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Most real-world games are incomplete-information 
games with sequential (& simultaneous) moves 

•  Negotiation 
•  Multi-stage auctions (e.g., FCC ascending, combinatorial auctions) 
•  Sequential auctions of multiple items 
•  A robot facing adversaries in uncertain, stochastic envt 
•  Card games, e.g., poker 
•  Currency attacks  
•  International (over-)fishing 
•  Political campaigns (e.g., TV spending in each region) 
•  Ownership games (polar regions, moons, planets) 
•  Allocating (and timing) troops/armaments to locations 

–  US allocating troops in Afghanistan & Iraq 
–  Military spending games, e.g., space vs ocean 
–  Airport security, air marshals, coast guard, rail [joint w Tambe] 
–  Cybersecurity ... 



Sequential incomplete-information games 

•  Challenges 
–  Imperfect information 
– Risk assessment and management 
– Speculation and counter-speculation:  

Interpreting signals and avoiding signaling too much 

•  Techniques for complete-info games don’t apply 

•  Techniques I will discuss are domain-independent 



Game theory 

•  Definition.  Strategy is a mapping from known 
history to action 

•  In multi-agent systems, an agent’s outcome 
depends on the actions of others’ 
=>Agent’s optimal strategy depends on others’ strategies 

•  Definition. A (Bayes) Nash equilibrium is a 
strategy (and beliefs) for each agent such that no 
agent benefits from using a different strategy 



Simple example 
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1/3 

1/3 

1/3 
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Player 1 

Player 2 

0, 0 -1, 1 1, -1 

1, -1 0, 0 -1, 1 

-1, 1 1, -1 0, 0 



Basics about Nash equilibria 
•  In 2-person 0-sum games,  

–  Nash equilibria are minimax equilibria => no equilibrium selection problem 
–  If opponent plays a non-equilibrium strategy, that only helps me 

•  Any finite sequential game (satisfying perfect recall) can be 
converted into a matrix game 
–  Exponential blowup in #strategies 

•  Sequence form: More compact representation based on sequences 
of moves rather than pure strategies [Romanovskii 62, Koller & 
Megiddo 92, von Stengel 96] 
–  2-person 0-sum games with perfect recall can be solved in time polynomial 

in size of game tree using LP 
–  Cannot solve Rhode Island Hold’em (3.1 billion nodes) or Texas Hold’em 

(1018 nodes) 



Extensive form representation 

•  Players I = {0, 1, …, n} 
•  Tree (V,E) 

•  Terminals Z ⊆ V 
•  Controlling player P: V \ Z    H 
•  Information sets H={H0,…, Hn} 
•  Actions A = {A0, …, An} 
•  Payoffs u : Z    Rn  
•  Chance probabilities  p 

Perfect recall assumption: Players never forget information 

Game from: Bernhard von Stengel. Efficient Computation of Behavior 
Strategies. In Games and Economic Behavior 14:220-246, 1996. 



Computing equilibria via normal form 

•  Normal form exponential, in worst case and 
in practice (e.g. poker) 



Sequence form  
[Romanovskii 62, re-invented in English-speaking literature: Koller & Megiddo 92, von Stengel 96] 

•  Instead of a move for every information set, 
consider choices necessary to reach each 
information set and each leaf 

•  These choices are sequences and constitute the 
pure strategies in the sequence form 

S1 = {{}, l, r, L, R} 
S2 = {{}, c, d} 



Realization plans 

•  Players’ strategies are specified as realization 
plans over sequences: 

•  Prop. Realization plans are equivalent to behavior 
strategies. 



Computing equilibria via sequence form 
•  Players 1 and 2 have realization plans x and y 
•  Realization constraint matrices E and F 

specify constraints on realizations 

{}    l      r     L     R 

{}    c     d 
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 v 
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 u 



Computing equilibria via sequence form 
•  Payoffs for player 1 and 2 are:               and 
     for suitable matrices A and B 
•  Creating payoff matrix: 

–  Initialize each entry to 0 
–  For each leaf, there is a (unique) pair of sequences corresponding 

to an entry in the payoff matrix 
–  Weight the entry by the product of chance probabilities along the 

path from the root to the leaf 

{}        c         d 
{} 
 l 
 r 
 L 
 R 



Computing equilibria via sequence form 
Primal Dual 

Holding x fixed, 
compute best response 

Holding y fixed, 
compute best response 

Primal Dual 

Now, assume 0-sum. The latter primal and dual must have same optimal value eTp. 
That is the amount that player 2, if he plays y,  has to give to player 1, so player 2 tries to 
minimize it: 



Computing equilibria via sequence form:  
An example 

min p1 
subject to 

  x1:                  p1 - p2 - p3 >= 0 
  x2: 0y1 +                 p2      >= 0 
  x3:      -y2 +  y3      + p2      >= 0 
  x4:      2y2 - 4y3           + p3 >= 0 
  x5: -y1                      + p3 >= 0 

  q1: -y1           = -1 
  q2:  y1 - y2 - y3 =  0 

bounds 
  y1 >= 0  y2 >= 0  y3 >= 0 
  p1 Free  p2 Free  p3 Free 



Sequence form summary 

•  Polytime algorithm for finding a Nash equilibrium in 2-
player zero-sum games 

•  Polysize linear complementarity problem (LCP) for 
computing Nash equilibria in 2-player general-sum games 

•  Major shortcomings: 
–  Not well understood when more than two players 
–  Sometimes, polynomial is still slow and or large (e.g. poker)… 



Games and information 

•  Games can be differentiated based on the information 
available to the players 
–  Perfect information games: players have complete 

knowledge about the state of the world 
•  Examples: Chess, Go, Checkers 

–  Imperfect information games: players face uncertainty about 
the state of the world 

•  Examples: 
–  A robot facing adversaries in an uncertain, stochastic environment 
–  Almost any economic situation in which the other participants possess 

private information (e.g. valuations, quality information)  
–  Almost any card game in which the other players’ cards are hidden 

•  This class of games presents several challenges for AI 
–  Imperfect information 
–  Risk assessment and management 
–  Speculation and counter-speculation 



Poker 
•  Recognized challenge problem in AI 

–  Hidden information (other players’ cards) 
–  Uncertainty about future events 
–  Deceptive strategies needed in a good player 

•  Very large game trees 
•  Texas Hold’em is the most popular variant 

On NBC: 



Outline 
•  Abstraction 
•  Equilibrium finding in 2-person 0-sum games 
•  Strategy purification 
•  Opponent exploitation 
•  Multiplayer stochastic games 
•  Leveraging qualitative models 
 
 



Other methods for finding equilibria 

•  Fictitious play 
–  Convergence only guaranteed for zero-sum games 

•  Tabu best-response search [Sureka & Wurman 2005] 
–  Finds pure strategy equilibria 
–  Does not require game to be completely specified 

•  Lemke-Howson algorithm 
–  Pivoting algorithm for finding one Nash equilibrium 
–  Very similar to the simplex algorithm for LP 

•  Support enumeration methods 
–  Porter-Nudelman-Shoham [2004] 
–  Mixed-Integer Programming Nash [Sandholm et al 2005] 



Our approach 

Automated abstraction + equilibrium finding 



Our approach [Gilpin & S., EC’06, JACM’07…] 
Now used by all competitive Texas Hold’em programs 

Nash equilibrium Nash equilibrium 

Original game 

Abstracted game 

Automated abstraction 

Custom  
equilibrium-finding  
algorithm 

Reverse model 



Outline 
•  Automated abstraction 

–  Lossless 
–  Lossy 

•  New equilibrium-finding algorithms 



Outline 
•  Automated abstraction 

–  Lossless 
–  Lossy 

•  New equilibrium-finding algorithms 
•  Stochastic games with >2 players, e.g., poker tournaments 
•  Current & future research 



