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Most real-world games are incomplete-information

games with sequential (& simultaneous) moves
Negotiation
Multi-stage auctions (e.g., FCC ascending, combinatorial auctions)
Sequential auctions of multiple items
A robot facing adversaries in uncertain, stochastic envt
Card games, e.g., poker
Currency attacks

International (over-)fishing
Political campaigns (e.g., TV spending in each region)
Ownership games (polar regions, moons, planets)
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Allocating (and timing) troops/armaments to locations
— US allocating troops in Afghanistan & Iraq
— Military spending games, €.g., space vs ocean

— Airport security, air marshals, coast guard rall [joint w Tambe]

— Cybersecurity ...




Sequential incomplete-information games

e Challenges
— Imperfect information
— Risk assessment and management

— Speculation and counter-speculation:
Interpreting signals and avoiding signaling too much

* Techniques for complete-info games don’t apply

* Techniques I will discuss are domain-independent



Game theory

e Definition. Strategy 1s a mapping from known
history to action

* In multi-agent systems, an agent’s outcome
depends on the actions of others’

=>Agent’s optimal strategy depends on others’ strategies

* Definition. A (Bayes) Nash equilibrium 1s a
strategy (and beliefs) for each agent such that no
agent benefits from using a different strategy



Player 1

Simple example

Rock 1/3

Paper 1/3

Scissors 1/3

Player 2
Rock Paper Scissors
1/3 1/3 1/3
0,0 -1, 1 1, -1
1, -1 0,0 -1, 1

-1, 1 1, -1 0,0




Basics about Nash equilibria

In 2-person 0-sum games,
— Nash equilibria are minimax equilibria => no equilibrium selection problem
— If opponent plays a non-equilibrium strategy, that only helps me

Any finite sequential game (satisfying perfect recall) can be
converted into a matrix game
— Exponential blowup in #strategies

Sequence form: More compact representation based on sequences
of moves rather than pure strategies [Romanovskii 62, Koller &
Megiddo 92, von Stengel 96]

— 2-person 0-sum games with perfect recall can be solved in time polynomial
in size of game tree using LP

— Cannot solve Rhode Island Hold’em (3.1 billion nodes) or Texas Hold’em
(103 nodes)



Extensive form representation

Players /= {0, 1, ..., n}
Tree (V,E)

e TerminalsZCV
Controlling player P: V\ Z—H
Information sets H={H,,..., H }
Actions 4 = {4, ..., 4}
Payoffs u : Z—R"
Chance probabilities p

Perfect recall assumption: Players never forget information

Game from: Bernhard von Stengel. Efficient Computation of Behavior
Strategies. In Games and Economic Behavior 14:220-246, 1996.



Computing equilibria via normal form

 Normal form exponential, in worst case and
in practice (e.g. poker)



Sequence form

[Romanovskii 62, re-invented in English-speaking literature: Koller & Megiddo 92, von Stengel 96]

 Instead of a move for every information set,
consider choices necessary to reach each
information set and each leaf

* These choices are sequences and constitute the
pure strategies 1n the sequence form

S, =}, Lr,L,R}
SZ : {{}9 c, d}




Realization plans

* Players’ strategies are specified as realization
plans over sequences:

* Prop. Realization plans are equivalent to behavior
strategies.



Computing equilibria via sequence form

* Players 1 and 2 have realization plans x and y

e Realization constraint matrices £ and F
specify constraints on realizations




Computing equilibria via sequence form
« Payolffs for player 1 and 2 are: and

for suitable matrices A and B

e Creating payoff matrix:
— Initialize each entry to 0

— For each leaf, there is a (unique) pair of sequences corresponding
to an entry in the payoff matrix

— Weight the entry by the product of chance probabilities along the
path from the root to the leaf




Computing equilibria via sequence form

Primal Dual
. . T
Holding x fixed, maX%leze (x* B)y minimize g f
compute best response subject to q

subject to g'F >x'B

Holding y fixed, .ﬂ ' | minimize
compute best response - ‘ ‘ p

subject to Elp > Ay

Now, assume 0-sum. The latter primal and dual must have same optimal value e’p.
That 1s the amount that player 2, if he plays y, has to give to player 1, so player 2 tries to
minimize it: )
Primal Dual
minimize el p maximize
v, p X.q

subject to —Ay +E'p subject to

J/




Computing equilibria via sequence form:
An example

minimize el'p
».p
subject to —Ay+E'p>0

—Fy =—/1,
y >0,

min pl
subject to
x1: EAREE2 - p3 >=
p ] + P2 >=
X3 S ey V3 1 o P
x4 : 2y2 — 4vy3 eSS =
x5: -yl + p3 >=
Gl 5 vk =
SRR AR - y3 = 0
bounds

AR >= 0 y3 >= 0
pl Free p2 Free ©p3 Free
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Sequence form summary

Polytime algorithm for finding a Nash equilibrium 1n 2-
player zero-sum games

Polysize linear complementarity problem (LCP) for
computing Nash equilibria in 2-player general-sum games

Major shortcomings:

— Not well understood when more than two players
— Sometimes, polynomial 1s still slow and or large (e.g. poker)...



Games and information

* Games can be differentiated based on the information
available to the players

— Perfect information games: players have complete
knowledge about the state of the world
« Examples: Chess, Go, Checkers

— Imperfect information games: players face uncertainty about
the state of the world

» Examples:
— A robot facing adversaries in an uncertain, stochastic environment

— Almost any economic situation in which the other participants possess
private information (e.g. valuations, quality information)

— Almost any card game in which the other players’ cards are hidden
» This class of games presents several challenges for Al

— Imperfect information

— Risk assessment and management

— Speculation and counter-speculation



Poker

« Recognized challenge problem in Al
— Hidden information (other players’ cards)
— Uncertainty about future events
— Deceptive strategies needed in a good player

* Very large game trees
e Texas Hold’em 1s the most popular variant

On NBC:

:/ ,v/“‘ i' ‘”‘ﬁ



Outline

Abstraction

Equilibrium finding in 2-person 0-sum games
Strategy purification

Opponent exploitation

Multiplayer stochastic games

Leveraging qualitative models



Other methods for finding equilibria

Fictitious play
— Convergence only guaranteed for zero-sum games

Tabu best-response search [Sureka & Wurman 2005]
— Finds pure strategy equilibria
— Does not require game to be completely specified

Lemke-Howson algorithm
— Pivoting algorithm for finding one Nash equilibrium
— Very similar to the simplex algorithm for LP
Support enumeration methods

— Porter-Nudelman-Shoham [2004]
— Mixed-Integer Programming Nash [Sandholm et al 2005]



Our approach

Automated abstraction + equilibrium finding



Our approach [Gilpin & S., EC’06, JACM’07...]

Now used by all competitive Texas Hold’em programs

Original game

Abstracted game

Automated abstraction f E

Custom
equilibrium-finding
algorithm

Reverse model

Nash equilibrium Nash equilibrium



Outline

 Automated abstraction
— Lossless
— Lossy

* New equilibrium-finding algorithms



Outline

Automated abstraction
— Lossless
— Lossy

New equilibrium-finding algorithms
Stochastic games with >2 players, e.g., poker tournaments
Current & future research



Outline

Lossless automated abstraction
— Optimal strategies for Rhode Island Hold’em
Approximate automated abstraction
— “Greedy” (GSI)
— Clustering and integer programming (GS2)
— Potential-aware (GS3)
Equilibrium-finding algorithms
— Adapting Nesterov’s excessive gap technique to sequential games
— Making it scalable
— New related algorithm with exponentially better speed

Future research
Thoughts on application games of national importance



Our approach

* We introduce automated abstraction techniques that
result in smaller, (nearly) equivalent games

— For the optimal version of our algorithm:

« We prove that a Nash equilibrium 1n the smaller game corresponds to
a Nash equilibrium 1n the original game

» The smaller game can then be solved using standard techniques
— For the approximate versions of our algorithm:

» We demonstrate their effectiveness by applying the algorithm to
Texas Hold’em poker and comparing with other poker-playing
programs

* We also improve the equilibrium-finding algorithms
themselves
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ame with ordered signals
(a.k.a. ordered game)

Players | = {1,...,n} | = {1,2}

Stage

Player label L

Game
Signa
Signal
Signa
Partia

Utility function U (increasing

games G = G,,...,G,

-ending nodes ®
| alphabet ©

| quantities K = Kq,...,K
| probability distributio

| ordering > of subsets



Reasons to abstract

 Scalability (computation speed & memory)

