

Outline (2 lectures)	
 Introduction: Search a State, Actions, and Ge Planning Algorithms State-space Planning Plan-space Planning GraphPlan SATPlan Heuristics for Planning Planning and Execution Conditional Planning Representation and alg Information gathering a Replanning 	oal Representation – GPS, Prodigy - SNLP g Algorithms on	
Manuela Veloso, Carnegie Mellon	4	15-780, Spring 2013

- Action Name
- All variables used in the schema
 - Universally quantified
 - Can choose values to instantiate the variables
- Precondition
- Effect
 - Positive effects adds effect to state
 - Negative effects deletes effects from state (if in state)

11

Manuela Veloso, Carnegie Mellon

15-780, Spring

2013

Initial State, Goal, Actions Example-1 $Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK)$ $\wedge Cargo(C_1) \wedge Cargo(C_2) \wedge Plane(P_1) \wedge Plane(P_2)$ \land Airport(JFK) \land Airport(SFO)) $Goal(At(C_1, JFK) \land At(C_2, SFO))$ Action(Load(c, p, a)),**PRECOND**: $At(c, a) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)$ EFFECT: $\neg At(c, a) \land In(c, p)$) Action(Unload(c, p, a),**PRECOND:** $In(c, p) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)$ EFFECT: $At(c, a) \land \neg In(c, p)$) Action(Fly(p, from, to), **PRECOND:** $At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)$ EFFECT: $\neg At(p, from) \land At(p, to))$ Figure 10.1 A PDDL description of an air cargo transportation planning problem. Manuela Veloso, Carnegie Mellon 16 15-780, Spring 2013

Initial State, Goal, Actions Example-2

 $\begin{array}{l} Init(On(A, Table) \land On(B, Table) \land On(C, A) \\ \land Block(A) \land Block(B) \land Block(C) \land Clear(B) \land Clear(C)) \\ Goal(On(A, B) \land On(B, C)) \\ Action(Move(b, x, y), \\ \\ PRECOND: On(b, x) \land Clear(b) \land Clear(y) \land Block(b) \land Block(y) \land \\ (b \neq x) \land (b \neq y) \land (x \neq y), \\ \\ EFFECT: On(b, y) \land Clear(x) \land \neg On(b, x) \land \neg Clear(y)) \\ Action(MoveToTable(b, x), \\ \\ PRECOND: On(b, x) \land Clear(b) \land Block(b) \land (b \neq x), \\ \\ \\ EFFECT: On(b, Table) \land Clear(x) \land \neg On(b, x)) \end{array}$

Figure 10.3 A planning problem in the blocks world: building a three-block tower. One solution is the sequence [MoveToTable(C, A), Move(B, Table, C), Move(A, Table, B)].

Manuela Veloso, Carnegie Mellon

19

15-780, Spring 2013

(OPERATOR MOVE		
:preconds		
?block BLOCK		
?from OBJECT		
?to OBJECT		
(and (clear ?b	olock)	
(clear		
	ock ?from)	
:effects		
add (on ?block	: ?to)	
del (on ?block	: ?from)	
(if (block-p ?	from)	
add (clear	?from))	
(if (block-p ?	?to)	
del (clear	: ?to)))	

2013

4-Action Blocks World Domain

Pickup (?b) Unstack (?a, ?b) Pre: (handempty) Pre: (handempty) (clear ?b) (clear ?a) (on ?a ?b) (on-table ?b) Add: (holding ?a) (clear ?b) Add: (holding ?b) Delete: (handempty) Delete: (handempty) (on ?a ?b) (clear ?a) (on-table ?b) (clear ?b) **Stack** (?a, ?b) Pre: (holding ?a) (clear ?b) Putdown (?b) Pre: (holding ?b) Add: (handempty) Add: (handempty) (on ?a ?b) (on-table ?b) Delete: (holding ?a) Delete: (holding ?b) (clear ?b) Manuela Veloso, Carnegie Mellon 35 15-780, Spring

Plan Terminology

- Totally Ordered Plan
 - There exists sufficient orderings O such that all actions in A are ordered with respect to each other
- Fully Instantiated Plan
 - There exists sufficient constraints in *B* such that all variables are constrained to be equal to some constant
- Consistent Plan
 - There are no contradictions in O or B
- Complete Plan
 - Every precondition p of every action a_i in A is achieved:
 There exists an effect of an action a_j that comes before a_i and unifies with p, and no action a_k that deletes p comes between a_i and a_i
- Partial plans are typically *not* executable *nor* consistent

Manuela Veloso, Carnegie Mellon

45

15-780, Spring 2013

Initial state:		Goal statement:	
	(at obj1 locA)		
	(at obj2 locA)		
	(at ROCKET loc)
	(has-fuel ROCH	(ET)	
Ī	Goal	Plan	
ľ	(at obj1 locB)	(LOAD-ROCKET obj1 locA)	
		(MOVE-ROCKET)	
		(UNLOAD-ROCKET obj1 locB)	

State-Space Nonlinear Planning Extend linear planning: • From stack to set of goals. · Include in the search space all possible interleaving of goals. State-space nonlinear planning is **complete**. Goal Plan (at obj1 locB) (LOAD-ROCKET obj1 locA) (at obj2 locB) (LOAD-ROCKET obj2 locA) (at obj1 locB) (MOVE-ROCKET) (UNLOAD-ROCKET obj1 locB) (UNLOAD-ROCKET obj1 locB) (at obj2 locB) 15-780, Spring 2013 Manuela Veloso, Carnegie Mellon 48

S	Summary	
 Planning: selecting one stransform (apply to) an in statement is true. 		. ,
Means-ends analysis: id differences between state	,	s soon as possible,
 Linear planning: backwa using a stack of goals - p incomplete; GPS, STRIP 	otentially efficient, po	2
 Plan-space planning: le threat resolution; effective 		
 Nonlinear planning with chaining using a set of go differences;" Prodigy4.0. 	oals; reason about wh	
Manuela Veloso, Carnegie Mellon	56	15-780, Spring 2013