
Graduate AI – Midterm SOLUTIONS

March 6, 2012.
10:30–11:50am. Name: ︸ ︷︷ ︸

Andrew ID: ︸ ︷︷ ︸

Read all of the following information before starting the exam:

• Please clearly write your name and Andrew ID in the spaces above.

• For full credit, please show all work clearly and in order.

• The test consists of five questions:

– One multi-part short answer question.

– Four long-answer questions.

• Good luck!

Problem Possible Awarded

1 20 20

2 20 20

3 20 20

4 20 20

5 20 20

Total 100

1. (20 points)
Please clearly and concisely respond to all of the following short-answer problems. When ap-
propriate, explain your answer or show your work.

a. (3 pts) Explain why the number of misplaced tiles heuristic for n-puzzle is dominated
by the Manhattan distance heuristic.

Both heuristics are clearly admissible, but the Manhattan distance heuristic is a more accurate
measure of the distance to the goal. In fact, the Manhattan distance heuristic is always at least
as large (typically larger) than the misplaced tiles heuristic, and thus dominates it. (A misplaced
tile has Manhattan distance at least 1, while the misplaced tiles heuristic always reports 1.)

b. (3 pts) We know that in a planning graph operations monotonically increase, condi-
tions monotonically increase, and mutexes monotonically decrease. Explain in 1-2 lines why it
follows that the graph levels off.

Let ot, ct,mt be the number of operations, conditions, and mutexes in the planning graph at
time step t. Then we know ot+1 ≥ ot, ct+1 ≥ ct, and mt+1 ≤ mt. Furthermore, let O be the
maximum number of operations and C the maximum number of conditions; both are defined by
the domain and are finite.
For times t and t + 1, we have two cases. Either none of the counts change—i.e., ot+1 = ot,
ct+1 = ct, and mt+1 = mt—or at least one of the counts changes. In the former case, the
graph has leveled off. In the latter, at least one of the following holds: ot+1 > ot, ct+1 > ct, or
mt+1 < mt. In future time steps, either nothing will change or these counts will hit O, C, and
0 respectively—which levels off.

c. (3 pts) Iterative deepening search never expands more nodes than breadth first search
before finding the goal. T/F? Explain.

False. Iterative deepening search expands many nodes more than once (a cost that’s outweighed
by having to store a much smaller fringe than BFS).

d. (3 pts) Suppose h1 and h2 are two admissible heuristics for a search problem such
that for all nodes n, h1(n) < h2(n). Then there do not exist any starting nodes for which A∗

using h1 expands fewer nodes than A∗ using h2. T/F? Explain.

True by the definition of heuristic h2 dominating heuristic h1. It was presumed in the problem
to be a minimization context (this was also announced during the midterm). However, credit
was given if the answer indicated that this statement would be false for a maximization context.

e. (3 pts) A∗ uses O(bd) space while IDA∗ uses O(bd) space, where b is the branching
factor of the search tree and d is the depth of the shallowest goal node. T/F? Explain.

True. IDA∗ uses O(bd) space, A∗ uses O(bd) (unless |h(n)−h∗(n)| ≤ O(log h∗(n) for each node
n).

f. (3 pts) Depth-first search uses O(bd) space, where b is the branching factor of the
search tree and d is the depth of the shallowest goal node. T/F? Explain.

False. Not necessarily. DFS uses O(bm), where m is the depth of the search space—not O(bd),
where d is the depth of the shallowest goal node. DFS can “miss” a shallow goal node and
continue searching deep into the search space. If the depth is infinite, DFS might not even
finish! In fact, it’s not a complete search.

g. (2 pts) What does it mean for a search algorithm to be complete? Optimal?

Complete: if any feasible solutions to a search problem exist, the algorithm will find one.
Optimal: the solution returned by the algorithm has value at least as good as all other possible
solutions, where “good” is defined by some objective function (e.g., path cost).