Outline 
•  Lossless automated abstraction 

–  Optimal strategies for Rhode Island Hold’em 
•  Approximate automated abstraction 

–  “Greedy” (GS1) 
–  Clustering and integer programming (GS2) 
–  Potential-aware (GS3) 

•  Equilibrium-finding algorithms 
–  Adapting Nesterov’s excessive gap technique to sequential games 
–  Making it scalable 
–  New related algorithm with exponentially better speed 

•  Future research 
•  Thoughts on application games of national importance 



Our approach 

•  We introduce automated abstraction techniques that 
result in smaller, (nearly) equivalent games 
–  For the optimal version of our algorithm: 

•  We prove that a Nash equilibrium in the smaller game corresponds to 
a Nash equilibrium in the original game 

•  The smaller game can then be solved using standard techniques 
–  For the approximate versions of our algorithm: 

•  We demonstrate their effectiveness by applying the algorithm to 
Texas Hold’em poker and comparing with other poker-playing 
programs 

•  We also improve the equilibrium-finding algorithms 
themselves 



Game with ordered signals 
(a.k.a. ordered game) 

1.  Players I = {1,…,n} 
2.  Stage games G = G1,…,Gr 

3.  Player label L 
4.  Game-ending nodes ω 
5.  Signal alphabet Θ 
6.  Signal quantities κ = κ1,…,κr and γ = γ1,…,γr 

7.  Signal probability distribution p 
8.  Partial ordering ≥ of subsets of Θ 
9.  Utility function u (increasing in private signals) 

I = {1,2} 

Θ = {2♠,…,A♦} 
κ = (0,1,1) 
γ = (1,0,0) 

Uniform 

Hand rank 



Reasons to abstract 

•  Scalability (computation speed & memory) 
•  Game may be so complicated that can’t model 

without abstraction 
•  Existence of equilibrium, or solving algorithm, 

may require a certain kind of game, e.g., finite 



Lossless abstraction 
[Gilpin & S., EC’06, JACM’07] 



Information filters 

•  Observation: We can make games smaller by 
filtering the information a player receives 

•  Instead of observing a specific signal exactly, a 
player instead observes a filtered set of signals 
– E.g. receiving signal {A♠,A♣,A♥,A♦} instead of A♥ 



Signal tree 

•  Each edge corresponds to the revelation of some 
signal by nature to at least one player 

•  Our lossless abstraction algorithm operates on it 
– Don’t load full game into memory 



Isomorphic relation 

•  Captures the notion of strategic symmetry between nodes 
•  Defined recursively: 

–  Two leaves in signal tree are isomorphic if for each action 
history in the game, the payoff vectors (one payoff per player) 
are the same 

–  Two internal nodes in signal tree are isomorphic if they are 
siblings and there is a bijection between their children such that 
only ordered game isomorphic nodes are matched 

•  We compute this relationship for all nodes using a DP 
plus custom perfect matching in a bipartite graph 



Abstraction transformation 

•  Merges two isomorphic nodes 

•  Theorem.  If a strategy profile is a Nash equilibrium 
in the abstracted (smaller) game, then its 
interpretation in the original game is a Nash 
equilibrium 

•  Assumptions 
–  Observable player actions 
–  Players’ utility functions rank the signals in the same order 









GameShrink algorithm 

•  Bottom-up pass: Run DP to mark isomorphic pairs of 
nodes in signal tree 

•  Top-down pass: Starting from top of signal tree, perform 
the transformation where applicable 

•  Theorem.  Conducts all these transformations 
–  Õ(n2), where n is #nodes in signal tree 
–  Usually highly sublinear in game tree size 



Algorithmic techniques for making 
GameShrink faster 

•  Union-Find data structure for efficient representation of 
the information filter (unioning finer signals into coarser 
signals) 
–  Linear memory and almost linear time 

•  Eliminate some perfect matching computations using 
easy-to-check necessary conditions 
–  Compact histogram databases for storing win/loss frequencies to 

speed up the checks 



Solved Rhode Island Hold’em poker 

•  AI challenge problem [Shi & Littman 01] 
–  3.1 billion nodes in game tree 

•  Without abstraction, LP has 91,224,226 rows and 
columns => unsolvable 

•  GameShrink runs in one second 
•  After that, LP has 1,237,238 rows and columns 
•  Solved the LP 

–  CPLEX barrier method took 8 days & 25 GB RAM 
•  Exact Nash equilibrium 
•  Largest incomplete-info game solved   

by then by over 4 orders of magnitude 



Lossy abstraction 



Prior game abstractions  
(automated or manual) 

•  Lossless [Gilpin & Sandholm, EC’06, JACM’07] 

•  Lossy without bound [Shi and Littman CG-02; Billings et al. 
IJCAI-03; Gilpin & Sandholm, AAAI-06, -08, AAMAS-07; 
Gilpin, Sandholm & Soerensen AAAI-07, AAMAS-08; Zinkevich 
et al. NIPS-07; Waugh et al. AAMAS-09, SARA-09;…] 

–  Exploitability can sometimes be checked ex post [Johanson et al. IJCAI-11] 



We developed many lossy 
abstraction algorithms 

•  Scalable to large n-player, general-sum games, e.g., Texas Hold’em 
•  Gilpin, A. and Sandholm, T. 2008. 

Expectation-Based Versus Potential-Aware Automated Abstraction in 
Imperfect Information Games: An Experimental Comparison Using Poker. 
AAAI.  

•  Gilpin, A., Sandholm, T., Troels Bjerre Sørensen 2008. 
A heads-up no-limit Texas Hold'em poker player: Discretized betting models 
and automatically generated equilibrium-finding programs. AAMAS.  

•  Gilpin, A., Sandholm, T., Soerensen, T. 2007. 
Potential-Aware Automated Abstraction of Sequential Games, and Holistic 
Equilibrium Analysis of Texas Hold'em Poker. AAAI.  

•  Gilpin, A., Sandholm, T. 2007. 
Better automated abstraction techniques for imperfect information games, 
with application to Texas Hold'em poker. In AAMAS.  

•  Gilpin, A., Sandholm, T. 2006. 
A competitive Texas Hold'em Poker player via automated abstraction and 
real-time equilibrium computation. AAAI.  



Texas Hold’em poker 



















Texas Hold’em poker 

•  2-player Limit Texas 
Hold’em has ~1018 
leaves in game tree 

•  Losslessly abstracted 
game too big to solve 
=> abstract more     
=> lossy 

Nature deals 2 cards to each player 

Nature deals 3 shared cards 

Nature deals 1 shared card 

Nature deals 1 shared card 

Round of betting 

Round of betting 

Round of betting 

Round of betting 



GS1 [Gilpin & S., AAAI’06] 

•  First Texas Hold’em program to use automated abstraction 
–  Lossy version of Gameshrink 

•  Instead of requiring perfect matching of children, require a matching with 
a penalty below threshold 

•  Abstracted game’s LP solved by CPLEX 
•  Phase I (rounds 1 & 2) LP solved offline 

–  Assuming rollout for the rest of the game 

•  Phase II (rounds 3 & 4) LP solved in real time 
–  Starting with hand probabilities that are updated using Bayes rule 

based on Phase I equilibrium and observations 



GS1 

1/2005 - 1/2006 



GS1 

•  We split the 4 betting rounds into two phases 
– Phase I (first 2 rounds) solved offline using 

approximate version of GameShrink followed by LP 
•  Assuming rollout 

– Phase II (last 2 rounds): 
•  abstractions computed offline 

–  betting history doesn’t matter & suit isomorphisms 
•  real-time equilibrium computation using anytime LP 

