for example, ask him to compare
P, with the joint payoff of P; and $100 in order to get some comparison of how much
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more he prefers P» to P; in terms of money. We would like to go farther and express all
his preferences in some numerical form. To do this however requires that we ask him to
express his preferences on the space of all lotteries over the payoffs.

Definition. A lottery is a finite probability distribution over the set P of payofts. We
denote the set of lotteries by P*.

(A finite probability distribution is one that gives positive probability to only a finite
number of points.)

If P, P, and P3 are payoffs, the probability distribution, p, that chooses P; with
probability 1/2, P> with probability 1/4, and P; with probability 1/4 is a lottery. We use
lower case letters, p, p1, p2 to denote elements of P*. Note that the lottery p that gives
probability 1 to a fixed payoff P may be identified with P, since receiving payoff P is the
same as receiving payoff P with probability 1. With this identification, we may consider
P to be a subset of P*.

We note that if p; and py are lotteries and 0 < A < 0, then Ap; + (1 — A)p2 is also
a lottery. It is that lottery that first tosses a coin with probability A of heads; if heads
comes up, then it uses p; to choose an element of P and if tails comes up, it uses pa. Thus
Ap1 + (1 — X)ps is an element of P*. Mathematically, a lottery of lotteries is just another
lottery.

We assume now that our ‘rational’ person has a preference relation not only over P
but over P* as well. One very simple way of setting up a preference over P* is through a
utility function.

Definition. A utility function is a real-valued function defined over P.

Given a utility function, u(P), we may extend the domain of u to the set P* of all
lotteries by defining u(p) for p € P* to be the expected utility: i.e. if p € P* is the lottery
that chooses P;, Ps, ..., Py with respective probabilities A1, A2, ..., A\x, where \; > 0 and
> A =1, then

u(p) = Z)‘iu(Pi) (1)

is the expected utility of the payoff for lottery p. Thus given a utility u, a simple preference
over P* is given by

p1 <p2  ifandonlyif  u(p1) < u(pe2), (2)

i.e. that lottery with the higher expected utility is preferred.

The basic question is, can we go the other way around? Given an arbitrary preference,
= on P* | does there exist a utility u defined on P such that (2) holds? The answer is no
in general, but under the following two axioms on the preference relation, the answer is
yes!
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Al. Ifp;, pe2 and q are in P*, and 0 < A <1, then
p1 = P2 if, and only if ~ Ap1+ (1 —A)g = Ap2 + (1 — N)g. (3)

A2. For arbitrary p1, p2 and q in P*,
A+ (1—=XNp1 <ps forall 0<A<1 implies p1 = p2 (4)
and similarly,

p2 =2 Ag+ (1—=N)p1 forall 0<A<1 implies p2 < p1. (5)

Axiom Al is easy to justify. Consider a coin with probability A of coming up heads. If
the coin comes up tails you receive ¢q. If it comes up heads you are asked to choose between
p1 and po. If you prefer ps, you would naturally choose po. This axiom states that if you
had to decide between p; and ps before learning the outcome of the toss, you would make
the same decision. A minor objection to this axiom is that we might be indifferent between
Ap1 + (1 — N)g and Apa + (1 — N)q if X is sufficiently small, say A = 10719° even though
we prefer p; to ps. Another objection comes from the person who dislikes gambles with
random payoffs. He might prefer a po that gives him $2 outright to a gamble, p1, giving
him $1 with probability 1/2 and $3.10 with probability 1/2. But if ¢ is $5 for sure and
A = 1/2, he might prefer Ap; + (1 — A)g to Ap2 + (1 — \)g on the basis of larger expected
monetary reward, because the payoff is random in either case.

Axiom A2 is more debatable. It is called the continuity axiom. It is safe to assume
that for most people, $100 is strictly preferred to $1, which is strictly preferred to death.
Yet, would you ever prefer a gamble giving you death with probability A and $100 with
probability 1 — A\ for some positive A to $1 outright? If not, then with ¢ = death, p; =
$100 and ps = $1, condition (4) is violated. However, people do not behave as if avoiding
death is an overriding concern. They will go on the freeway to get to work so they can earn
some money, even though they have increased the probability of death (by a very small
amount) by doing so. At any rate, Axiom A2 implies that there is no payoff infinitely less
desirable or infinitely more desirable than any other payoff.

Theorem 1. If a preference relation, <, on P* satisfies A1 and A2, then there exists a
utility, u, defined on P that satisfies (2). Furthermore, u is uniquely determined up to
change of location and scale.

If a utility u(P) satisfies (2), then for arbitrary real numbers a and b > 0, the utility
u(P) = a+ bu(P) also satisfies (2). Thus the uniqueness of v up to change of location and
scale the strongest uniqueness that can be obtained.