2. (20 points)
Consider the following CNF SAT clauses:

(x4 ∨ x5 ∨ ¬x6)
(x1 ∨ x4 ∨ ¬x5)
(x3 ∨ ¬x4 ∨ x6)
(x2 ∨ ¬x3 ∨ x6)

(x1 ∨ ¬x2 ∨ ¬x5)
(x3 ∨ ¬x4 ∨ x5)

(¬x1 ∨ x7 ∨ ¬x8)
(¬x1 ∨ x8 ∨ ¬x7)

A DPLL algorithm tries to make the following assignments sequentially:

x6 7→ F
x5 7→ T
x1 7→ F
x2 7→ T
x4 7→ T
x3 7→ F
x8 7→ T
x7 7→ T

However, at some point during these assignments, a conflict is discovered.
a. (7 pts) Which decision induces the conflict?

When x6 7→ F:
(x4 ∨ x5)

(x1 ∨ x4 ∨ ¬x5)
(x3 ∨ ¬x4)
(x2 ∨ ¬x3)

(x1 ∨ ¬x2 ∨ ¬x5)
(x3 ∨ ¬x4 ∨ x5)

(¬x1 ∨ x7 ∨ ¬x8)
(¬x1 ∨ x8 ∨ ¬x7)

When x5 7→ T

(x1 ∨ x4)
(x3 ∨ ¬x4)
(x2 ∨ ¬x3)
(x1 ∨ ¬x2)

(¬x1 ∨ x7 ∨ ¬x8)
(¬x1 ∨ x8 ∨ ¬x7)

When x1 7→ F

(x4)
(x3 ∨ ¬x4)
(x2 ∨ ¬x3)

(¬x2)

Here, we have a decision point. Either DPLL chooses x4 to unit propagate, or DPLL chooses
¬x2 to unit propagate. I’ll work through the former (so x4 7→ T):

(x3)
(x2 ∨ ¬x3)

(¬x2)

Again, DPLL makes a choice between unit propagating x3 or ¬x2. I’ll work through the former
(so x3 7→ T):

(x2)
(¬x2)

This is clearly a contradiction, but DPLL doesn’t know that yet. It chooses to unit propagate
either x2 or ¬x2. I’ll work through the former (so x2 7→ T):

()

We have an empty clause; a conflict has been induced. If any of the other unit propagation
paths were taken, the answer remains the same (although the conflict graph will change a bit).
Setting x1 to F induced the conflict.

b. (7 pts) Draw the conflict graph for when the conflict is discovered.
The conflict graph changes based on the order of unit propagations chosen above. Many people
did not get the above question correct, so the conflict graph is a function of how many decisions
were made as well. See http://www.msoos.org/2011/05/understanding-implication-graphs/
for a walkthrough on conflict graphs.

c. (6 pts) Draw a conflict cut on the above graph that involves the fewest decision
variables, and write out what the corresponding learned clause is.
See Mate Soos’ site referenced above; this explains cuts like 1UIP, the first unique implication
point in the conflict graph.

3. (20 points)
a. (8 pts) Consider the search problem below with start state S and goal state G. The

heuristic values are shown. Unfortunately we do not know the transition costs, and we really
would like to know them. However we know that the given heuristic is admissible. Furthermore
we know what was the priority queue of A∗ after each node expansion, namely:

1. { (S, f=1) }

2. { (B, f=5), (A, f=6) }

3. { (A, f=6), (C, f=7) }

4. { (C, f=6) }

5. { (D, f=5), (G, f=7) }

6. { (G, f=6) }

S

A B

C

D G

h=1

h=5 h=3

h=2

h=0 h=0

Fill in the transition costs for all the edges.

S → A : 1
S → B : 2
A→ C : 3
B → C : 3
C → D : 1
C → G : 3
D → G : 1

b. (6 pts) Chris claims that: In general, if we are given a search problem, for which we
know: (i) the heuristic value of all the nodes; (ii) that the heuristic is admissible; (iii) the solu-
tion found by A∗ is given; and (iv) all the values of the prioriy queue of A∗’s search performance,
then the transition values of all the edges in the search problem can be uniquely determined.
Is Chris correct? If yes, then prove it. Otherwise, give an example that shows that Chris is
incorrect.