* Game may be so complicated that can’t model
without abstraction

 Existence of equilibrium, or solving algorithm,
may require a certain kind of game, e.g., finite



L.ossless abstraction
[Gilpin & S., EC’06, JACM’07]



Information filters

* Observation: We can make games smaller by
filtering the information a player receives

 Instead of observing a specific signal exactly, a
player instead observes a of signals

— E.g. receiving signal {A&, Ad AY Ae} instead of AW



Signal tree

* Each edge corresponds to the revelation of some
signal by nature to at least one player

* QOur lossless abstraction algorithm operates on it
— Don’t load full game into memory



Isomorphic relation

« Captures the notion of strategic symmetry between nodes

e Defined recursively:

— Two leaves in signal tree are if for each action
history 1n the game, the payoff vectors (one payoff per player)
are the same

— Two internal nodes 1n signal tree are if they are
siblings and there 1s a bijection between their children such that
only ordered game isomorphic nodes are matched

 We compute this relationship for all nodes using a DP
plus custom perfect matching in a bipartite graph



Abstraction transformation

e Merges two 1somorphic nodes

 Theorem. [fa strategy profile is a Nash equilibrium
in the abstracted (smaller) game, then its
interpretation in the original game is a Nash
equilibrium

* Assumptions
— Observable player actions

— Players’ utility functions rank the signals in the same order
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GameShrink algorithm

Bottom-up pass: Run DP to mark isomorphic pairs of
nodes 1n signal tree

Top-down pass: Starting from top of signal tree, perform
the transformation where applicable

Theorem. Conducts all these transformations
— O(n?), where n is #nodes in signal tree
— Usually highly sublinear in game tree size



Algorithmic techniques for making
GameShrink faster

« Union-Find data structure for efficient representation of
the information filter (unioning finer signals into coarser
signals)

— Linear memory and almost linear time

* Eliminate some perfect matching computations using
easy-to-check necessary conditions

— Compact histogram databases for storing win/loss frequencies to
speed up the checks



Solved Rhode Island Hold’em poker

Al challenge problem [Shi & Littman 01]

— 3.1 billion nodes 1n game tree

Without abstraction, LP has 91,224,226 rows and
columns => unsolvable

GameShrink runs 1n one second
After that, LP has 1,237,238 rows and columns

Solved the LP
— CPLEX barrier method took 8 days & 25 GB RAM

Exact Nash equilibrium

Largest incomplete-info game solved
by then by over 4 orders of magnitude




Lossy abstraction



Prior game abstractions
(automated or manual)

* Lossless [Gilpin & Sandholm, EC’06, JACM’07]

* Lossy without bound [Shi and Littman CG-02; Billings et al.
IJCAI-03; Gilpin & Sandholm, AAAI-06, -08, AAMAS-07;
Gilpin, Sandholm & Soerensen AAAI-07, AAMAS-08; Zinkevich
et al. NIPS-07; Waugh et al. AAMAS-09, SARA-09;...]

— Exploitability can sometimes be checked ex post [Johanson et al. [JCAI-11]



We developed many lossy
abstraction algorithms

Scalable to large n-player, general-sum games, e.g., Texas Hold’em

Gilpin, A. and Sandholm, T. 2008.
Expectation-Based Versus Potential-Aware Automated Abstraction in
Imperfect Information Games: An Experimental Comparison Using Poker.

AAAL

Gilpin, A., Sandholm, T., Troels Bjerre Serensen 2008.
A heads-up no-limit Texas Hold'em poker player: Discretized betting models
and automatically generated equilibrium-finding programs. AAMAS.

Gilpin, A., Sandholm, T., Soerensen, T. 2007.

Potential-Aware Automated Abstraction of Sequential Games, and Holistic
Equilibrium Analysis of Texas Hold'em Poker. A4A4].

Gilpin, A., Sandholm, T. 2007.

Better automated abstraction techniques for imperfect information games,
with application to Texas Hold'em poker. In AAMAS.

Gilpin, A., Sandholm, T. 2006.

A competitive Texas Hold'em Poker player via automated abstraction and
real-time equilibrium computation. A4A41.




Texas Hold’em poker



2 Poker Academy Pro E]@ |
Lobby Options Dealer Table Window Help
Limit Ring Game: $1/$2 Stakes e é @ e

GSIBot Session Stats

$100 Hand Evaluator

Transcript

Andrew
$100




2 Poker Academy Pro E]@ |
Lobby Options Dealer Table Window Help
Limit Ring Game: $1/$2 Stakes e é @ e

GSIBot Session Stats

$o9
call $o0.50 Hand Evaluator

Transcript

HAHND #428,331

GSlBot blinds $0.50

Andrewy blinds $1

Your hole cards are: 2s Kh
GSlBot calls $0.50

Pot: $2

Andrew.

ﬁ ﬁ ﬁ’ .




2 poker Academy Pro

Lobby ©Options Dealer Table Window Help

Limit Ring Game: $1/$2 Stakes e e @ e

GSIBot Session Stats
Hand Evaluator

Transcript

HAHND #428,331

GSlBot blinds $0.50

Andrevy blinds $1

Your hole cards are: 2s Kh
GSlBot calls $0.50

Andrevy checks

FLOP: Qd 7s 4c

Pot: $2

Andrew.




2 poker Academy Pro

Lobby Options Dealer Table Window Help

Limit Ring Game: $1/$2 Stakes e e @ 9

GSIBot Session Stats
$08

Bet §1 Hand Evaluator

Transcript

HAHND #428,331

GSlBot blinds $0.50

Andrewy blinds $1

Your hole cards are: 2s Kh
GSIBat calls $0.50

Andrewy checks

FLOP: Qd 7s 4¢
Andrewy checks
GSlBot bets $1

Pot: $3

A Tﬂ{‘djr'_ev o

-
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® poker Academy Pro

Lobby Options Dealer Table Window Help

Limit Ring Game: $1/$2 Stakes e é @ e

GSIBot Session Stats
$o08

Hand Evaluator

Transcript

HAHND #428,331

GSlBot blinds $0.50

Andrewy blinds $1

Your hole cards are: 2s Kh
GSlBot calls $0.50

Andrewy checks

FLOP: Qd 7s 4¢
Andrewy checks
GSlBot bets $1
Andrewy calls $1

3

) TURK: Qd 7s 4c 3s
¢ lemy

Pot: $4

‘Andrew

$ u] 8




2 poker Academy Pro

Lobby ©Options Dealer Table Window Help

Pot: $8

Limit Ring Game: $1/$2 Stakes

4 3
| R
2

‘Andrew
ff} ul Eu

0006

Session Stats
Hand Evaluator

Transcript

HAHND #428,331

GSlBot blinds $0.50

Andrevy blinds $1

Your hole cards are: 2s Kh
GSlBot calls $0.50

Andrevy checks

FLOP: Qd 7s 4¢c
Andrewy checks
GSlBot bets $1
Andrewvy calls $1

TURH: Qd 7s 4¢ 3s
Andrew bets $2
GSIBat calls $2

RIVER: Qd 7s 4¢ 3s Qs




2 Poker Academy Pro

Lobby ©Options Dealer Table Window Help
Limit Ring Game: $1/$2 Stakes

GSIBot Session Stats
$o04

Bet $2 Hand Evaluator

Transcript

HAHND #428,331

GSlBot blinds $0.50

Andrevy blinds $1

Your hole cards are: 2s Kh
GSlBot calls $0.50

Andrevy checks

FLOP: Qd 7s 4¢c
Andrewy checks
GSlBot bets $1
Andrewvy calls $1

TURH: Qd 7s 4¢ 3s
Andrew bets $2
GSIBat calls $2

Pot: $10

RIVER: Qd 7s 4¢ 35 Qs
Andrevy checks
GSlBot bets $2

‘Andrew
ff} ul Eu

-
o]le - D & N




2 poker Academy Pro

Lobby ©Options Dealer Table Window Help

Limit Ring Game: $1/$2 Stakes e e @ e

GSIBot Session Stats
ek Hand Evaluator
- Transcript
D HAND #428,331

GSIBat blinds $0.50

a 7
* Andrevy blinds $1

Your hole cards are: 2s Kh
GSIBot calls $0.50

&_ # Andrevy checks

FLOP: Qd 7s 4¢
Andrewy checks

GSIBot wins $12 with Two Pair, Queens and Sevens GSIBot bets 1
’ 7 4 Q

Andrewvy calls $1

TURH: Qd 7s 4¢ 3s

Andrew bets $2
GSIBat calls $2

RIVER: Qd 7s 4¢ 35 Qs

Andrevy checks

GSlBot bets $2

Andrew calls $2

GSlBot shows 2c 7o

Andrewy shows 2s Kh

GSIBot wins $12 with Two Pair,
Queens and Sevens




Texas Hold’em poker

Nature deals 2 cards to each player  ® 2-player Limit Texas
Hold’em has ~10!8
leaves 1n game tree