–  updated hand probabilities from Phase I equilibrium (using 
betting histories and community card history):  

–  si is player i’s strategy, h is an information set 



Some additional techniques used 

•  Precompute several databases 
•  Conditional choice of primal vs. dual simplex 

for real-time equilibrium computation 
– Achieve anytime capability for the player that is us 

•  Dealing with running off the equilibrium path 



GS1 results 

•  Sparbot: Game-theory-based player, manual abstraction 
•  Vexbot: Opponent modeling, miximax search with statistical 

sampling 
•  GS1 performs well, despite using very little domain-knowledge 

and no adaptive techniques 
–  No statistical significance 



GS2 [Gilpin & S., AAMAS’07] 
•  Original GameShrink is “greedy” when used as an 

approximation algorithm => lopsided abstractions  
•  GS2 instead finds abstraction via clustering & IP 

–  Round by round starting from round 1 
–  Operates in signal tree of one player’s & common signals at a 

time 
•  Other ideas in GS2: 

–   Overlapping phases so Phase I would be less myopic 
•  Phase I = round 1, 2, and 3;    Phase II = rounds 3 and 4 

–  Instead of assuming rollout at leaves of Phase I (as was done 
in SparBot and GS1), use statistics to get a more accurate 
estimate of how play will go 



GS2 

2/2006 – 7/2006 
[Gilpin & S., AAMAS’07] 



Optimized approximate abstractions 
•  Original version of GameShrink is “greedy” when used as an 

approximation algorithm => lopsided abstractions  

•  GS2 instead finds an abstraction via clustering & IP 

•  For round 1 in signal tree, use 1D k-means clustering 
–  Similarity metric is win probability (ties count as half a win) 

•  For each round 2..3 of signal tree: 
–  For each group i of hands (children of a parent at round – 1): 

•  use 1D k-means clustering to split group i into ki abstract “states” 
•  for each value of ki, compute expected error (considering hand probs) 

–  IP decides how many children different parents (from round – 1) may have: 
Decide ki’s to minimize total expected error, subject to ∑i ki ≤ Kround  

•  Kround is set based on acceptable size of abstracted game 
•  Solving this IP is fast in practice 



Phase I (first three rounds) 

•  Allowed 15, 225, and 900 abstracted states in 
rounds 1, 2, and 3, respectively 

•  Optimizing the approximate abstraction took 
3 days on 4 CPUs 

•  LP took 7 days and 80 GB using CPLEX’s 
barrier method 



Phase I (first three rounds) 
•  Optimized abstraction  

–  Round 1 
•  There are 1,326 hands, of which 169 are strategically different 
•  We allowed 15 abstract states 

–  Round 2 
•  There are 25,989,600 distinct possible hands 

–  GameShrink (in lossless mode for Phase I) determined there are ~106 strategically 
different hands 

•  Allowed 225 abstract states 
–  Round 3 

•  There are 1,221,511,200 distinct possible hands 
•  Allowed 900 abstract states 

•  Optimizing the approximate abstraction took 3 days on 4 CPUs 

•  LP took 7 days and 80 GB using CPLEX’s barrier method 



Mitigating effect of round-based abstraction 
(i.e., having 2 phases) 

•  For leaves of Phase I, GS1 & SparBot assumed rollout 
•  Can do better by estimating the actions from later in 

the game (betting) using statistics 
•  For each possible hand strength and in each possible 

betting situation, we stored the probability of each 
possible action 
–  Mine history of how betting has gone in later rounds from 

100,000’s of hands that SparBot played 
–  E.g. of betting in 4th round  

•  Player 1 has bet.  Player 2’s turn 



Example of betting in 4th round 
Player 1 has bet. Player 2 to fold, call, or raise 



Phase II (rounds 3 and 4) 

•  Abstraction computed using the same optimized 
abstraction algorithm as in Phase I 

•  Equilibrium solved in real time (as in GS1) 
– Beliefs for the beginning of Phase II determined using 

Bayes rule based on observations and the computed 
equilibrium strategies from Phase I 



Precompute several databases 

•  db5: possible wins and losses (for a single player) for every 
combination of two hole cards and three community cards 
(25,989,600 entries) 
–  Used by GameShrink for quickly comparing the similarity of two hands 

•  db223: possible wins and losses (for both players) for every 
combination of pairs of two hole cards and three community 
cards based on a roll-out of the remaining cards (14,047,378,800 
entries) 
–  Used for computing payoffs of the Phase I game to speed up the LP 

creation 
•  handval: concise encoding of a 7-card hand rank used for fast 

comparisons of hands (133,784,560 entries) 
–  Used in several places, including in the construction of db5 and db223 

•  Colexicographical ordering used to compute indices into the 
databases allowing for very fast lookups 



GS2 experiments 
Opponent Series won by 

GS2 
Win rate 

(small bets per hand) 
GS1 38 of 50  

p=.00031 
+0.031 

Sparbot 28 of 50  
p=.48 

+0.0043 

Vexbot 32 of 50  
p=.065 

-0.0062 



GS3 

8/2006 – 3/2007 
[Gilpin, S. & Sørensen AAAI’07] 

 
Our poker bots 2008-2011 were generated 

with same abstraction algorithm 



Entire game solved holistically 

•  We no longer break game into phases 
– Because our new equilibrium-finding algorithms can 

solve games of the size that stem from reasonably 
fine-grained abstractions of the entire game 

•  => better strategies & real-time end-game 
computation optional 



Clustering + integer programming for abstraction 
[Gilpin & Sandholm AAMAS’07] 

 
•  GameShrink is “greedy” when used as an 

approximation algorithm => lopsided abstractions  

•  For constructing GS2, abstraction was created via 
clustering & IP 

•  Operates in signal tree of one player’s & common 
signals at a time 



Potential-aware automated abstraction 
[Gilpin, S. & Sørensen AAAI’07] 

 

•  All prior abstraction algorithms had EV (myopic 
probability of winning in poker) as the similarity metric 
–  Doesn’t capture potential 

•  Potential not only positive or negative, but also 
“multidimensional” 

•  GS3’s abstraction algorithm captures potential … 



•  Idea: similarity metric between hands at round 
R should be based on the vector of probabilities 
of transitions to abstracted states at round R+1 
– E.g., L1 norm 

•  In the last round, the similarity metric is simply 
probability of winning (assuming rollout) 

•   This enables a bottom 



Bottom-up pass to determine 
abstraction for round 1 

•  Clustering using L1 norm 
–  Predetermined number of clusters, depending on size of abstraction we are shooting for 

•  In the last (4th) round, there is no more potential => we use probability of winning 
(e.g., assuming rollout) as similarity metric 

Round r 

Round r-1 

.3 .2 0 .5 



Determining abstraction for round 2 

•  For each 1st-round bucket i: 
–  Make a bottom-up pass to determine 3rd-round buckets, 

considering only hands compatible with i 
–  For ki ϵ {1, 2, …, max} 

•  Cluster the 2nd-round hands into ki clusters 
–  based on each hand’s histogram over 3rd-round buckets 

•  IP to decide how many children each 1st-round bucket 
may have, subject to ∑i ki ≤ K2 
–  Error metric for each bucket is the sum of L2 distances of the 

hands from the bucket’s centroid 
–  Total error to minimize is the sum of the buckets’ errors 

•  weighted by the probability of reaching the bucket 



Determining abstraction for round 3 

•  Done analogously to how we did round 2 



Determining abstraction for round 4 

•  Done analogously, except that now there is no 
potential left, so clustering is done based on 
probability of winning 

•  Now we have finished the abstraction! 