No. A* may not visit all the nodes, so the A* search values would not include any information
about the unvisited nodes.

c. (6 pts) Would A∗ still be guaranteed to find the minimal path to the goal if there are
negative transition costs?

No. If there is a cycle, negative costs would create a path of negative infinite cost, leading to an
infinite search for A*.

4. (20 points)
No-op actions are ones that have one precondition and one effect, and both are the same. In
Graphplan, no-op actions are added, at every level, for each proposition that appears in the
previous level.

a. (5 pts) Explain why no-op actions are needed in Graphplan.

There are a couple ways to see this. First, Graphplan needs to maintain all the possible states at
each planning graph level because conditions at a previous level may be useful for achieving the
goal but could not be used earlier. Thus, if Graphplan did not propagate non-changing literals
via no-ops, it would not be maintaining all the possible states at each level and might not reach
the goal. Second, Graphplan needs no-op actions in order for convergence. Remember that
one of the key conditions for Graphplan’s guaranteed convergence is that literals monotonically
increase. No-op actions make it so that once a literal appears at some level of Graphplan, it
will appear at all subsequent levels, guaranteeing that literals monotonically increase. Without
No-op actions, this guarantee is not met.

b. (5 pts) In Graphplan, no-op actions are included when determining mutex relation-
ships. Why is this done? Would Graphplan still work if it did not find those types of mutexes?

Graphplan needs to maintain mutexes involving no-op actions to meet the mutex requirement
for “inconsistent effects” between possible states. Graphplan would not work if it did not find
these types of mutexes.

c. (2 pts) A CoBot needs to deliver mail between GHC, NSH, and the UC. Let’s use
planning with GraphPlan to help the CoBot deliver mail to the different mail centers.

Init(At(M1, GHC) ∧ At(M2, NSH) ∧ At(M3, UC) ∧Mail(M1) ∧Mail(M2) ∧Mail(M3) ∧
MailCenter(GHC)∧MailCenter(NSH)∧MailCenter(UC)∧Robot(CoBot)∧At(Cobot,GHC))∧
¬GripperFull(Cobot)
Goal(At(M1, NSH) ∧At(M2, UC) ∧At(M3, GHC) ∧At(Cobot,GHC))

Action (Go(b,s,e),
PRECOND : Robot(b) ∧At(b, s) ∧MailCenter(s) ∧MailCenter(e)
EFFECT : ¬At(b, s) ∧At(b, e))

Action(PickUp(b,l,m),
PRECOND : Robot(b) ∧Mail(m) ∧MailCenter(l) ∧At(b, l) ∧At(m, l) ∧ ¬GripperFull(b)
EFFECT : GripperFull(b) ∧GripperCarries(m) ∧ ¬At(m, l)

Given ONLY the predicates given in the other two actions (i.e. DON’T introduce any new
predicates), write a definition for the PutDown(b,l,m) function that specifies preconditions and
effects. Use the predicates Robot(b), MailCenter(l), and Mail(m) in your solution.

Action(PutDown(b,l,m),
PRECOND : Robot(b)∧MailCenter(l)∧Mail(m)∧At(b, l)∧GripperFull(b)∧GripperCarries(m)
EFFECT : ¬GripperFull(b) ∧ ¬GripperCarries(m) ∧At(m, l)

d. (2 pts) Given the set of actions, formulate a plan that will reach the goal state from
the start state.