Round of betting

Nature deals 3 shared cards

Round of betting
* Losslessly abstracted

game too big to solve
Round of betting —P abstract morc
Nature deals 1 shared card => lOSSY

Nature deals 1 shared card

Round of betting




GS'1 (Gilpin & S., AAAT06]

First Texas Hold’em program to use automated abstraction

— Lossy version of Gameshrink

* Instead of requiring perfect matching of children, require a matching with
a penalty below threshold

Abstracted game’s LP solved by CPLEX
Phase I (rounds 1 & 2) LP solved offline

— Assuming rollout for the rest of the game

Phase II (rounds 3 & 4) LP solved in real time

— Starting with hand probabilities that are updated using Bayes rule
based on Phase I equilibrium and observations



GS1

172005 - 172006



GS1

* We split the 4 betting rounds into two phases

— Phase I (first 2 rounds) solved offline using
approximate version of GameShrink followed by LP
* Assuming rollout

— Phase II (last 2 rounds):

e abstractions computed offline
— betting history doesn’t matter & suit isomorphisms

* real-time equilibrium computation using anytime LP

— updated hand probabilities from Phase I equilibrium (using
betting histories and community card history):

0 €O

— s. 1s player 1’s strategy, h is an information set



Some additional techniques used

* Precompute several databases

* Conditional choice of primal vs. dual simplex
for real-time equilibrium computation

— Achieve anytime capability for the player that is us
* Dealing with running off the equilibrium path



GS1 results

GS1 vs Sparbot GS1 vs Vexbot

=
~—
-~
=
—
[}
O
—_—
=
—
=
N

2500 5000 7500 10000 o 2500 3750 5000

Hands played Hands played

* Sparbot. Game-theory-based player, manual abstraction
* Vexbot. Opponent modeling, miximax search with statistical
sampling



GSZ [Gilpin & S., AAMAS’07]

e Orniginal GameShrink 1s “greedy’” when used as an
approximation algorithm => lopsided abstractions

* (S2 1nstead finds abstraction via clustering & IP
— Round by round starting from round 1
— Operates 1n signal tree of one player’s & common signals at a
time
* Other ideas 1n GS2:

— Overlapping phases so Phase I would be less myopic
 Phase I =round 1, 2, and 3; Phase II = rounds 3 and 4
— Instead of assuming rollout at leaves of Phase I (as was done

in SparBot and GS1), use statistics to get a more accurate
estimate of how play will go



EAY

2/2006 — 7/2006
[Gilpin & S., AAMAS’07]



Optimized approximate abstractions

Original version of GameShrink 1s “greedy” when used as an
approximation algorithm => lopsided abstractions

GS2 nstead finds an abstraction via clustering & 1P

For round 1 in signal tree, use 1D k-means clustering
— Similarity metric is win probability (ties count as half a win)

For each round 2..3 of signal tree:

— For each group i of hands (children of a parent at round — 1):
* use 1D k-means clustering to split group i into k; abstract “states”
* for each value of k;, compute expected error (considering hand probs)
— [P decides how many children different parents (from round — 1) may have:
Decide k;’s to minimize total expected error, subject to ) .k, < K
« K, ..c18 set based on acceptable size of abstracted game

roun

round

» Solving this IP is fast in practice



Phase 1 (first three rounds)

o Allowed 15, 225, and 900 abstracted states in
rounds 1, 2, and 3, respectively

e Optimizing the approximate abstraction took
3 days on 4 CPUs

 LP took 7 days and 80 GB using CPLEX’s
barrier method



Phase 1 (first three rounds)

e Optimized abstraction
— Round 1
* There are 1,326 hands, of which 169 are strategically different
« We allowed 15 abstract states
— Round 2
» There are 25,989,600 distinct possible hands

— GameShrink (in lossless mode for Phase I) determined there are ~10° strategically
different hands

« Allowed 225 abstract states

— Round 3
» There are 1,221,511,200 distinct possible hands
o Allowed 900 abstract states

e Optimizing the approximate abstraction took 3 days on 4 CPUs

* LP took 7 days and 80 GB using CPLEX’s barrier method



Mitigating effect of round-based abstraction
(i.e., having 2 phases)

e For leaves of Phase I, GS1 & SparBot assumed rollout

e Can do better by estimating the actions from later in
the game (betting) using statistics

* For each possible hand strength and 1in each possible
betting situation, we stored the probability of each
possible action

— Mine history of how betting has gone 1n later rounds from
100,000’s of hands that SparBot played

— E.g. of betting in 4™ round
* Player 1 has bet. Player 2’s turn [




Example of betting in 4th round

Player 1 has bet. Player 2 to fold, call, or raise

£
=
<
=
o
=
ol

Hand strength




Phase 11 (rounds 3 and 4)

* Abstraction computed using the same optimized
abstraction algorithm as in Phase I

e Equilibrium solved in real time (as in GS/)

— Beliefs for the beginning of Phase II determined using
Bayes rule based on observations and the computed
equilibrium strategies from Phase I



Precompute several databases

« db5: possible wins and losses (for a single player) for every
combination of two hole cards and three community cards
(25,989,600 entries)

— Used by GameShrink for quickly comparing the similarity of two hands

» db223: possible wins and losses (for both players) for every
combination of pairs of two hole cards and three community
cards based on a roll-out of the remaining cards (14,047,378,800
entries)

— Used for computing payoffs of the Phase I game to speed up the LP
creation

 handval: concise encoding of a 7-card hand rank used for fast
comparisons of hands (133,784,560 entries)
— Used in several places, including in the construction of db5 and db223

* Colexicographical ordering used to compute indices into the
databases allowing for very fast lookups



GS2 experiments

Opponent Series won by Win rate
GS2 (small bets per hand)
GS1 38 of 50 +0.031
p=.00031
Sparbot 28 of 50 +0.0043
p=.48
Vexbot 32 of 50 -0.0062
p=.065




GS3

8/2006 — 3/2007
[Gilpin, S. & Sgrensen AAAI’07]

Our poker bots 2008-2011 were generated
with same abstraction algorithm



Entire game solved holistically

We no longer break game into phases

— Because our new equilibrium-finding algorithms can
solve games of the size that stem from reasonably
fine-grained abstractions of the entire game

=> better strategies & real-time end-game
computation optional



Clustering + integer programming for abstraction
[Gilpin & Sandholm AAMAS’07]

* GameShrink 1s “greedy” when used as an
approximation algorithm => lopsided abstractions

* For constructing GS2, abstraction was created via
clustering & IP

* Operates 1n signal tree of one player’s & common
signals at a time



Potential-aware automated abstraction
[Gilpin, S. & Serensen AAAI’07]

All prior abstraction algorithms had EV (myopic
probability of winning in poker) as the similarity metric

— Doesn’t capture potential

Potential not only positive or negative, but also
“multidimensional”

GS3’s abstraction algorithm captures potential ...



 Idea: similarity metric between hands at round
R should be based on the vector of probabilities
of transitions to abstracted states at round R+1

—E.g., L, norm

* In the last round, the similarity metric 1s simply
probability of winning (assuming rollout)

 This enables a bottom



Bottom-up pass to determine
abstraction for round 1

Round r-1 ;\Q ;\Q ;\Q ;\Q ;\Q ;\Q

N\
Round r iﬁ i) i) i)

* Clustering using L, norm
— Predetermined number of clusters, depending on size of abstraction we are shooting for

* In the last (4th) round, there is no more potential => we use probability of winning
(e.g., assuming rollout) as similarity metric



Determining abstraction for round 2

e For each 1%t-round bucket 1:

— Make a bottom-up pass to determine 3"-round buckets,
considering only hands compatible with 1

— Fork. € {1, 2, ..., max}

* Cluster the 2"-round hands into k; clusters

— based on each hand’s histogram over 3"-round buckets

* [P to decide how many children each 15-round bucket
may have, subject to ) . k;< K,
— Error metric for each bucket 1s the sum of L, distances of the
hands from the bucket’s centroid

— Total error to minimize 1s the sum of the buckets’ errors
« weighted by the probability of reaching the bucket



Determining abstraction for round 3

* Done analogously to how we did round 2



Determining abstraction for round 4

Done analogously, except that now there 1s no
potential left, so clustering 1s done based on
probability of winning

e Now we have finished the abstraction!