Potential-aware vs win-probability-based abstraction 
•  Both use clustering and IP 
•  Experiment on Rhode Island Hold’em => Abstracted game solved exactly 

13 buckets in first round is lossless 
Potential-aware becomes lossless, 

win-probability-based is as good as it gets, never lossless 

-16.6 

1.06 

6.99 5.57 

0.088 

-20 

-15 

-10 

-5 

0 

5 

10 

Winnings to potential-aware 
(small bets per hand) 

Finer-grained 
abstraction 

[Gilpin & S., AAAI-08] 



Potential-aware vs win-probability-based abstraction 
•  Both use clustering and IP 
•  Experiment conducted on Heads-Up Rhode Island Hold’em 

–  Abstracted game solved exactly 

13 buckets in first round is lossless 

Potential-aware becomes lossless, 
win-probability-based is as good as it gets, never lossless 

[Gilpin & S., AAAI-08 & new] 



Other forms of lossy abstraction 
•  Phase-based abstraction 

–  Uses observations and equilibrium strategies to infer priors 
for next phase 

–  Uses some (good) fixed strategies to estimate leaf payouts at 
non-last phases [Gilpin & Sandholm AAMAS-07] 

–  Supports real-time equilibrium finding [Gilpin & Sandholm 
AAMAS-07] 

•  Grafting [Waugh et al. 2009] as an extension 

•  Action abstraction 
–  What if opponents play outside the abstraction? 
–  Multiplicative action similarity and probabilistic reverse 

model [Gilpin, Sandholm, & Sørensen AAMAS-08, Risk & 
Szafron AAMAS-10] 



Game abstraction is nonmonotonic 

•  Such “abstraction pathologies” also in small poker games [Waugh et al. AAMAS-09] 
•  We present the first lossy game abstraction algorithm with bounds 

–  Contradiction? 

0, 2 1, 1 2, 0 

2, 0 1, 1 0, 2 
Attacker 

Defender 

A 
A 
B 

B Between 
In each equilibrium: 
•  Attacker randomizes 50-50 between A and B  
•  Defender plays A w.p. p, B w.p. p, and Between w.p. 1-2p 
•  There is an equilibrium for each p ∈ [0, ½] 

0, 2 1, 1 2, 0 
A 

A 
B Between An abstraction: 

Defender would choose A, but that is far from equilibrium 
in the original game where attacker would choose B 

1, 1 2, 0 A 
B Between Coarser abstraction: 

Defender would choose Between.  That is an equilibrium in 
the original game 



First lossy game abstraction algorithms with bounds 
[Sandholm and Singh EC-12] 

•  Recognized open problem; tricky due to pathologies 
•  For both action and state abstraction; for finite stochastic games 
•  Evaluations from abstract game are near accurate: 

 
•  Regret is bounded: 



First lossy game abstraction methods with bounds 
[Sandholm and Singh EC-12] 

•  Recognized open problem; tricky due to pathologies 

•  For both action and state abstraction 

•  For stochastic games 



Strategy evaluation in M and M’ 
•  LEMMA. If game M and abstraction M’ are “close”,  

then the value for every strategy in M’ (when evaluated in M’)  
is close to the value of any corresponding lifted strategy in M 
when evaluated in M.  Formally: 
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Main abstraction theorem 
•  Given a subgame perfect Nash equilibrium          

in M’ 

•  Let lifted strategy in M be 

•  Then maximum gain by unilateral deviation by 
agent i is 
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First lossy game abstraction algorithms with bounds 
•  Greedy algorithm that proceeds level by level from end of game 

–  At each level, does either action or state abstraction first, then the other 
–  Polynomial time (versus equilibrium finding being PPAD-complete) 

•  Integer linear program 
–  Proceeds level by level from end of game; one ILP per level 

•  Optimizing all levels simultaneously would be nonlinear 

–  Does action and state abstraction simultaneously 
–  Splits the allowed total error within level optimally 

•  between reward error and transition probability error, and 
•  between action abstraction and state abstraction 

•  Proposition. Both algorithms satisfy the given bounds on regret 
•  Proposition. Even with just action abstraction and just one level,  

finding the abstraction with the smallest number of actions that 
respects the regret bound is NP-complete (even with 2 agents) 

•  One of the first action abstraction algorithms 
–  Totally different than the prior one [Hawkin et al. AAAI-11] 



Role of this in modeling 

•  All modeling is abstraction! 

•  These are the first results that tie game 
modeling choices to solution quality in the 
actual setting 



Strategy-based abstraction 
[unpublished] 

Abstraction Equilibrium finding 



Equilibrium-finding algorithms 

Solving the (abstracted) game 



Outline 
•  Abstraction 
•  Equilibrium finding in 2-person 0-sum games 
•  Strategy purification 
•  Opponent exploitation 
•  Multiplayer stochastic games 
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Scalability of (near-)equilibrium finding in 2-person 0-sum games 
Manual approaches can only solve games with a handful of nodes 
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Nodes in game tree 
AAAI poker competition announced 

Koller & Pfeffer 
Using sequence form  

& LP (simplex) 

Billings et al. 
LP (CPLEX interior point method) 

Gilpin & Sandholm 
LP (CPLEX interior point method) 

Gilpin, Hoda,  
Peña & Sandholm 

Scalable EGT 

Gilpin, Sandholm  
& Sørensen 

Scalable EGT 

Zinkevich et al. 
Counterfactual regret 



(Un)scalability of LP solvers 

•  Rhode Island Hold’em LP 
–  91,000,000 rows and columns 
–  After GameShrink,1,200,000 rows and columns, and 

50,000,000 non-zeros 
–  CPLEX’s barrier method uses 25 GB RAM and 8 days 

•  Texas Hold’em poker much larger 
–  => would need to use extremely coarse abstraction 

•  Instead of LP, can we solve the equilibrium-finding 
problem in some other way? 



Excessive gap technique (EGT) 

•  Best general LP solvers only scale to107..108 nodes.  Can we do 
better? 

•  Usually, gradient-based algorithms have poor O(1/ ε2) convergence, 
but… 

•  Theorem [Nesterov 05]. Gradient-based algorithm, EGT (for a 
class of minmax problems) that finds an ε-equilibrium in O(1/ ε) 
iterations 

•  Theorem [Hoda, Gilpin, Pena & S., Mathematics of Operations 
Research 2010].  Nice prox functions can be constructed for 
sequential games 



Scalable EGT [Gilpin, Hoda, Peña, S., WINE’07, Math. Of OR 2010] 
Memory saving in poker & many other games 

•  Main space bottleneck is storing the game’s payoff matrix A 
•  Definition. Kronecker product 

•  In Rhode Island Hold’em:  

•  Using independence of card deals and betting options, can represent this as
  A1 = F1 ⊗ B1  A2 = F2 ⊗ B2  A3 = F3 ⊗ B3 + S ⊗ W 

•  Fr corresponds to sequences of moves in round r that end in a fold 
•  S corresponds to sequences of moves in round 3 that end in a showdown 
•  Br encodes card buckets in round r 
•  W encodes win/loss/draw probabilities of the buckets 



Memory usage 

Instance CPLEX 
barrier 

CPLEX 
simplex 

Our method 

Losslessly 
abstracted 
Rhode 
Island 
Hold’em 

25.2 GB >3.45 GB 0.15 GB 

Lossily 
abstracted 
Texas 
Hold’em 

>458 GB >458 GB 2.49 GB 



Memory usage 

Instance CPLEX 
barrier 

CPLEX 
simplex 

Our method 

10k 0.082 GB >0.051 GB 0.012 GB 

160k 2.25 GB >0.664 GB 0.035 GB 
Losslessly 
abstracted 
RI Hold’em 

25.2 GB >3.45 GB 0.15 GB 

Lossily 
abstracted 
TX Hold’em 

>458 GB >458 GB 2.49 GB 



Scalable EGT [Gilpin, Hoda, Peña, S., WINE’07, Math. Of OR 2010]  
Speed 

•  Fewer iterations 
–  With Euclidean prox fn, gap was reduced by an order of 

magnitude more (at given time allocation) compared to 
entropy-based prox fn 

–  Heuristics that speed things up in practice while preserving 
theoretical guarantees 

