

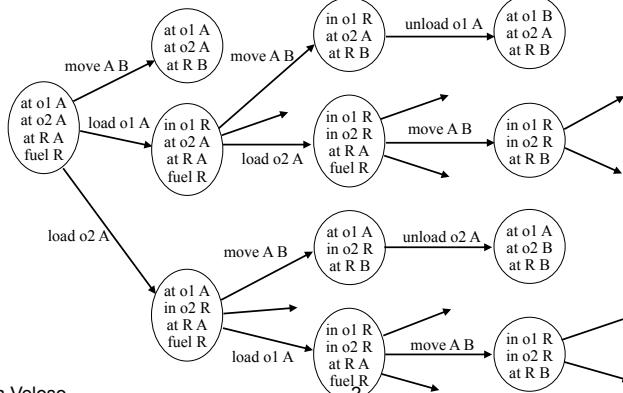
Classical Planning

GraphPlan - SatPlan

Manuela M. Veloso

Carnegie Mellon University
Computer Science Department

15-780 Graduate AI – Spring 2013


Readings:

- Chapter 10, Russell & Norvig

Planning Graph – Forward Expansion

- State reachability – “until” goal

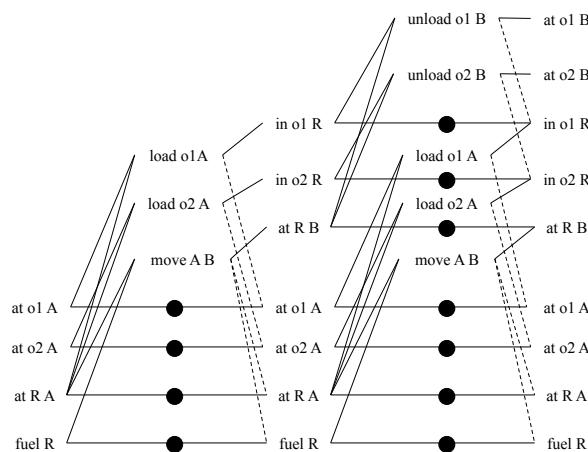
- Can find **all** goals reachable from initial state
- Exponential in time and memory

Manuela Veloso

15-780, Spring
2013

Graphplan

Blum & Furst 95


- Preprocessing before engaging in search.
- Forward search combined with backward search.
- Construct a *planning graph* to reveal constraints
- Two stages:
 - Extend: One time step in the planning graph.
 - Search: Find a valid plan in the planning graph.
- Graphplan finds a plan or proves that no plan has fewer “time steps.”

Manuela Veloso

3

15-780, Spring
2013

Plan Graph One-Way Rocket Example

Manuela Veloso

4

15-780, Spring
2013

Extending a Planning Graph - Actions

- To create an action-level i :
 - Add each instantiated operator, for which all of its preconditions are present at proposition-level i AND *no two of its preconditions are exclusive*.
 - Add all the no-op actions.
- Determine the **exclusive** actions.

Manuela Veloso

5

15-780, Spring
2013

Extending a Planning Graph – Propositions

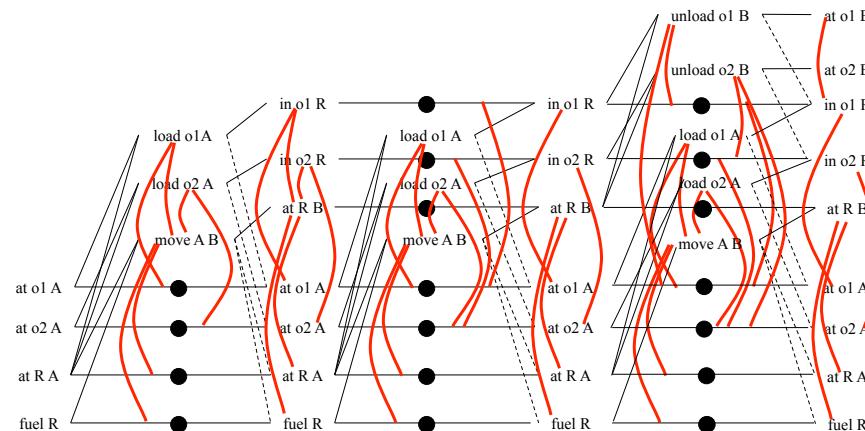
- To create a proposition-level $i + 1$:
 - Add all the effects of the inserted actions at action-level i - distinguishing add and delete effects.
- Determine the **exclusive** actions.

Manuela Veloso

6

15-780, Spring
2013

Planning Graphs


- A literal may exist at level $i + 1$ if it is an Add-Effect of some action in level i .
- Two propositions p and q are **exclusive** in a proposition-level if ALL actions that add p are exclusive of ALL actions that add q .
- Actions A and B are **exclusive** at action-level i , if:
 - **Interference:** A (or B) deletes a precondition or an Add-Effect of B (or A).
 - **Competing Needs:** p is a precondition of A and q is a precondition of B, and p and q are exclusive in proposition-level $i - 1$.