Potential-aware vs win-probability-based abstraction
, [Gilpin & S., AAAI-08]
* Both use clustering and IP

* Experiment on Rhode Island Hold’em => Abstracted game solved exactly

Winnings to potential-aware
(small bets per hand)

10

5

0 / 1.06 \ 6-688
-5

/ — > Finer-grained
-10 / abstraction
-15

/16.6 1\

-20 | |
13 buckets in first round is lossless




Potential-aware vs win-probability-based abstraction
| [Gilpin & S., AAAI-08 & new]
* Both use clustering and IP

» Experiment conducted on Heads-Up Rhode Island Hold’em
— Abstracted game solved exactly

EB payoft EB? payoff PA payoft
Granularity || versus EB? | versus PA || versus EB | versus PA || versus EB | versus EB?
13-25-125 0.1490 16.6223 -0.1490 17.0938 -16.6223
13-50-250 -0.1272 -1.0627 0.1272 -0.5200 1.0627 0.5200
13-75-500

13-100-750 0.2340 -0.2340 ‘ -7.1448 7.1448
13-125-1000
13-150-1250 0.1813 5.5707 -0.1813 ‘ -5.6879 5.5707 5.6879
13-175-1500
13-205-1774 -0.0877 0.0877 0.0877

13 buckets in first round is lossless



Other forms of lossy abstraction

 Phase-based abstraction

— Uses observations and equilibrium strategies to infer priors
for next phase

— Uses some (good) fixed strategies to estimate leaf payouts at
non-last phases [Gilpin & Sandholm AAMAS-07]

— Supports real-time equilibrium finding [Gilpin & Sandholm
AAMAS-07]

* Grafting [Waugh et al. 2009] as an extension

e Action abstraction
— What if opponents play outside the abstraction?

— Multiplicative action similarity and probabilistic reverse
model [Gilpin, Sandholm, & Serensen AAMAS-08, Risk &
Szafron AAMAS-10]



Game abstraction is nonmonotonic

Attacker
B

An abstraction:
A

Coarser abstraction:

Defender

A Between B
0,2 1,1 2,0
2,0 I, 1l 0,2

A Between B
0,2 1,1 2,0
Between B
A 1,1 2,0

In each equilibrium:

*  Attacker randomizes 50-50 between A and B

e Defender plays A w.p. p, B w.p. p, and Between w.p. /-2p
e There is an equilibrium for each p € [0, 2]

Defender would choose A, but that is far from equilibrium
in the original game where attacker would choose B

Defender would choose Between. That is an equilibrium in
the original game

* Such “abstraction pathologies” also in small poker games [Waugh et al. AAMAS-09]

 We present the first lossy game abstraction algorithm with bounds
— Contradiction?



First lossy game abstraction algorithms with bounds
[Sandholm and Singh EC-12]

Recognized open problem; tricky due to pathologies
For both action and state abstraction; for finite stochastic games

Evaluations from abstract game are near accurate:

PROPOSITION 4.1. Vo', Vs € Sy, Vi,

(s) — W7 (h(s))] < fx

Regret 1s bounded:

THEOREM 5.1. For any subgame perfect Nash equilibrium (SPNE) strategy o * in
M', the corresponding joint strategy o'” ~ in M has the property that

, K *,
(a0, )

N -y v/ &l e 7\ _ /7 > Tgl* 2 ¢ n
Vi, Vs € Sk, Vm; € S — Ai(5),V, (s) <V?° (s) + 2k fr.q (15)

/ is the joint strategy in M that results from Agent i unilaterally deviat-

where (7;, 0

[o

ing from o to pure strategy m;, and fi. ; is as defined in Proposition 4.1.
5 P 5 ) Jk.i P



First lossy game abstraction methods with bounds
[Sandholm and Singh EC-12]

» Recognized open problem; tricky due to pathologies
 For both action and state abstraction

e For stochastic games



Strategy evaluation in M and M’

« LEMMA. If game M and abstraction M’ are “close”,
then the value for every strategy in M’ (when evaluated in M”)
is close to the value of any corresponding lifted strategy in M
when evaluated in M. Formally:



Main abstraction theorem

* (Given a subgame perfect Nash equilibrium
in M’

» Let lifted strategy in M be

e Then maximum gain by unilateral deviation by
agent 1 1S



First lossy game abstraction algorithms with bounds

» Greedy algorithm that proceeds level by level from end of game
— At each level, does either action or state abstraction first, then the other
— Polynomial time (versus equilibrium finding being PPAD-complete)

* Integer linear program

— Proceeds level by level from end of game; one ILP per level

* Optimizing all levels simultaneously would be nonlinear
— Does action and state abstraction simultaneously
— Splits the allowed total error within level optimally

» between reward error and transition probability error, and

» between action abstraction and state abstraction
* Proposition. Both algorithms satisfy the given bounds on regret
* Proposition. Even with just action abstraction and just one level,

finding the abstraction with the smallest number of actions that
respects the regret bound 1s NP-complete (even with 2 agents)

* One of the first action abstraction algorithms
— Totally different than the prior one [Hawkin et al. AAAI-11]



Role of this in modeling

 All modeling 1s abstraction!

* These are the first results that tie game

modeling choices to solution quality 1n the
actual setting



Strategy-based abstraction
[unpublished]




Equilibrium-finding algorithms

Solving the (abstracted) game
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Scalability of (near-)equilibrium finding in 2-person 0-sum games
Manual approaches can only solve games with a handful of nodes

Gilpin, Sandholm

Nodes in game tree & Serensen
Scalable EGT

1,000,000,000,000 \
Zinkevich et al.
100,000,000,000 Counterfactual regret
10,000,000,000
1,000,000,000 / Gilpin, Hoda,
Pena & Sandholm
100,000,000 / Scalable EGT
10,000,000
1,000,000 /
100,000 _ T T T T T T T T T T T T 1
1994 1995 1996 1997 1998 1999 2000 %002 2003 200442005 2006 2007
Koller & Pfeffer Billings et al.
Using sequence form LP (CPLEX interior point method)
& LP (simplex)
Gilpin & Sandholm

LP (CPLEX interior point method)



(Un)scalability of LP solvers

 Rhode Island Hold’em LP
— 91,000,000 rows and columns

— After GameShrink, 1,200,000 rows and columns, and
50,000,000 non-zeros

— CPLEX’s barrier method uses 25 GB RAM and 8 days

e Texas Hold’em poker much larger

— =>would need to use extremely coarse abstraction

 Instead of LP, can we solve the equilibrium-finding
problem in some other way?



Excessive gap technique (EGT)

Best general LP solvers only scale to107..108nodes. Can we do
better?

Usually, gradient-based algorithms have poor O(1/ €%) convergence,
but...

Theorem [Nesterov 05]. Gradient-based algorithm, EGT (for a
class of minmax problems) that finds an g-equilibrium in O(1/ €)
iterations

Theorem [Hoda, Gilpin, Pena & S., Mathematics of Operations
Research 2010]. Nice prox functions can be constructed for
sequential games



Scalable EGT [Gilpin, Hoda, Pefia, S., WINE’07, Math. Of OR 2010]

Main space bottleneck is storing the game’s payoff matrix A
Definition. Kronecker product

{$11Y 35‘1nY_|
X e RM*"™)Y ¢ RP*9, XY= : | € RmPxng

In Rhode Island Hold’em:

Using independence of card deals and betting options, can represent this as

F_ corresponds to sequences of moves in round r that end in a fold

S corresponds to sequences of moves in round 3 that end 1n a showdown
B, encodes card buckets in round r

W encodes win/loss/draw probabilities of the buckets



Memory usage

Instance CPLEX CPLEX Our method
barrier simplex

Losslessly
abstracted
Rhode 25.2 GB >345 GB 0.15GB
Island

Hold’em

Lossily
abstracted

Texas
Hold’em

>458 GB >458 GB 2.49 GB




Memory usage

Instance CPLEX CPLEX Our method
barrier simplex

10k 0.082 GB >(0.051 GB 0.012 GB

160k 2.25 GB >(0.664 GB 0.035 GB

Losslessly 25.2 GB >3.45 GB 0.15 GB

abstracted

RI Hold’em

Lossily >458 GB >458 GB 2.49 GB

abstracted

TX Hold’em




Scalable EGT [Gilpin, Hoda, Peiia, S., WINE 07, Math. Of OR 2010]