•  Less conservative shrinking of µ1 and µ2 
–   Sometimes need to reduce (halve) τ 

•  Balancing µ1 and µ2 periodically  
–  Often allows reduction in the values  

•  Gap was reduced by an order of magnitude (for given time allocation) 

•  Faster iterations 
–  Parallelization in each of the 3 matrix-vector products in 

each iteration => near-linear speedup 



Our successes with these approaches 
in 2-player Texas Hold’em 

•  AAAI-08 Computer Poker Competition 
– Won Limit bankroll category 
– Did best in terms of bankroll in No-Limit 

•  AAAI-10 Computer Poker Competition 
– Won bankroll competition in No-Limit 



Iterated smoothing  
[Gilpin, Peña & S., AAAI-08, Mathematical Programming, to appear] 

•  Input: Game and εtarget 
•  Initialize strategies x and y arbitrarily 
•  ε  ← εtarget 

•  repeat 
•  ε ← gap(x, y) / e 
•  (x, y) ← SmoothedGradientDescent(f, ε, x, y) 
•  until gap(x, y) < εtarget 

O(1/ε) →   O(log(1/ε)) 
Caveat: condition number. 

Algorithm applies to all linear programming.   
Matches iteration bound of interior point methods, but unlike them, is scalable for memory. 



Solving GS3’s four-round model 
[Gilpin, Sandholm & Sørensen AAAI’07] 

•  Computed abstraction with 
–  20 buckets in round 1 
–  800 buckets in round 2  
–  4,800 buckets in round 3  
–  28,800 buckets in round 4 

•  Our version of excessive gap technique used 30 GB RAM 
–  (Simply representing as an LP would require 32 TB) 
–  Outputs new, improved solution every 2.5 days 
–  4  1.65GHz CPUs: 6 months to gap 0.028 small bets per hand  



AAAI Computer Poker Competitions won 
•  2008 

–  GS4 won Limit Texas Hold’em bankroll category 
•  Played 4-4 in pairwise comparisons. 4th of 9 in elimination category 

–  Tartanian did best in terms of bankroll in No-Limit Texas 
Hold’em 

•  3rd out of 4 in elimination category 

•  2010 
–  Tartanian4 won Heads-Up No-Limit Texas Hold'em bankroll 

category 
•  3rd in Heads-Up No-Limit Texas Hold'em bankroll instant run-off 

category 





Going live with $313 million on 
PokerStars.com 

•  April fools! 



All wins are statistically significant at the 99.5% level 
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Comparison to prior poker AI 

•  Rule-based 
–  Limited success in even small poker games 

•  Simulation/Learning 
–  Do not take multi-agent aspect into account 

•  Game-theoretic 
–  Small games 
–  Manual abstraction [Billings et al. IJCAI-03] 
–  Ours 

•  Automated abstraction 
•  Custom solver for finding Nash equilibrium 
•  Domain independent 
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Purification and thresholding 
[Ganzfried, S. & Waugh, AAMAS-12] 

•  Thresholding: Rounding the probabilities to 0 of those 
strategies whose probabilities are less than c (and 
rescaling the other probabilities) 
–  Purification is thresholding with c=0.5 

•  Proposition (performance of strategy from abstract 
game against equilibrium strategy in actual game):  
Any of the 3 approaches (standard approach, 
thresholding (for any c), purification) can beat any 
other by arbitrarily much depending on the game 
–  Holds for any equilibrium-finding algorithm for one 

approach and any equilibrium-finding algorithm for the other 



Experiments on random matrix games 

•  2-player 4x4 zero-sum games  

•  Abstraction that simply ignores last row and last column 

•  Purified eq strategies from abstracted game beat  
non-purified eq strategies from abstracted game  
at 95% confidence level when played on the unabstracted 
game 

 



Experiments on Leduc Hold’em 



Experiments on no-limit Texas Hold’em 

•  We submitted bot Y to the AAAI-10 bankroll competition; it won 

•  We submitted bot X to the instant run-off competition; finished 3rd 



Experiments on limit Texas Hold’em 
•  Worst-case exploitability 

 

•  Too much thresholding => not enough randomization  
=> signal too much to the opponent 

•  Too little thresholding => strategy is overfit to the particular abstraction 

Our 2010 competition bot U. Alberta 2010 competition bot 
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Traditionally two approaches 
•  Game theory approach (abstraction+equilibrium finding) 

–  Safe in 2-person 0-sum games 
–  Doesn’t maximally exploit weaknesses in opponent(s) 

•  Opponent modeling 
–  Get-taught-and-exploited problem [Sandholm AIJ-07] 

 
 
 
–  Needs prohibitively many repetitions to learn in large games 

(loses too much during learning) 
•  Crushed by game theory approach in Texas Hold’em, even with just 2 

players and limit betting 
•  Same tends to be true of no-regret learning algorithms 



Let’s hybridize the two approaches 
[Ganzfried & Sandholm AAMAS-11] 

•  Start playing based on game theory approach 

•  As we learn opponent(s) deviate from equilibrium, 
start adjusting our strategy to exploit their weaknesses 

 



Deviation-Based Best Response (DBBR) algorithm 
(can be generalized to multi-player non-zero-sum) 

•  Many ways to determine opponent’s “best” strategy 
that is consistent with bucket probabilities 
–  L1 or L2 distance to equilibrium strategy 
–  Custom weight-shifting algorithm 
–  ... 

Dirichlet prior 

Public history  
sets 



Experiments 
•  Significantly outperforms game-theory-based base 

strategy (GS5) in 2-player limit Texas Hold’em against  
–  trivial opponents 
–  weak opponents from AAAI computer poker competitions 

•  Don’t have to turn this on against strong opponents 
•  Examples of winrate evolution: 

Opponent: Opponent: Opponent: 



Safe opponent exploitation 
[Ganzfried & Sandholm EC-12] 

•  Definition. Safe strategy achieves at least the 
value of the (repeated) game in expectation 

•  Is safe exploitation possible (beyond selecting 
among equilibrium strategies)? 



When can opponent be exploited safely? 
•  Opponent played an (iterated weakly) dominated strategy? 

•  Opponent played a strategy that isn’t in the support of any eq? 