Exercises. 1. Does every preference given by a utility as in (1) satisfy A1l and A2?

2. Take P = {P1, P>}, and give an example of a preference on P* satisfying A2 but
not Al.

3. Take P = {Py, P>, P3}, and give an example of a preference on P* satisfying Al
but not A2.
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Appendix 2: Existence of Equilibria in Finite Games

We give a proof of Nash’s Theorem based on the celebrated Fixed Point Theorem of
L. E. J. Brouwer. Given a set C' and a mapping T of C into itself, a point z € C' is said
to be a fixed point of T', if T'(z) = z.

Brouwer’s Fixed Point Theorem. Let C' be a nonempty, compact, convex set in a
finite dimensional Fuclidean space, and let T be a continuous map of C' into itself. Then
there exists a point z € C such that T'(z) = z.

The proof is not easy. You might look at the paper of K. Kuga (1974), “Brower’s
fixed point Theorem: An Alternate Proof”, SIAM Journal of Mathematical Analysis, 5,
893-897. Or you might also try Parthasarathy and Raghavan (1971), Chapter 1.

Now consider a finite n-person game with the notation of Section III.2.1. The pure
strategy sets are denoted by Xi,...,X,,, with X} consisting of m; > 1 elements, say
X ={1,...,mi}. The space of mixed strategies of Player k is given by X},

X; =A{pr = Dr1s---sDkymy) 1Pk >0 fori=1,...,my, and Z?:Hpk,i =1} (1)

For a given joint pure strategy selection, & = (i1,...,i,) with i; € X, for all j, the
payoff, or utility, to Player k is denoted by ug((i1,...,i,) for k = 1,...,n. For a given joint
mixed strategy selection, (p1,...,pn) with p; € X7 for j =1,...,n, the corresponding
expected payoff to Player k is given by gr(p1,...,DPn),

ma My
gk(p17~"7pn) = Z Zpl,il"'pn,inuk(ilw-'vin)- (2)
i1=1 in=1

Let us use the notation gi(p1,...,Pn|i) to denote the expected payoff to Player k if Player
k changes strategy from px to the pure strategy ¢+ € Xy,

gk(plv R 7p71’z) = gk(plv cee 7pk*175i7pk+17 R 7pn) (3)

where §; represents the probability distribution giving probability 1 to the point i. Note
that gx(p1,...,pn) can be reconstructed from the gi(p1,...,pnli) by

mpg
gk(P1,---.pn) = Y Prigk(P1, - -, Puli) (4)
i=1
A vector of mixed strategies, (p1,...,Pn), is a strategic equilibrium if for all k£ =
1,...,n, and all + € Xy,
ge(P1;- -, Pnli) < gr(P1, ... Pn)- (5)
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Theorem. FEvery finite n-person game in strategic form has at least one strategic equi-
librium.

Proof. For each k, X is a compact convex subset of m; dimensional Euclidean space,

and so the product, C'= X} x --- x X, is a compact convex subset of a Euclidean space

of dimension >, m;. For z = (p1,...,pyn) € C, define the mapping T'(z) of C into C by

T(z)=2=(p,...,p,) (6)

where

;_ Prq+max(0,gx(p1, - -, Pnli) — ge(P1,-- - Pn)) )
Pt = T max(0, g (P1s -+ Palj) — 9P P0))

Note that pr; > 0, and the denominator is chosen so that Z;Z’“l p;m. = 1. Thus 2’ €
C. Moreover the function f(z) is continuous since each gx(pi,...,pn) is continuous.
Therefore, by the Brouwer Fixed Point Theorem, there is a point, z’ = (q1,...,q,) € C
such that T'(z') = z’. Thus from (7)

_ Gka +max(0, gx(2]i) — gr(2'))
Bt = TS max(0, e ('17) — 08(2))) ®

forall k=1,...,nand i=1,...,m,. Since from (4) gx(2’) is an average of the numbers
gr(2']7), we must have gp(2']i) < gi(2’) for at least one ¢ for which g5 ; > 0, so that
max(0, gx(2']i) — gx(2")) = 0 for that i. But then (8) implies that » """ max(0, gx(2'[5) —
gr(2")) = 0, so that gx(2'|i) < gk(2’) for all k& and i. From (5) this shows that z’ =
(q1,...,qn) is a strategic equilibrium. m

Remark. From the definition of T'(z), we see that z = (p1,...,pn) is a strategic
equilibrium if and only if z is a fixed point of T'. In other words, the set of strategic
equilibria is given by {z : T(z) = z}. If we could solve the equation T(z) = z we

could find the equilibria. Unfortunately, the equation is not easily solved. The method of
iteration does not ordinarily work because 7" is not a contraction map.