» Fewer 1terations

— With Euclidean prox fn, gap was reduced by an order of
magnitude more (at given time allocation) compared to
entropy-based prox fn

— Heuristics that speed things up 1n practice while preserving
theoretical guarantees

 Less conservative shrinking of w, and w,
— Sometimes need to reduce (halve) ©

 Balancing u, and w, periodically

— Often allows reduction in the values
» Gap was reduced by an order of magnitude (for given time allocation)

e Faster iterations

— Parallelization in each of the 3 matrix-vector products in
each iteration => near-linear speedup



Our successes with these approaches
in 2-player Texas Hold’em

 AAAI-08 Computer Poker Competition
— Won Limit bankroll category
— Did best 1n terms of bankroll in No-Limit

 AAAI-10 Computer Poker Competition

— Won bankroll competition in No-Limit



Iterated smoothing
[Gilpin, Pena & S., AAAI-08, Mathematical Programming, to appear]|

* Input: Game and g,

* Initialize strategies x and y arbitrarily
* & < 8ta,rget

* repeat

*e<gap(x,y)/e
* (X, y) < SmoothedGradientDescent(f, €, X, y)

* until gap(x, y) < Etarget

O(l/e) — O(log(1/¢))

Caveat: condition number.
Algorithm applies to all linear programming.
Matches iteration bound of interior point methods, but unlike them, is scalable for memory.



Solving GS3’s four-round model

[|Gilpin, Sandholm & Serensen AAAI’07]

e Computed abstraction with
— 20 buckets in round 1
— 800 buckets in round 2
— 4,800 buckets 1in round 3
— 28,800 buckets in round 4

e Our version of excessive gap technique used 30 GB RAM
— (Simply representing as an LP would require 32 TB)

— QOutputs new, improved solution every 2.5 days
— 4 1.65GHz CPUs: 6 months to gap 0.028 small bets per hand



AAAI Computer Poker Competitions won

e 2008
— G S4 won Limit Texas Hold’em bankroll category

« Played 4-4 in pairwise comparisons. 4™ of 9 in elimination category

— Tartanian did best in terms of bankroll in No-Limit Texas
Hold’em

3™ out of 4 in elimination category

« 2010

— Tartanian4 won Heads-Up No-Limit Texas Hold'em bankroll
category

* 3rd in Heads-Up No-Limit Texas Hold'em bankroll instant run-off
category






Going live with $313 million on
PokerStars.com

* April fools!




GS3 versus Sparbot GS3 versus Vexbot

10000 . . . 15000 . . .
B 2500 | | 12000
=
= 9000
.ﬂ 5000 .
g 6000
5 2500 | ]
g 3000
=

O 1 1 1 0 1 1 ]
0 50000 100000 150000 200000 0 25000 50000 75000 100000
Hands played
GS3 versus GS2 GS3 versus Bluffbot

6000 . : : 6000 . l . :

4500 + 4500 1

3000 3000 .

1500 | 1500 .

O 1 1 ] O 1 | 1 1
4000 8000 12000 16000 0 4000 8000 12000 16000 20000

All wins are statistically significant at the 99.5% level



Comparison to prior poker Al

 Rule-based

— Limited success in even small poker games

« Simulation/Learning

— Do not take multi-agent aspect into account

e Game-theoretic

— Small games
— Manual abstraction [Billings et al. [ICAI-03]
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Purification and thresholding
|Ganzfried, S. & Waugh, AAMAS-12]

e Thresholding: Rounding the probabilities to 0 of those
strategies whose probabilities are less than ¢ (and
rescaling the other probabilities)

— Purification 1s thresholding with ¢=0.5

* Proposition (performance of strategy from abstract
game against equilibrium strategy in actual game):
Any of the 3 approaches (standard approach,
thresholding (for any c), purification) can beat any
other by arbitrarily much depending on the game

— Holds for any equilibrium-finding algorithm for one
approach and any equilibrium-finding algorithm for the other



Experiments on random matrix games
« 2-player 4x4 zero-sum games
» Abstraction that simply 1gnores last row and last column

* Purified eq strategies from abstracted game beat
non-purified eq strategies from abstracted game
at 95% confidence level when played on the unabstracted
game



Experiments on Leduc Hold’em

Strategy Base EV | Purified EV | Improvement
JQ.K-J.QK -119.46 -37.75 81.71
J.QK-full -115.63 -41.83 73.80
J.QK-J.QK -96.66 -27.35 69.31
JQK-1.QK -96.48 -28.76 67.71 ‘ . .
JQ K-full 9930 39.13 60.17 | e
JQ.K-JQK -80.14 -24.50 55.65 — " JOK-QK
JQ.K-JQK -59.97 -8.31 51.66 |
J.Q.K-J.QK -60.28 -13.97 46.31
JQK-J.QK -46.23 -1.86 44.37
JQK-JQK -44.61 -3.85 40.76
full-JQK -43.80 -10.95 32.85
J.QK-J.QK -96.60 -67.42 29.18
J.QK-JQK -95.69 -67.14 28.55
full-J.QK -52.94 -24.55 28.39
J.QK-JQK -717.86 -52.62 25.23
J.Q.K-full -68.10 -46.43 21.66
full-JQ.K -55.52 -36.38 19.14 TR
full-J.Q.K -51.14 -40.32 10.82 A " Threshold
JQK-1.QK -282.94 -279.44 3.50
JQK-full -273.87 -279.99 -6.12
JQK-J.QK -258.29 -279.99 -21.70
J.Q.K-JQK -156.35 -188.00 -31.65
JQK-JQK -386.89 -433.64 -46.75
JQK-JQ.K -274.69 -322.41 -47.72

EV against equilibrium (mb/h)

Table 2: Effects of purification on performance of abstract strate-
gies against an equilibrium opponent in mb/h.




Experiments on no-limit Texas Hold’em

 We submitted bot Y to the AAAI-10 bankroll competition; it won

«  We submitted bot X to the instant run-off competition; finished 3™

TX | 5338 = 109 T08 = %6 — S
BotY | 4754 =107 bb()c)i]b& 1

EEa:

Table 3: Results from a recent AAAI computer poker competition for 2-player no limit Texas Hold’em. Values are in milli big blinds
per hand (from the row player’s perspective) with 95% confidence intervals shown. Bot X and bot Y both use the same abstraction and
equilibrium-finding algorithms. The only difference is that X uses thresholding with a threshold of 0.15, and Y uses purification.




Experiments on limit Texas Hold’em

* Worst-case exploitability

Our 2010 competition bot U. Alberta 2010 competition bot
I'hreshold | Exploitability Exploitability

163591
326.119 243.705

335.048 277.841
Purified

* Too much thresholding => not enough randomization
=> signal too much to the opponent

* Too little thresholding => strategy is overfit to the particular abstraction
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Traditionally two approaches

* Game theory approach (abstractiontequilibrium finding)
— Safe in 2-person 0-sum games

— Doesn’t maximally exploit weaknesses 1n opponent(s)

* Opponent modeling
— Get-taught-and-exploited problem [Sandholm AIJ-07]

iy - ¥
WA W

g

— Needs prohibitively many repetitions to learn in large games
(loses too much during learning)

* Crushed by game theory approach in Texas Hold’em, even with just 2
players and limit betting

« Same tends to be true of no-regret learning algorithms



Let’s hybridize the two approaches
[Ganzfried & Sandholm AAMAS-11]

 Start playing based on game theory approach

* As we learn opponent(s) deviate from equilibrium,
start adjusting our strategy to exploit their weaknesses



Deviation-Based Best Response (DBBR) algorithm

(can be generalized to multi-player non-zero-sum)

Public history

Compute an approximate equilibrium of the gam o

Maintain counters from observing—epponent’s play
throughout the match,

for n =1 to |PH_;| do / Dirichlet prior

Compute posterior action probabilities at n.
Compute posterior bucket probabilities at n.
Compute full model of opponent’s strategy at n.
end for
return Bedt response to the opponent model.