 
•  Definition. We received a gift if the opponent played a strategy such that we 

have an equilibrium strategy for which the opponent’s strategy is not a best 
response 

•  Theorem. Safe exploitation is possible in a game iff the game has gifts 
•  E.g., rock-paper-scissors doesn’t have gifts 

•  Can determine in polytime whether a game has gifts  



Exploitation algorithms (both for matrix and sequential games) 

1.  Risk what you’ve won so far 
–  Doesn’t differentiate whether winnings are due to opponent’s mistakes (gifts) or our luck 

2.  Risk what you’ve won so far in expectation (over nature’s & own 
randomization), i.e., risk the gifts received 
–  Assuming the opponent plays a nemesis in states where we don’t know 

3.  Best(-seeming) equilibrium strategy 
4.  Regret minimization between an equilibrium and opponent modeling algorithm 
5.  Regret minimization in the space of equilibria 
6.  Best equilibrium followed by full exploitation 
7.  Best equilibrium and full exploitation when possible 
•  Theorem. A strategy for a 2-player 0-sum game is safe iff it never risks 

more than the gifts received according to #2 
•  Can be used to make any opponent modeling algorithm safe 
•  No prior (non-eq) opponent exploitation algorithms are safe 
•  Experiments on Kuhn poker: #2 > #7 > #6 > #3 
•  Suffices to lower bound opponent’s mistakes 
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>2 players 

(Actually, our abstraction algorithms and opponent 
exploitation, presented earlier in this talk, apply to 

>2 players) 



Computing Equilibria  
in Multiplayer Stochastic Games  

of Imperfect Information  
 

Sam Ganzfried and Tuomas Sandholm 
Computer Science Department 

Carnegie Mellon University 
 



Stochastic games 

•  N = {1,…,n} is finite set of players 
•  S is finite set of states 
•  A(s) = (A1(s),…, An(s)), where Ai(s) is set of actions of player i at state s 
•  ps,t(a) is probability we transition from state s to state t when players follow 

action vector a 
•  r(s) is vector of payoffs when state s is reached 
•  Undiscounted vs. discounted 

•  A stochastic game with one agent is a Markov Decision Process (MDP) 



Stochastic game example: poker 
tournaments 

•  Important challenge problem in artificial intelligence 
and computational game theory  

•  Enormous strategy spaces:  
–  Two-player limit Texas hold’em game tree has ~1018 nodes 
–  Two-player no-limit Texas hold’em has ~ 1071 nodes 

•  Imperfect information (unlike, e.g., chess) 
•  Many players 

–  Computing a Nash equilibrium in matrix games PPAD-
complete for > 2 players 

•  Poker tournaments are undiscounted stochastic games 



Rules of poker 
•  No-limit Texas hold’em 
•  Two private hole cards, five public community 

cards 
– Only best 5-card hand matters 

•  4 rounds of betting: preflop, flop, turn, river 
•  Preflop investments: small blind (SB) & big 

blind (BB) 
•  Actions: fold, call, raise (any amount), go all-in 



Poker tournaments 
•  Players pay entry fee (e.g., $10) 
•  Players given some number of chips (e.g., 1500) 
•  A player is eliminated when he has no more chips 

– The order of elimination determines the payouts 
– E.g., winner gets $50, 2nd place $30, 3rd place $20 
– Blinds escalate quickly 

•  Tournaments are stochastic games: each game state 
corresponds to a vector of stack sizes  

•  We study 3-player endgame with fixed high blinds 
– Potentially infinite duration 



Jam/fold strategies 
•  All-in or fold preflop: no postflop play 
•  169 strategically distinct starting hands (pocket 

pairs, unsuited non-pairs, suited non-pairs) 
•  For any given stack vector, the sizes of the 

players’ strategy spaces are 2169, 22*169, and 23*169 

•  With two players left, jam/fold strategies are 
near-optimal when blinds sufficiently high 
[Miltersen/Sörensen AAMAS ’07] 
– They show that probability of winning is 

approximately equal to fraction of chips player has 



VI-FP: Prior algorithm for equilibrium finding 
in multiplayer stochastic games  

[Ganzfried & Sandholm AAMAS ’08] 
•  Initialize payoffs V0 for all game states using ICM 
•  Repeat  

– Run “inner loop”: 
•  Assuming the payoffs Vt , compute an approximate equilibrium st at each 

non-terminal state (stack vector) using an extension of smoothed 
fictitious play to imperfect information games 

 

– Run “outer loop”: 
•  Compute the values Vt +1 at all non-terminal states by using the 

probabilities from st and values from Vt  

•  until outer loop converges 



Drawbacks of VI-FP 

•  Neither the inner nor outer loop guaranteed to 
converge 

•  Possible for outer-loop to converge to a non-
equilibrium 
–  Initialize the values to all three players of stack 

vectors with all three players remaining to $100 
–  Initialize the stack vectors with only two players 

remaining according to ICM 
– Then everyone will fold (except the short stack if he 

is all-in), payoffs will be $100 to everyone, and the 
algorithm will converge in one iteration to a non-
equilibrium profile 



Ex post check 

•  Determine how much each player can gain by 
deviating from strategy profile s* computed by VI-FP 

•  For each player, construct MDP M induced by the 
components of s* for the other players 

•  Solve M using variant of policy iteration for our setting 
(next slide) 

•  Look at difference between the payoff of optimal 
policy in M and payoff under s*  

 

•  Converged in just two iterations of policy iteration. 
•  No player can gain more than $0.049 (less than 0.5% 

of tournament entry fee) by deviating from s* 



Optimal MDP solving in our setting 
•  Our setting: 

–  Objective is expected total reward 
–  For all states s and policies p, the value of s under p is finite 
–  For each state s there exists at least one available action a 

that gives nonnegative reward 
•  Value iteration: must initialize pessimistically 

   •    Policy iteration: 
–  Choose initial policy with nonnegative total reward 

–  Choose minimal non-negative solution to system of equations in  
   evaluation step (if there is a choice): 

 
–   If the action chosen for some state in the previous iteration is still                                                                                                                                                             

    among the optimal actions, select it again 
 

   



New algorithms for equilibrium 
finding in multiplayer stochastic games 



One algorithm from [Ganzfried & S., AAMAS-08, IJCAI-09] 

 
First algorithms for ε-equilibrium in 
large stochastic games for small ε 
 
Proposition. If outer loop converges, 
the strategy profile is an equilibrium 
 
Found ε-equilibrium for tiny ε in 
jam/fold strategies in 3-player No-
Limit Texas Hold’em tournament 
(largest multiplayer game solved to 
small ε?) 
 
Algorithms converged to an ε-
equilibrium consistently and quickly 
despite not being guaranteed to do so 
-- new convergence guarantees? 

 
Repeat until ε-equilibrium  

 
At each state 

Run fictitious play until regret < thres, 
given values of possible future states 

 
Adjust values of all states (using modified 
policy iteration) in light of the new payoffs 
obtained 



PI-FP: Policy Iteration as outer loop 
•  Similar to VI-FP except value updates follow the evaluation step of 

policy iteration in our setting 

 
•     Proposition: if the outer loop of PI-FP converges, then the final strategy profile  

     is an equilibrium 
•     Can recover from poor initialization since it uses values resulting from      

     evaluating the policy, not the values from the initialization 



FP-MDP: switching the roles of 
fictitious play and MDP-solving 

•  Again we prefer policy iteration to value iteration because it 
allows us to get a good warm start more easily 

•  Use policy iteration to perform best response calculation 
•  Use fictitious play to combine new best response with previous 

strategy 
•  Like VI-FP, FP-MDP can recover from poor initializations and 

can provably never converge to a non-equilibrium 



FTPL-MDP: a polynomial-time 
algorithm for regret minimization 

•  Similar to FP-MDP 
•  Polynomial-time LP algorithm for MDP-solving in inner loop 
•  Follow-the-perturbed-leader algorithm for outer loop: like 

fictitious play, but add random noise before computing best 
response [Kalai & Vempala, JCSS ’05] 

•  Minimizes external regret in repeated game 



Experimental Results 
•  Each data point corresponds to an outer loop iteration 
•  Target accuracy: $0.05 = 0.1% of first place payoff 
•  PI-FP first to reach target accuracy, followed by VI-FP 
•  FP-MDP never reached target accuracy 



Conclusions and future work 

•  Presented first algorithm for provably computing an ε-
equilibrium of large stochastic games for small ε 

•  First provable near-equilibrium strategies for jam/fold 
poker tournament with more than 2 players 

•  Algorithms converged to an ε-equilibrium consistently 
and quickly despite not being guaranteed to do so 

