Midterm Review

Prateek Tandon, John Dickerson
Basic Uninformed Search (Summary)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
<th>Bidirectional (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>b^d</td>
<td>b^d</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
<td>$b^{d/2}$</td>
</tr>
<tr>
<td>Space</td>
<td>b^d</td>
<td>b^d</td>
<td>bm</td>
<td>bl</td>
<td>bd</td>
<td>$b^{d/2}$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes, if $l \geq d$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

$b = $ branching factor
$d = $ depth of shallowest goal state
$m = $ depth of the search space
$l = $ depth limit of the algorithm
CSP Solving - Backtracking search

• Depth-first search for CSPs with single-variable assignments is called backtracking search

• Improvements:
 – Most constrained variable/Minimum Remaining Values – choose the variable with the fewest legal values
 – Least constraining variable – choose the variable that rules out the fewest values in the remaining value
 – Forward checking – Keep track of remaining legal values and terminate when a variable has no remaining legal values
 – Arc Consistency (AC3) – propagate information across arcs
 – Conflict-Directed Backjumping – maintain a conflict set and backjump to a variable that might help resolve the conflict
A* Search

function A*-SEARCH (problem) returns a solution or failure
return BEST-FIRST-SEARCH (problem, g+h)

\[f(n) = \text{estimated cost of the cheapest solution through } n \]
\[= g(n) + h(n) \]
In a minimization problem, an admissible heuristic $h(n)$ never overestimates the real value.

(In a maximization problem, $h(n)$ is admissible if it never underestimates)

Best-first search using $f(n) = g(n) + h(n)$ and an admissible $h(n)$ is known as A^* search.

A^* tree search is complete & optimal.
Iterative Deepening A* (IDA*)

function IDA*(problem) **returns** a solution sequence

inputs: problem, a problem

static: f-limit, the current f-COST limit

 root, a node

root ← MAKE-NODE(INITIAL-STATE[problem])
f-limit ← f-COST(root)

loop do
 solution, f-limit ← DFS-CONTOUR(root,f-limit)
 if solution is non-null **then return** solution
 if f-limit = ∞ **then return** failure; end

function DFS-CONTOUR(node,f-limit) **returns** a solution sequence and a new f-COST limit

inputs: node, a node

 f-limit, the current f-COST limit

static: next-f, the f-COST limit for the next contour, initially ∞

if f-COST[node] > f-limit **then return** null, f-COST[node]
if GOAL-TEST[problem](STATE[node]) **then return** node, f-limit
for each node s in SUCCESSOR(node) do
 solution, new-f ← DFS-CONTOUR(s,f-limit)
 if solution is non-null **then return** solution, f-limit
 next-f ← MIN(next-f, new-f); end

return null, next-f

\[
f-COST[node] = g[node] + h[node]\]
Map of Romania showing contours at $f = 380$, $f = 400$ and $f = 420$, with Arad as the start state. Nodes inside a given contour have f-costs lower than the contour value.
LP, IP, MIP, WDP, etc ...

- Topics you should know at a high level:
 - LP: visual representation of simplex
 - (M)IP: Branch and cut (what are cuts? Why do we use them?)
 - Cuts should separate LP optimum from integer points
 - Gomory cuts:

- Topics you should know well:
 - Formulating a combinatorial search problem as an IP/MIP (think HW2, P2)
 - (M)IP: Branch and bound (upper bounds, lower bounds, proving optimality)
 - Principle of least commitment (stay flexible)
Planning Review

• STRIPS – basic representation
• Linear Planning – work on one goal at a time. Solve goal completely before moving onto the next one.
 – Reduces search space since goals are solved one at time.
 – But this leads to incompleteness [Sussman Anomaly]
 – Planner’s efficiency is sensitive to goal orderings
 – Concrete implementation as an algorithm: GPS [look over example in slides]
• Partial-Order Planning – only constrain the ordering in the problem only as much as you need to at the current moment.
 – Sound and complete whereas Linear Planning is only sound
• Graph plan – try to “preprocess” the search using a planning graph
• SatPlan – generate boolean SAT formula for plan
 – What was the limitation?
Planning Graph

Adds a level until either a solution is found by EXTRACT-SOLUTION [either CSP or backwards search] or no solution exists.
Mutex Rules for Actions

• Mutex between two actions at a given level:
 – Inconsistent effects: One action negates the effect of the other
 – Interference: One of the effects of an action is the negation of a precondition of the other
 – Competing needs: One of the preconditions of one action is mutually exclusive with a precondition of the other.
Mutex Rules for Literals

- Literals negation of the other [easy]
- Inconsistent support – if each possible pair of actions from the prior action graph level that could achieve the two literals is mutually exclusive.
 - Check to see if pairs of actions that produce literals are mutex on the past action level.
 - Look at Book example