Here is one possible plan: [PickUp(CoBot,GHC,M1), Go(CoBot,GHC,NSH), PutDown(CoBot,NSH,M1),
PickUp(CoBot,NSH,M2), Go(CoBot,NSH,UC), PutDown(CoBot,UC,M2), PickUp(CoBot,UC,M3),
Go(CoBot,UC,GHC),PutDown(CoBot,GHC,M3)]

e. (6 pts) Say the initial state is ONLY At(M1, GHC)∧At(Cobot,GHC)∧Robot(CoBot)∧
Mail(M1) ∧MailCenter(GHC) ∧MailCenter(NSH) ∧ ¬GripperFull(Cobot) and the goal is
ONLY Goal(At(M1, NSH) ∧ At(Cobot,NSH)). Draw ONLY the first level of the planning
graph including the states, actions, and necessary mutexes.

First notice that at state level S0 we must also include ¬At(M1, NSH) ∧ ¬At(CoBot,NSH)
due to the Closed World Assumption (CWA). At the action level A0, the solid black arrows
represent mutexes due to inconsistent effects. The dotted black arrow represents a mutex due
to interference. At state level S1, the solid black arrows represent mutexes due to two literals
conflicting (one being the negation of the other). The dotted magenta arrows represent mutexes
due to the inconsistent support condition (every possible pair of actions that could achieve the
two literals is mutex). The two true actions in A1 are mutex, and their effects are the only way
to achieve those effects. Thus, all pairs of effects between these actions are mutex. A thick gold
dashed line represents this effect without cluttering up the plot.

Scoring rubric:
+2 points for drawing a mostly graph structure, ignoring CWA
+2 points for drawing correct action mutexes
+2 points for drawing an example of inconsistent support.

5. (20 points)
This problem deals with linear and integer linear programming. Assume the following linear
program (LP) Ax ≤ b:

A =

4 1
1 0
0 1
−1 0
0 −1

 x =

[
x
y

]
b =

9
2
2
0
0

x, y ∈ R

with linear objective function
maxx + y

a. (3 pts) Draw the polytope representing the set of all feasible solutions to the LP.

b. (3 pts) Trace out the Simplex method on this polytope, starting at the origin.

I was pretty lenient here, since people were rushed for time. The canonical tableau for the
problem is:

1 1 1 0 0 0 0

0 4 1 1 0 0 9
0 1 0 0 1 0 2
0 0 1 0 0 1 2

Either x (column 2) or y (column 3) can be made basic here; since we didn’t specify variable
selection rules, I allowed either. The Simplex method then either bounces from (0, 0)→ (0, 2)→
(74 , 2) or from (0, 0)→ (2, 0)→ (2, 1)→ (74 , 2); both were accepted.

c. (2 pts) What is the optimal value (i.e., what maximizes the objective) of the LP?
The optimal value is 15

4 , and occurs when x = 7
4 and y = 2. I did not take off points if only half

of this answer was given, since the question is a little vague on what exactly it wants.

d. (6 pts) Restrain the decision variables x and y to integer points. That is, let x, y ∈ Z.
Draw the branch and bound tree for the problem such that:

• Nodes are expanded in DFS order

• Branch first on x, with the left branch x ≥ 2 and the right x ≤ 1

• If necessary, branch on y with the left branch y ≥ 2 and the right y ≤ 1

Branching on x first, we restrict x ≥ 2. Then, the LP optimum for this restricted problem is
(x = 2, y = 1) for a value of 3. This is an integer solution, so we’re done at this branch (i.e., we
don’t branch on y here at all).
Now we’ve backtracked to the root and branch on x ≤ 1, with a lower bound of 3. Here again
the LP optimum for the restricted problem is x = 1, y = 2 for a value of 3, proving optimality.
Again, we don’t branch on y here at all.

e. (6 pts) On the original polytope (but with x, y ∈ Z), draw and label three cuts, one of
each type: (A) separating and valid, (B) not separating but still valid, (C) invalid.

There are many (infinitely many) correct answers to this problem. We’ve drawn one of each on
Figure e above. For (A), any linear inequality that separates the LP optimum from the (convex
hull of the) feasible integer set is good. For (B), any cut that leaves the (convex hull of the)
feasible integer set untouched is good. For (C), anything that isn’t (A) or (B) is good.