 Many ways to determine opponent’s “best” strategy
that 1s consistent with bucket probabilities
— L, or L, distance to equilibrium strategy
— Custom weight-shifting algorithm



Experiments

 Significantly outperforms game-theory-based base
strategy (GSY) 1n 2-player limit Texas Hold’em against

— trivial opponents
— weak opponents from AAAI computer poker competitions

* Don’t have to turn this on against strong opponents

« Examples of winrate evolution:

Opponent: AlwaysRaise Opponent: Gus2

L




Safe opponent exploitation
[Ganzfried & Sandholm EC-12]

* Definition. Safe strategy achieves at least the
value of the (repeated) game 1n expectation

* Is safe exploitation possible (beyond selecting
among equilibrium strategies)?

-
==




When can opponent be exploited safely?

1+f\1ﬂn+/\A “'7/\“171"7\ AI\“M‘I““"I\A ﬁ"“ﬁﬁ"f\l\'"‘r‘-)

4
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Strategy K is not in the support of an equilibrium for player 2, but is also not a gift.

Definition. We received a gift if the opponent played a strategy such that we
have an equilibrium strategy for which the opponent’s strategy is not a best
response

Theorem. Safe exploitation is possible in a game iff the game has gifts
E.g., rock-paper-scissors doesn’t have gifts
Can determine in polytime whether a game has gifts



EXplOitatiOH algorithms (both for matrix and sequential games)

1.2 Risk what you’ve won so far

— Doesn’t differentiate whether winnings are due to opponent’s mistakes (gifts) or our luck

2 @Risk what you’ve won so far in expectation (over nature’s & own
randomization), i.e., risk the gifts received

— Assuming the opponent plays a nemesis in states where we don’t know
3 @ Best(-seeming) equilibrium strategy
4% Regret minimization between an equilibrium and opponent modeling algorithm
5. @ Regret minimization in the space of equilibria
6. @ Best equilibrium followed by full exploitation
7.8 Best equilibrium and full exploitation when possible
 Theorem. A strategy for a 2-player 0-sum game 1s safe 1ff it never risks
more than the gifts received according to #2
e (Can be used to make any opponent modeling algorithm safe
* No prior (non-eq) opponent exploitation algorithms are safe
* Experiments on Kuhn poker: #2 > #7 > #6 > #3

« Suffices to lower bound opponent’s mistakes
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>) players

(Actually, our abstraction algorithms and opponent
exploitation, presented earlier 1n this talk, apply to
>? players)



Computing Equilibria
in Multiplayer Stochastic Games
of Imperfect Information

Sam Ganzfried and Tuomas Sandholm
Computer Science Department
Carnegie Mellon University



Stochastic games

N = {1,...,n} is finite set of players
S is finite set of states
A(s) = (A(s),..., A (s)), where A.(s) 1s set of actions of player 1 at state s

D, (@) 1s probability we transition from state s to state t when players follow
action vector a

1(s) 1s vector of payoffs when state s 1s reached
Undiscounted vs. discounted

A stochastic game with one agent 1s a Markov Decision Process (MDP)



Stochastic game example: poker
tournaments

Important challenge problem 1n artificial intelligence
and computational game theory

Enormous strategy spaces:
— Two-player limit Texas hold’em game tree has ~10!® nodes

— Two-player no-limit Texas hold’em has ~ 107! nodes
Imperfect information (unlike, e.g., chess)
Many players

— Computing a Nash equilibrium 1n matrix games PPAD-
complete for > 2 players

Poker tournaments are undiscounted stochastic games



Rules of poker

No-limit Texas hold’em

Two private hole cards, five public community
cards

— Only best 5-card hand matters
4 rounds of betting: preflop, flop, turn, river

Preflop investments: small blind (SB) & big
blind (BB)

Actions: fold, call, raise (any amount), go all-in



Poker tournaments

Players pay entry fee (e.g., $10)
Players given some number of chips (e.g., 1500)
A player 1s eliminated when he has no more chips

— The order of elimination determines the payouts
— E.g., winner gets $50, 2" place $30, 3™ place $20
— Blinds escalate quickly

Tournaments are stochastic games: each game state
corresponds to a vector of stack sizes

We study 3-player endgame with fixed high blinds

— Potentially infinite duration



Jam/fold strategies

All-1n or fold preflop: no postflop play

169 strategically distinct starting hands (pocket
pairs, unsuited non-pairs, suited non-pairs)

For any given stack vector, the sizes of the
players’ strategy spaces are 2107, 227169 "and 237169

With two players left, jam/fold strategies are

near-optimal when blinds sufficiently high
[Miltersen/Sorensen AAMAS °07]

— They show that probability of winning 1s
approximately equal to fraction of chips player has



VI-FP: Prior algorithm for equilibrium finding
in multiplayer stochastic games
[Ganziried & Sandholm AAMAS ’08]

 Initialize payotfs V, for all game states using ICM
* Repeat

— Run “mnner loop™:

* Assuming the payoffs V,, compute an approximate equilibrium s, at each
non-terminal state (stack vector) using an extension of smoothed
fictitious play to imperfect information games

— Run “outer loop™:

» Compute the values V, _, at all non-terminal states by using the
probabilities from s, and values from 7V,

 until outer loop converges



Drawbacks of VI-FP

* Neither the mnner nor outer loop guaranteed to
converge

 Possible for outer-loop to converge to a non-
equilibrium
— Initialize the values to all three players of stack
vectors with all three players remaining to $100

— Initialize the stack vectors with only two players
remaining according to ICM

— Then everyone will fold (except the short stack 1f he
is all-in), payoffs will be $100 to everyone, and the
algorithm will converge 1n one iteration to a non-
equilibrium profile



Ex post check

Determine how much each player can gain by
deviating from strategy profile s* computed by VI-FP

For each player, construct MDP M induced by the
components of s™ for the other players

Solve M using variant of policy iteration for our setting
(next slide)

Look at difference between the payoff of optimal
policy in M and payoff under s°

Converged 1n just two 1iterations of policy iteration.

No player can gain more than $0.049 (Iess than 0.5%
of tournament entry fee) by deviating from s’



Optimal MDP solving in our setting

e Our setting:
— Objective 1s expected total reward
— For all states s and policies p, the value of s under p is finite

— For each state s there exists at least one available action a
that gives nonnegative reward

* Value 1iteration: must mitialize pessimistically

* Policy iteration:
— Choose initial policy with nonnegative total reward
— Choose minimal non-negative solution to system of equations in
evaluation step (if the{URSIORDIIHEIE)

—Ifte ation dhosn 1or sore e n e previos i s il
among the optimal actions, select it again



New algorithms for equilibrium
finding in multiplayer stochastic games



One algorithm from [Ganzfried & S., AAMAS-08, IJCAI-09]

Repeat until e-equilibrium
At each state
Run fictitious play until regret < thres,

given values of possible future states

Adjust values of all states (using modified

First algorithms for g-equilibrium in
large stochastic games for small ¢

Proposition. If outer loop converges,
the strategy profile is an equilibrium

Found &-equilibrium for tiny € in

policy iteration) in light of the new payoffs jam/fold strategies in 3-player No-

obtained

Limit Texas Hold’em tournament
(largest multiplayer game solved to
small €7)

Algorithms converged to an ¢-
equilibrium consistently and quickly
despite not being guaranteed to do so
-- new convergence guarantees?



PI-FP: Policy Iteration as outer loop

« Similar to VI-FP except value updates follow the evaluation step of
policy iteration in our setting

Algorithm VI-FP(~,4) Algorithm PI-FP(~,d)
V" = initialize Values()
diff = o
1 =0
while diff = & do while diff > 4 do
i—i+1 i=14+1
regret = oc lL,lT' rcl_ - \ . ] _
S_' — inili'lli/L‘gll"]lL‘l'iL‘\'(v ) A_S = ll]lllilll/L‘SllillL‘glL‘\( )
-y o = while regret > ~ do
while regret > v do i
. S* = fictPlay()
S = fictPlay() - iy
R Q) regret = maxRegret(S*)
T — v OO .
l';élj;{l maxkegret(.5) end while
e_!l‘( WRLE i il o M?* = createTransitionMatrix(.S*)
‘". = l—'UlNLf“' \'vvulvl'lcs("‘* 1 ) V't = evaluatePolicy(M?)
dift = max Dev(V*, V1) diff = maxDev(V:. Vi T)
end while end while
return 5 return S°

* Proposition: if the outer loop of PI-FP converges, then the final strategy profile
1s an equilibrium
* Can recover from poor initialization since it uses values resulting from
evaluating the policy, not the values from the initialization

V' = initialize Values()
diff = o
1 =0




FP-MDP: switching the roles of
fictitious play and MDP-solving

Again we prefer policy iteration to value iteration because it
allows us to get a good warm start more easily

Use policy iteration to perform best response calculation

Use fictitious play to combine new best response with previous
strategy

Like VI-FP, FP-MDP can recover from poor 1nitializations and
can provably never converge to a non-equilibrium

Algorithm FP-MDP

SY = initializeStrategies()

. = ()

while termination criterton not met do
M?* = constructMDP(S*)

S’ = solveMDP(M?)
vi+1 1 Q1 | el
ST =gt + 5o
1=14+1

end while

return S°




FTPL-MDP: a polynomial-time
algorithm for regret minimization

Similar to FP-MDP
Polynomial-time LP algorithm for MDP-solving in inner loop

Follow-the-perturbed-leader algorithm for outer loop: like
fictitious play, but add random noise before computing best
response [Kalai & Vempala, JCSS ’05]

Minimizes external regret in repeated game
Algorithm 6 FTPL-MDP
SY = initialize Strategies()
i =0
while termination criterion not met do
S* = randomPerturbation(S")
M* = constructMDP(S?)

