Classical Planning
GraphPlan - SatPlan

Manuela M. Veloso
Carnegie Mellon University
Computer Science Department

15-780 Graduate AI – Spring 2013

Readings:
• Chapter 10, Russell & Norvig

Planning Graph – Forward Expansion

• State reachability – “until” goal
 – Can find all goals reachable from initial state
 – Exponential in time and memory
Graphplan

Blum & Furst 95

- Preprocessing before engaging in search.
- Forward search combined with backward search.
- Construct a planning graph to reveal constraints
- Two stages:
 - Extend: One time step in the planning graph.
 - Search: Find a valid plan in the planning graph.
- Graphplan finds a plan or proves that no plan has fewer “time steps.”

Plan Graph
One-Way Rocket Example
Extending a Planning Graph - Actions

• To create an action-level i:
 – Add each instantiated operator, for which all of its preconditions are present at proposition-level i AND no two of its preconditions are exclusive.
 – Add all the no-op actions.
• Determine the exclusive actions.

Extending a Planning Graph – Propositions

• To create a proposition-level $i + 1$:
 – Add all the effects of the inserted actions at action-level i - distinguishing add and delete effects.
• Determine the exclusive actions.
Planning Graphs

- A literal may exist at level $i + 1$ if it is an Add-Effect of some action in level i.
- Two propositions p and q are exclusive in a proposition-level if ALL actions that add p are exclusive of ALL actions that add q.
- Actions A and B are exclusive at action-level i, if:
 - Interference: A (or B) deletes a precondition or an Add-Effect of B (or A).
 - Competing Needs: p is a precondition of A and q is a precondition of B, and p and q are exclusive in proposition-level $i - 1$.

Mutex Exclusivity Relations
One-Way Rocket Example
Exclusivity Examples

- Exclusive Actions: (Move A B) deletes a precondition of (Load o1 A). Therefore exclusive (existence of threats).

- Exclusive Propositions: (at R A) and (at R B) at time 2 are exclusive. (at R A) is added by a no-op and (at R B) is added by (Move A B) and no-op and (Move A B) are exclusive actions.

- Exclusive Actions: Then (Load o1 A) and (Load o2 B) are exclusive because (at R A) and (at R B) are exclusive.

- Propositions can be exclusive in some time step and not in others: If (at o1 A) and (at R A) at time 1, then (in o1 A) and (at R B) are exclusive at time 2, but not at time 3.

Searching a Planning Graph

- Level-by-level backward-chaining approach to use the exclusivity constraints.

- Given a set of goals at time t, identify all the sets of actions (including no-ops) at time $t - 1$ who add those goals and are not exclusive. The preconditions of these actions are new goals for $t - 1$.
Searching a Planning Graph

Recursive Search

- For each goal at time t in some arbitrary order:
 - Select some action at time $t-1$ that achieves that goal and it is not exclusive with any other action already selected.
 - Do this recursively for all the goals at time t - do not add new action, but use the ones already selected if they add another goal.
 - If recursion returns failure, then select a different action.
- The new goal set is the set of all the preconditions of the selected actions.
Enhancements

• Forward-checking - for the goals ahead, check if all the actions that add it are exclusive with the selected action.
• Memoization - when a set of goals is not solvable at some time t, then this is recorded and hashed. If back at time t, the hash table is checked and search proceeds backing up right away.

Planning as Satisfiability

• One interpretation: `first-order deductive theorem-proving does not scale well.'
• One solution: `propositional satisfiability'
• Uniform clausal representation for goals and operators.
• Stochastic local search is a powerful technique for planning.
SatPlan

• Assume the plan has \(n \) (time-parallel) steps. (strong assumption)

• Initial state: completely specified at time 0.
 \(\text{at-o1-A}_0 \land \text{at-o2-A}_0 \land \text{at-R-A}_0 \)

• Goal: specified at time \(2n \).
 \(\text{at-o1-B}_6 \land \text{at-o2-B}_6 \)

• Actions: specified at odd times; An action implies its preconditions and effects.
 \(\neg \text{load-o1-A}_1 \lor \text{at-o1-A}_0 \land \neg \text{load-o1-A}_1 \lor \text{at-R-A}_0 \land \neg \text{load-o1-A}_1 \lor \text{in-R-A}_2 \land \neg \text{load-o1-A}_1 \lor \neg \text{at-o1-A}_2 \)

Discussion

• Efficiency
• Optimality
• Comparison