•  Hopefully can lead to investigation of more general 
settings under which convergence properties can be 
proven 
–  Fictitious play converged consistently despite not being 

guaranteed to do so  
–  Outer loop of VI-FP converged despite not being guaranteed 

to do so 
–  Maybe value iteration for solving MDP’s can be proven to 

converge for some optimal initializations in this setting 



Games with >2 players  

•  Matrix games: 
–  2-player zero-sum: solvable in polytime 
– >2 players zero-sum: PPAD-complete [Chen & 

Deng, 2006] 
– No previously known algorithms scale beyond tiny 

games with >2 players 
•  Stochastic games (undiscounted): 

–  2-player zero-sum: Nash equilibria exist 
–  3-player zero-sum: Existence of Nash equilibria still 

open 



Poker tournaments 

•  Players buy in with cash (e.g., $10) and are given chips (e.g., 
1500) that have no monetary value 

•  Lose all you chips => eliminated from tournament 
•  Payoffs depend on finishing order (e.g., $50 for 1st, $30 for 2nd, 

$20 for 3rd) 
•  Computational issues: 

–  >2 players 
–  Tournaments are stochastic games (potentially infinite 

duration): each game state is a vector of stack sizes (and also 
encodes who has the button) 



Jam/fold strategies 

•  Jam/fold strategy: in the first betting round, go all-in or fold 
•  In 2-player poker tournaments, when blinds become high 

compared to stacks, provably near-optimal to play jam/fold 
strategies [Miltersen & Sørensen 2007] 

 
•  Solving a 3-player tournament [Ganzfried & Sandholm AAMAS’2008] 

–  Compute an approximate equilibrium in jam/fold strategies 
–  Strategy spaces 2169, 2  2169, 3  2169 
–  Algorithm combines  

•  an extension of fictitious play to imperfect-information games  
•  with a variant of value iteration 

–  Our solution challenges Independent Chip Model (ICM) accepted by 
poker community 

–  Unlike in 2-player case, tournament and cash game strategies differ 
substantially 



Our first algorithm 

•  Initialize payoffs for all game states using heuristic from poker 
community (ICM) 

•  Repeat until “outer loop” converges 
–  “Inner loop”: 

•  Assuming current payoffs, compute an approximate equilibrium at each state using 
fictitious play 

•  Can be done efficiently by iterating over each player’s information sets 

–  “Outer loop”: 
•  Update the values with the values obtained by new strategy profile 
•  Similar to value iteration in MDPs 



Ex-post check 

•  Our algorithm is not guaranteed to converge, and can 
converge to a non-equilibrium (we constructed example) 

•  We developed an ex-post check to verify how much any 
player could gain by deviating [Ganzfried & Sandholm draft] 
–  Constructs an undiscounted MDP from the strategy profile, 

and solves it using variant of policy iteration 
–  Showed that no player could gain more than 0.1% of highest 

possible payoff by deviating from our profile 



New algorithms [Ganzfried & Sandholm draft] 

•  Developed 3 new algorithms for solving multiplayer 
stochastic games of imperfect information 
–  Unlike first algorithm, if these algorithms converge, they 

converge to an equilibrium 
–  First known algorithms with this guarantee 
–  They also perform competitively with the first algorithm 

•  The algorithms combine fictitious play variant from 
first algorithm with techniques for solving 
undiscounted MDPs (i.e., maximizing expected total 
reward) 



Best one of the new algorithms 
•  Initialize payoffs using ICM as before 
•  Repeat until “outer loop” converges 

–  “Inner loop”: 
•  Assuming current payoffs, compute an approximate equilibrium at each state 

using our variant of fictitious play as before 
–  “Outer loop”: update the values with the values obtained by new strategy profile 

St using a modified version of policy iteration: 
•  Create the MDP M induced by others’ strategies in St (and initialize using 

own strategy in St): 
•  Run modified policy iteration on M 

–  In the matrix inversion step, always choose the minimal solution 
–  If there are multiple optimal actions at a state, prefer the action chosen last period if possible 



Second new algorithm 

•  Interchanging roles of fictitious play and policy iteration: 
–  Policy iteration used as inner loop to compute best response 
–  Fictitious play used as outer loop to combine BR with old strategy 
 

•  Initialize strategies using ICM 
•  Inner loop: 

–  Create MDP M induced from strategy profile 
–  Solve M using policy iteration variant (from previous slide) 

•  Outer loop: 
–  Combine optimal policy of M with previous strategy using 

fictitious play updating rule 



Third new algorithm 

•  Using value iteration variant as the inner loop 
•  Again we use MDP solving as inner loop and fictitious 

play as outer loop 
•  Same as previous algorithm except different inner loop 

•  New inner loop: 
–  Value iteration, but make sure initializations are pessimistic 

(underestimates of optimal values in the MDP) 
–  Pessimistic initialization can be accomplished by matrix 

inversion using outer loop strategy as initialization in 
induced MDP 



Outline 
•  Abstraction 
•  Equilibrium finding in 2-person 0-sum games 
•  Strategy purification 
•  Opponent exploitation 
•  Multiplayer stochastic games 
•  Leveraging qualitative models 
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Introduction 
•  Key idea: often it is much easier to come up with some aspects 

of an equilibrium than to actually compute one 

•  E.g., threshold strategies are optimal in many settings: 
–  Sequences of take-it-or-leave-it offers 
–  Auctions 
–  Partnerships/contracts 
–  Poker… 

•  We develop an algorithm for computing an equilibrium in 
imperfect-information games given a qualitative model of the 
structure of equilibrium strategies 
–  Applies to both infinite and finite games, with 2 or more players 



Continuous (i.e., infinite) games 
•  Games with infinite number of pure strategies 

– E.g., strategies correspond to amount of time, 
money, space (such as computational billiards) 

•  N is finite set of players 
•  Si is (a potentially infinite) pure strategy space of 

player i 
•  ui: S → R is utility function of player i 
•  Theorem [Fudenberg/Levine]: If strategy spaces are 

nonempty compact subsets of a metric space and 
payoff functions are continuous, then there exists a 
Nash equilibrium 



Poker example 

•  Two players given private signals x1, x2 independently 
and uniformly at random from [0,1] 

•  Pot initially has size P 
•  Player 1 can bet or check 
•  If player 1 checks, game is over and lower signal wins 
•  If player 1 bets, player 2 can call or fold 
•  If player 2 folds, player 1 wins 
•  If player 2 calls, player with lower private signal wins 

P+1, while other player loses 1 
 



Example cont’d 
•  Strategy space of player 1: Set of measurable functions 

from [0,1] to {bet, check} 
–  Similar for player 2 

•  Proposition. The strategy spaces are not compact 
•  Proposition. All strategies surviving iterated 

dominance must follow a specific threshold structure 
(on next slide) 

•  New strategy spaces are compact subsets of R 
•  Proposition.  The utility functions are continuous 
•  Game can be solved by extremely simple procedure… 



Example cont’d 

Best hand 

Worst hand 



Setting:  
Continuous Bayesian games 

[Ganzfried & Sandholm AAMAS-10 & newer draft] 
•  Finite set of players 
•  For each player i: 

–  Xi is space of private signals (compact subset of R or discrete 
finite set) 

–  Ci is finite action space 
–  Fi: Xi → [0,1] is a piece-wise linear CDF of private signal 
–  ui: C x X → R is continuous, measurable, type-order-based utility 

function: utilities depend on the actions taken and order of 
agents’ private signals (but not on the private signals themselves) 



Qualitative models 

•  Qualitative models can enable proving existence of equilibrium  
•  Theorem. Given F1, F2, and a qualitative model, we have a complete 

mixed-integer linear feasibility program for finding an equilibrium 

 
 