S’ = solveMDP-LP(M?)
~i+l i Qi 1 o
.._S . — m,b + '+_1-S
=14+ 1

end while

return S°



Experimental Results

Each data point corresponds to an outer loop iteration
Target accuracy: $0.05 = 0.1% of first place payoff
PI-FP first to reach target accuracy, followed by VI-FP
FP-MDP never reached target accuracy

—VI-FFP
- - —PI-FP
----- FP-MDP

400 600 800
Running time (minutes)



Conclusions and future work

Presented first algorithm for provably computing an &-
equilibrium of large stochastic games for small €

First provable near-equilibrium strategies for jam/fold
poker tournament with more than 2 players

Algorithms converged to an e-equilibrium consistently
and quickly despite not being guaranteed to do so

Hopefully can lead to investigation of more general
settings under which convergence properties can be
proven

— Fictitious play converged consistently despite not being
guaranteed to do so

— Quter loop of VI-FP converged despite not being guaranteed
to do so

— Maybe value iteration for solving MDP’s can be proven to
converge for some optimal initializations 1n this setting



Games with >2 players

e Matrix games:
— 2-player zero-sum: solvable in polytime

— >2 players zero-sum: PPAD-complete [Chen &
Deng, 2006]

— No previously known algorithms scale beyond tiny
games with >2 players

» Stochastic games (undiscounted):

— 2-player zero-sum: Nash equilibria exist

— 3-player zero-sum: Existence of Nash equilibria still
open



Poker tournaments

Players buy in with cash (e.g., $10) and are given chips (e.g.,
1500) that have no monetary value

Lose all you chips => eliminated from tournament

Payoffs depend on finishing order (e.g., $50 for 15, $30 for 29,
$20 for 319)

Computational 1ssues:
— >2 players

— Tournaments are stochastic games (potentially infinite

duration): each game state 1s a vector of stack sizes (and also
encodes who has the button)



Jam/fold strategies

Jam/fold strategy: in the first betting round, go all-in or fold

In 2-player poker tournaments, when blinds become high
compared to stacks, provably near-optimal to play jam/fold
strategies [Miltersen & Serensen 2007]

Solving a 3-player tournament [Ganzfried & Sandholm AAMAS’2008]
Compute an approximate equilibrium in jam/fold strategies

Strategy spaces 2%, 2
Algorithm combines

W

2169, 3

W

2169

 an extension of fictitious play to imperfect-information games
« with a variant of value iteration

Our solution challenges Independent Chip Model (ICM) accepted by

poker community

Unlike 1n 2-player case, tournament and cash game strategies differ

substantially



Our first algorithm

« Initialize payoffs for all game states using heuristic from poker
community (ICM)

* Repeat until “outer loop” converges

— “Inner loop”:

« Assuming current payoffs, compute an approximate equilibrium at each state using
fictitious play

» Can be done efficiently by iterating over each player’s information sets
— “Outer loop™:
» Update the values with the values obtained by new strategy profile

e Similar to value iteration in MDPs



Ex-post check

* Our algorithm is not guaranteed to converge, and can
converge to a non-equilibrium (we constructed example)

 We developed an ex-post check to verify how much any
player could gain by deviating [Ganzfried & Sandholm draft]

— Constructs an undiscounted MDP from the strategy profile,
and solves 1t using variant of policy iteration

— Showed that no player could gain more than 0.1% of highest
possible payoff by deviating from our profile



NEW algO l‘itth |Ganzfried & Sandholm draft]

* Developed

3 new algorithms for solving multiplayer

stochastic games of imperfect information

— Unlike first algorithm, 1f these algorithms converge, they
converge to an equilibrium

— First known algorithms with this guarantee

— They also

* The algort]

perform competitively with the first algorithm

hms combine fictitious play variant from

first algorit

hm with techniques for solving

undiscounted MDPs (1.e., maximizing expected total

reward)



Best one of the new algorithms

 Initialize payoffs using ICM as before
* Repeat until “outer loop” converges

—  “Inner loop”:

* Assuming current payoffs, compute an approximate equilibrium at each state
using our variant of fictitious play as before

— “Outer loop”: update the values with the values obtained by new strategy profile
S, using a modified version of policy iteration:
* Create the MDP M induced by others’ strategies in S, (and initialize using
own strategy in S,):
* Run modified policy iteration on M

— In the matrix inversion step, always choose the minimal solution

— If there are multiple optimal actions at a state, prefer the action chosen last period if possible



Second new algorithm

Interchanging roles of fictitious play and policy iteration:
— Policy iteration used as inner loop to compute best response

— Fictitious play used as outer loop to combine BR with old strategy

Initialize strategies using ICM
Inner loop:

— Create MDP M induced from strategy profile

— Solve M using policy iteration variant (from previous slide)
Outer loop:

— Combine optimal policy of M with previous strategy using
fictitious play updating rule



Third new algorithm

Using value 1teration variant as the inner loop

Again we use MDP solving as inner loop and fictitious
play as outer loop

Same as previous algorithm except different inner loop

New 1nner loop:

— Value iteration, but make sure 1nitializations are pessimistic
(underestimates of optimal values in the MDP)

— Pessimistic initialization can be accomplished by matrix

inversion using outer loop strategy as initialization in
induced MDP



Outline

Abstraction

Equilibrium finding in 2-person 0-sum games
Strategy purification

Opponent exploitation

Multiplayer stochastic games

Leveraging qualitative models



Computing Equilibria
by Incorporating Qualitative Models

Sam Ganzfried and Tuomas Sandholm
Computer Science Department
Carnegie Mellon University



Introduction

« Key idea: often it is much easier to come up with some aspects
of an equilibrium than to actually compute one

« E.g., threshold strategies are optimal in many settings:
— Sequences of take-it-or-leave-it offers
— Auctions

— Partnerships/contracts
— Poker...

 We develop an algorithm for computing an equilibrium in
imperfect-information games given a qualitative model of the
structure of equilibrium strategies

— Applies to both infinite and finite games, with 2 or more players



Continuous (i.e., infinite) games

Games with infinite number of pure strategies

— E.g., strategies correspond to amount of time,
money, space (such as computational billiards)

N 1s finite set of players

S. 1s (a potentially infinite) pure strategy space of
player 1

u.: S — R 1s utility function of player 1

Theorem [Fudenberg/Levine]: If strategy spaces are
nonempty compact subsets of a metric space and

payoff functions are continuous, then there exists a
Nash equilibrium



Poker example

Two players given private signals X, X, independently
and uniformly at random from [0,1]

Ifp

P+1, while ot

layer 2 fol

ayer 2 cal

Pot initially has size P
Player 1 can bet or check
layer 1 checks, game 1s over and lower signal wins

layer 1 bets, player 2 can call or fold

ds, player 1 wins
lls, player with lower private signal wins

her player loses 1



Example cont’d

Strategy space of player 1: Set of measurable functions
from [0,1] to {bet, check}

— Similar for player 2

Proposition. The strategy spaces are not compact

Proposition. All strategies surviving iterated
dominance must follow a specific threshold structure
(on next slide)

New strategy spaces are compact subsets of R
Proposition. The utility functions are continuous

Game can be solved by extremely simple procedure...