Manuela Veloso

7

15-780, Spring
2013

Mutex Exclusivity Relations One-Way Rocket Example

Manuela Veloso

8

15-780, Spring
2013

Exclusivity Examples

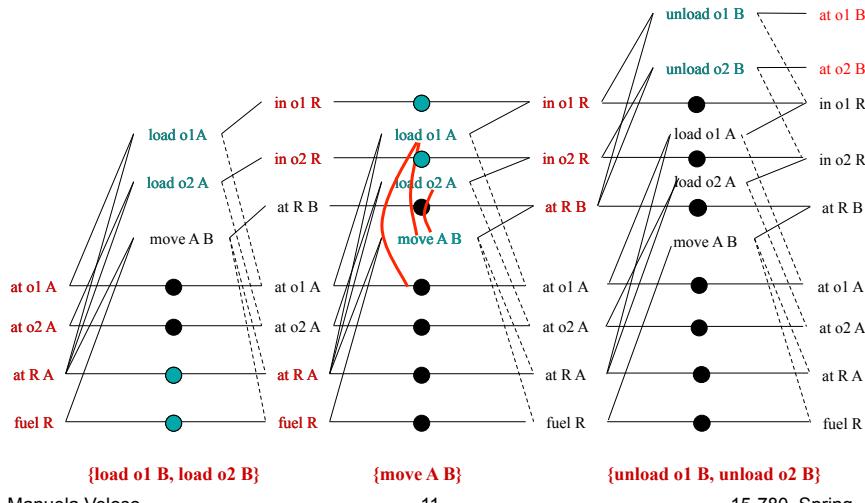
- Exclusive Actions: (Move A B) deletes a precondition of (Load o1 A). Therefore exclusive (existence of threats).
- Exclusive Propositions: (at R A) and (at R B) at time 2 are exclusive. (at R A) is added by a no-op and (at R B) is added by (Move A B) and no-op and (Move A B) are exclusive actions.
- Exclusive Actions: Then (Load o1 A) and (Load o2 B) are exclusive because (at R A) and (at R B) are exclusive.
- Propositions can be exclusive in some time step and not in others: If (at o1 A) and (at R A) at time 1, then (in o1 A) and (at R B) are exclusive at time 2, but not at time 3.

Manuela Veloso

9

15-780, Spring
2013

Searching a Planning Graph


- Level-by-level backward-chaining approach to use the exclusivity constraints.
- Given a set of goals at time t , identify all the sets of actions (including no-ops) at time $t - 1$ who add those goals and are not exclusive. The preconditions of these actions are new goals for $t - 1$.

Manuela Veloso

10

15-780, Spring
2013

Searching a Planning Graph

Recursive Search

- For each goal at time t in some arbitrary order:
 - Select some action at time $t - 1$ that achieves that goal and it is not exclusive with any other action already selected.
 - Do this recursively for all the goals at time t - do not add new action, but use the ones already selected if they add another goal.
 - If recursion returns failure, then select a different action.
- The new goal set is the set of all the preconditions of the selected actions.

Manuela Veloso

12

15-780, Spring 2013

Enhancements

- Forward-checking - for the goals ahead, check if all the actions that add it are exclusive with the selected action.
- Memoization - when a set of goals is not solvable at some time t , then this is recorded and hashed. If back at time t , the hash table is checked and search proceeds backing up right away.

Manuela Veloso

13

15-780, Spring
2013

Planning as Satisfiability

- One interpretation: ``first-order deductive theorem-proving does not scale well.''
- One solution: ``propositional satisfiability''
- Uniform clausal representation for goals and operators.
- Stochastic local search is a powerful technique for planning.

Manuela Veloso

14

15-780, Spring
2013

SatPlan

- Assume the plan has n (time-parallel) steps. (*strong assumption*)
- Initial state: completely specified at time 0.

$$\text{at-o1-A}_0 \wedge \text{at-o2-A}_0 \wedge \text{at-R-A}_0$$
- Goal: specified at time $2n$.

$$\text{at-o1-B}_6 \wedge \text{at-o2-B}_6$$
- Actions: specified at *odd* times; An action implies its preconditions and effects.

$$(\neg\text{load-o1-A}_1 \vee \text{at-o1-A}_0) \wedge (\neg\text{load-o1-A}_1 \vee \text{at-R-A}_0) \wedge$$

$$(\neg\text{load-o1-A}_1 \vee \text{in-R-A}_2) \wedge (\neg\text{load-o1-A}_1 \vee \neg\text{at-o1-A}_2)$$

Manuela Veloso

15

15-780, Spring
2013

Discussion

- Efficiency
- Optimality
- Comparison

Manuela Veloso

16

15-780, Spring
2013