 
 
 
 

Analogy to air combat 

 
 
 
 
 
 
Best  
hand 

Worst 
hand  



Parametric models 

•  Way of dividing up signal space qualitatively into “action 
regions” 

•  P = (T, Q, <) 
•  Ti is number of regions of player i 
•  Qi is sequence of actions of player i 
•  < is partial ordering of the region thresholds across agents 
•  We saw that forcing strategies to conform to a parametric 

model can allow us to guarantee existence of an 
equilibrium and to compute one, when neither could be 
accomplished by prior techniques 



Computing an equilibrium given a 
parametric model 

•  Parametric models => can prove existence of equilibrium 
•  Mixed-integer linear feasibility program 
•  Let {ti} denote union of sets of thresholds 
•  Real-valued variables: xi corresponding to F1(ti) and yi to F2(ti) 
•  0-1 variables: zi,j = 1 implies j-1 ≤ ti ≤ j 

–  For this slide we assume that signals range 1, 2, …, k, but we have a 
MILFP for continuous signals also 

–  Easy post-processor to get mixed strategies in case where individual 
types have probability mass 

•  Several types of constraints: 
–  Indifference, threshold ordering, consistency 

•  Theorem.  Given a candidate parametric model P, our algorithm 
outputs an equilibrium consistent with P if one exists. Otherwise 
it returns “no solution” 
  



Works also for 

•  >2 players 
– Nonlinear indifference constraints => approximate 

by piecewise linear 
•  Theorem & experiments that tie #pieces to ε 
•  Gives an algorithm for solving multiplayer games without 

qualitative models too 

•  Multiple qualitative models (with a common 
refinement) only some of which are correct 

•  Dependent types 





Multiple players 
•  With more than 2 players, indifference constraints 

become nonlinear 
•  We can compute an ε-equilibrium by approximating 

products of variables using linear constraints 
–  We provide a formula for the number of breakpoints per 

piecewise linear curve needed as a function of ε 

•  Our algorithm uses a MILFP that is polynomial in 
#players 

•  Can apply our technique to develop a MIP formulation 
for finding ε-equilibria in multiplayer normal and 
extensive-form games without qualitative models 



Multiple parametric models 
•  Often have several models and know at least 

one is correct, but not sure which 
 
•  We give an algorithm for finding an equilibrium 

given several parametric models that have a 
common refinement 
– Some of the models can be incorrect 
–  If none of the models are correct, our algorithm says 

so 



Experiments 

•  Games for which algs didn’t exist become 
solvable 
– Multi-player games 

•  Previously solvable games solvable faster  
– Continuous approximation sometimes a better 

alternative than abstraction (e.g., n-card Kuhn poker) 
•  Works in the large 

–  Improved performance of GS4 when used for last 
betting round 



Experiments 



Texas Hold’em experiments 

•  Once river card dealt, no more information 
revealed 

•  Use GS4 and Bayes’ rule to generate distribution 
over possible hands both players could have 

•  We developed 3 parametric models that have a 
common refinement (for 1-raise-per-player 
version) 
– All three turned out necessary 



Texas Hold’em experiments cont’d 

•  We ran it against top 5 entrants from 2008 
AAAI Computer Poker Competition 

•  Performed better than GS4 against 4 

•  Beat GS4 by 0.031 (± 0.011) small bets/hand 

•  Averaged 0.25 seconds/hand overall 



Multiplayer experiments 

•  Simplified 3-player poker game 
•  Rapid convergence to ε-equilibrium for 

several CDFs 
•  Obtained ε = 0.01 using 5 breakpoints 

– Theoretical bound ε ≈ 25 



Approximating large finite games 
with continuous games 

•  Traditional approach: abstraction 

•  Suppose private signals in {1,..,n} in first poker 
example 
– Runtime of computing equilibrium grows large as n 

increases 
– Runtime of computing x∞ remains the same 
 

•  Our approach can require much lower runtime to 
obtain given level of exploitability 

 



Approximating large finite games 
with continuous games 

•  Experiment on Generalized Kuhn poker [Kuhn ’50] 
 

•  Compared value of game vs. payoff of x∞ against its 
nemesis 

 
•  Agree to within .0001 for 250 signals 

•  Traditional approach required very fine abstraction to 
obtain such low exploitability  



Conclusions 
•  Qualitative models can significantly help equilibrium finding 

–  Solving classes of games for which no prior algorithms exist 
–  Speedup 

•  We develop an algorithm for computing an equilibrium given 
qualitative models of the structure of equilibrium strategies 
–  Sound and complete 
–  Some of the models can be incorrect 
–  If none are correct, our algorithm says so 

•  Applies to both infinite and large finite games 
–  And to dependent type distributions 

•  Experiments show practicality 
–  Endgames of 2-player Texas Hold’em 
–  Multiplayer games 
–  Continuous approximation superior to abstraction in some games 



Future research 

•  How to generate parametric models?  Can this be 
automated? 

•  Can this infinite projection approach compete with 
abstraction for large real-world games of interest? 

•  In the case of multiple parametric models, can 
correctness of our algorithm be proven without 
assuming a common refinement?  



Summary 
•  Domain-independent techniques 
•  Automated lossless abstraction 

–  Exactly solved game with 3.1 billion nodes 
•  Automated lossy abstraction 

–  k-means clustering & integer programming 
–  Potential-aware 
–  Phase-based abstraction & real-time endgame solving  
–  Action abstraction & reverse models 
–  First lossy game abstraction algorithms with bounds 
–  Strategy-based abstraction 

•  Equilibrium-finding for 2-person 0-sum games 
–  O(1/ε2)    ->   O(1/ε)   ->   O(log(1/ε)) 
–  Can solve games with over 1014 nodes to small ε 

•  Purification and thresholding help – surprising 
•  Scalable practical online opponent exploitation algorithm 
•  Fully characterized safe exploitation & provided algorithms 
•  Solved large multiplayer stochastic games 
•  Leveraging qualitative models => existence, computability, speed 



Summary 
•  Domain-independent techniques 
•  Game abstraction 

–  Automated lossless abstraction -- exactly solved game with 3.1 billion nodes 
–  Automated lossy abstraction with bounds 

•  For action and state abstraction 
•  Also for modeling 

•  Equilibrium-finding for 2-person 0-sum games 
–  O(1/ε2)    ->   O(1/ε)   ->   O(log(1/ε)) 
–  Can solve games with over 1014 nodes to small ε 

•  Purification and thresholding help – surprising 
•  Scalable practical online opponent exploitation algorithm 
•  Fully characterized safe exploitation & provided algorithms 
•  Solved large multiplayer stochastic games 
•  Leveraging qualitative models => existence, computability, speed 



Did not discuss… 

•  DBs, data structures, … 



Some of our current & future research 
•  Lossy abstraction with bounds 

–  Extensive form 
–  With structure 
–  With generated abstract states and actions 

•  Equilibrium-finding algorithms for 2-person 0-sum games 
–  Can CFR be parallelized or fast EGT made to work with imperfect recall? 
–  Fast implementations of our O(log(1/ε)) algorithm and understanding how #iterations depends 

on matrix condition number 
–  Making interior-point methods usable in terms of memory 

•  New game classes where our algs for stochastic multiplayer games (and their 
components) are guaranteed to converge 

•  Other solution concepts: sequential equilibrium, coalitional deviations,… 
•  Actions beyond the ones discussed in the rules: 

–  Explicit information-revelation actions 
–  Timing, … 

•  Understanding exploration vs exploitation vs safety 
•  Theoretical understanding of thresholding and purification 
•  Using & adapting these techniques to other games, esp. (cyber)security 