Example cont’d

Worst hfmd

CHECK

0
Best hand P1-Actions P2-Actions




Setting:
Continuous Bayesian games

|Ganzfried & Sandholm AAMAS-10 & newer draft]

 Finite set of players

* For each player 1:

— X. 1s space of private signals (compact subset of R or discrete
finite set)

— C. 1s finite action space
— F.: X, — [0,1] 1s a piece-wise linear CDF of private signal

— u.: C x X — R 1s continuous, measurable, type-order-based utility
function: utilities depend on the actions taken and order of
agents’ private signals (but not on the private signals themselves)



Qualitative models

d

b

a

BLUFF-FOLD

CHECK-FOLD

FOLD/BLUFF
i
FOLD/CHECK

h
RAISE-BLUFF/CHECK

CHECK-CALL

BET-FOLD

g
CALL/CHECK
f

CALL/BET

RAISE/BET

P1-Actions

P2-Actions

d

b

a

BLUFF-FOLD

CHECK-FOLD

FOLD/BLUFF
i

FOLD/CHECK

h
RAISE-BLUFF/CHECK

CHECK-CALL

BET-FOLD

8
CALL/CHECK

f

CALL/BET

RAISE/BET

CHECK-FOLD

CHECK-CALL

P1-Actions

Analogy to air combat

P2-Actions

P1-Actions

Qualitative models can enable proving existence of equilibrium

P2-Actions

e Theorem. Given F';, F’,, and a qualitative model, we have a complete
mixed-integer linear feasibility program for finding an equilibrium




Parametric models

Way of dividing up signal space qualitatively into “action
regions”

B O

T, 1s number of regions of player 1

Q. 1s sequence of actions of player 1

< 1s partial ordering of the region thresholds across agents

We saw that forcing strategies to conform to a parametric
model can allow us to guarantee existence of an
equilibrium and to compute one, when neither could be
accomplished by prior techniques



Computing an equilibrium given a
parametric model

Parametric models => can prove existence of equilibrium
Mixed-integer linear feasibility program
Let {t.} denote union of sets of thresholds
Real-valued variables: x. corresponding to F,(t.) and y; to F,(t)
0-1 variables: z;; = 1 implies j-1 <t; <
— For this slide we assume that signals range 1, 2, ..., k, but we have a
MILFP for continuous signals also
— Easy post-processor to get mixed strategies in case where individual
types have probability mass
Several types of constraints:

— Indifference, threshold ordering, consistency
Theorem. Given a candidate parametric model P, our algorithm

outputs an equilibrium consistent with P if one exists. Otherwise
1t returns “no solution™



Works also for

e >2 players

— Nonlinear indifference constraints => approximate
by piecewise linear

* Theorem & experiments that tie #pieces to €

e Gives an algorithm for solving multiplayer games without
qualitative models too

* Multiple qualitative models (with a common
refinement) only some of which are correct

* Dependent types



Once we obtain the z; and y; by solving the MILFP, we must map them into mixed strategies
of the game. Suppose player 1 is dealt private signal z € [1,72] and consider the interval I =
[Fi(z — 1), Fi(z)]. Now define the intervals J; = [z;_1, z;] where we define z_; = 0. Let O,

denote the overlap between sets I and .J;. Then player 1 will play the strategy defined by region 7
with probability —<=5-. The strategy for player 2 is determined similarly, using the y; and F5.




Multiple players

With more than 2 players, indifference constraints
become nonlinear

We can compute an e-equilibrium by approximating
products of variables using linear constraints

— We provide a formula for the number of breakpoints per
piecewise linear curve needed as a function of €
Our algorithm uses a MILFP that 1s polynomial 1n
#players
Can apply our technique to develop a MIP formulation
for finding €-equilibria in multiplayer normal and
extensive-form games without qualitative models



Multiple parametric models

e Often have several models and know at least
one 1S correct, but not sure which

* We give an algorithm for finding an equilibrium
given several parametric models that have a
common refinement

— Some of the models can be incorrect

— If none of the models are correct, our algorithm says
SO



Experiments

* Games for which algs didn’t exist become
solvable

— Multi-player games
* Previously solvable games solvable faster

— Continuous approximation sometimes a better
alternative than abstraction (e.g., n-card Kuhn poker)

* Works 1n the large

— Improved performance of GS4 when used for last
betting round



Experiments



Texas Hold’em experiments

* Once river card dealt, no more information
revealed

* Use GS4 and Bayes’ rule to generate distribution
over possible hands both players could have

 We developed 3 parametric models that have a
common refinement (for 1-raise-per-player
version)

— All three turned out necessary



Texas Hold’em experiments cont’d

 We ran 1t against top 5 entrants from 2008
AAAI Computer Poker Competition

» Performed better than GS4 against 4

* Beat GS4 by 0.031 (£ 0.011) small bets/hand

* Averaged 0.25 seconds/hand overall



Multiplayer experiments

» Simplified 3-player poker game

* Rapid convergence to g-equilibrium for
several CDFs

» Obtained € = 0.01 using 5 breakpoints
— Theoretical bound € = 25



Approximating large finite games
with continuous games

 Traditional approach: abstraction

* Suppose private signals 1n {1,..,n} 1n first poker
example

— Runtime of computing equilibrium grows large as n
Increases

— Runtime of computing x_ remains the same

* QOur approach can require much lower runtime to
obtain given level of exploitability



Approximating large finite games
with continuous games

« Experiment on Generalized Kuhn poker [Kuhn *50]

* Compared value of game vs. payoff of x_ against its
nemesis

« Agree to within .0001 for 250 signals

* Traditional approach required very fine abstraction to
obtain such low exploitability



Conclusions

Qualitative models can significantly help equilibrium finding
— Solving classes of games for which no prior algorithms exist
— Speedup
We develop an algorithm for computing an equilibrium given
qualitative models of the structure of equilibrium strategies
— Sound and complete
— Some of the models can be incorrect

— If none are correct, our algorithm says so

Applies to both infinite and large finite games
— And to dependent type distributions

Experiments show practicality
— Endgames of 2-player Texas Hold’em
— Multiplayer games

— Continuous approximation superior to abstraction in some games



Future research

 How to generate parametric models? Can this be
automated?

 (Can this infinite projection approach compete with
abstraction for large real-world games of interest?

 In the case of multiple parametric models, can
correctness of our algorithm be proven without
assuming a common refinement?



Summary

Domain-independent techniques

Automated lossless abstraction
— Exactly solved game with 3.1 billion nodes
Automated lossy abstraction
— k-means clustering & integer programming
— Potential-aware
— Phase-based abstraction & real-time endgame solving
— Action abstraction & reverse models
— First lossy game abstraction algorithms with bounds
— Strategy-based abstraction

Equilibrium-finding for 2-person 0-sum games
— O(1/e?) -> 0O(1/e) > O(log(l/e))
— Can solve games with over 10'* nodes to small €
Purification and thresholding help — surprising
Scalable practical online opponent exploitation algorithm
Fully characterized safe exploitation & provided algorithms
Solved large multiplayer stochastic games
Leveraging qualitative models => existence, computability, speed



Summary

Domain-independent techniques
Game abstraction

— Automated lossless abstraction -- exactly solved game with 3.1 billion nodes

— Automated lossy abstraction with bounds
» For action and state abstraction
* Also for modeling

Equilibrium-finding for 2-person 0-sum games
— O0(1/¢?) -> O(l/e) -> O(log(1/¢))
— Can solve games with over 10'* nodes to small ¢

Purification and thresholding help — surprising

Scalable practical online opponent exploitation algorithm

Fully characterized safe exploitation & provided algorithms
Solved large multiplayer stochastic games

Leveraging qualitative models => existence, computability, speed



Did not discuss...

 DBs, data structures, ...



Some of our current & future research

Lossy abstraction with bounds
— Extensive form
— With structure
— With generated abstract states and actions

Equilibrium-finding algorithms for 2-person 0-sum games
— Can CFR be parallelized or fast EGT made to work with imperfect recall?

— Fast implementations of our O(log(1/¢)) algorithm and understanding how #iterations depends
on matrix condition number

— Making interior-point methods usable in terms of memory

New game classes where our algs for stochastic multiplayer games (and their
components) are guaranteed to converge

Other solution concepts: sequential equilibrium, coalitional deviations,...

Actions beyond the ones discussed in the rules:

— Explicit information-revelation actions

— Timing, ...
Understanding exploration vs exploitation vs safety
Theoretical understanding of thresholding and purification

Using & adapting these techniques to other games, esp. (cyber)security



