
A

Evolutionary Algorithms based on Probabilistic Modeling

CHUNG-YAO CHUANG, Carnegie Mellon University

HSIEN-TANG KAO, Carnegie Mellon University

Evolutionary algorithms (EAs) are population-based meta-heuristic optimization algorithms that imitate
the process of natural evolution. EAs generate solutions to optimization problems using mechanisms in-
spired by biological evolution, such as selection, reproduction, mutation and recombination. Recently, there
is a growing interest in developing EAs that utilize probabilistic modeling in their search mechanism. These
approaches are called Estimation of Distribution Algorithms (EDAs). By using probabilistic models to sum-
marize the information, advanced EDAs are able to incorporate techniques from machine learning and
statistics to automatically discover the multivariate interactions between problem variables, which leads to
an approximation of problem decomposition and recognition of important substructures that constitute the
promising solutions. For this project, we implement an EDA called Extended Compact Genetic Algorithm
(ECGA) and use it to study some aspects of this paradigm.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning—Parameter learning;
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and Search—Heuristic methods;
G.1.6 [Numerical Analysis]: Optimization

General Terms: Algorithms

Additional Key Words and Phrases: Estimation of distribution algorithms, EDAs, marginal product mod-
els, extended compact genetic algorithm, ECGA, evolutionary algorithms, genetic algorithm, evolutionary
computation.

ACM Reference Format:
Chung-Yao Chuang and Hsien-Tang Kao, 2013. Evolutionary Algorithms based on Probabilistic Modeling.
ACM V, N, Article A (May 2013), 11 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Evolutionary algorithms (EAs) [Goldberg 1989; De Jong 2006; Eiben and Smith 2008]
are population-based meta-heuristic optimization algorithms that imitate the process
of natural evolution. EAs generate solutions to optimization problems using mecha-
nisms inspired by biological evolution, such as selection, reproduction, mutation and
recombination. Candidate solutions to the optimization problem play the role of indi-

Author’s addresses: Chung-Yao Chuang, Robotics Institute, Carnegie Mellon University; Hsien-Tang Kao,
Department of Mechanical Engineering, Carnegie Mellon University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0000-0000/2013/05-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Journal Name, Vol. V, No. N, Article A, Publication date: May 2013.

A:2 Chung-Yao Chuang and Hsien-Tang Kao

viduals in a population, and the fitness function determines the environment within
which the solutions “live.” The evolution usually starts from a population of randomly
generated solutions and proceeds in iterations. In each iteration, the fitness of ev-
ery solution in the population is evaluated, better solutions are stochastically selected
from the current population, and each solution is modified (through mutation and re-
combination) to form a new population. The new population is then used in the next
iteration of the algorithm.

Recently, there is a growing interest in developing EAs that utilize probabilistic mod-
eling in their search mechanism. These approaches are called Estimation of Distribu-
tion Algorithms (EDAs) [Mühlenbein and Paaß 1996; Larrañaga and Lozano 2001;
Pelikan et al. 2002]. EDAs introduce a new paradigm into the framework of evolution-
ary algorithms in that it replaces the traditional variation operators, such as muta-
tion and crossover, with the procedure of building a probabilistic model on promising
solutions, and sampling the constructed model to generate new candidate solutions.
Early EDAs, such as the population-based incremental learning (PBIL) [Baluja 1994]
and the compact genetic algorithm (cGA) [Harik et al. 1999], assume no interaction
between problem variables, i.e., variables are assumed independent of each other.
Subsequent studies started from capturing pairwise interactions, such as mutual-
information-maximizing input clustering (MIMIC) [de Bonet et al. 1997], Baluja’s de-
pendency tree approach [Baluja and Davies 1997], and the bivariate marginal distri-
bution algorithm (BMDA) [Pelikan and Mühlenbein 1999], to modeling multivariate
interactions, such as the extended compact genetic algorithm (ECGA) [Harik 1999],
the Bayesian optimization algorithm (BOA) [Pelikan et al.], and the estimation of
Bayesian network algorithm (EBNA) [Etxeberria and Larrañaga 1999]. By using prob-
abilistic models to summarize the information, advanced EDAs are able to incorporate
techniques from machine learning and statistics to automatically discover the multi-
variate interactions between problem variables, which leads to an approximation of
problem decomposition and the recognition of important substructures that constitute
the promising solutions.

For this project, we focus on studying multivariate EDAs. Specifically, we imple-
mented the Extended Compact Genetic Algorithm (ECGA) [Harik 1999] and used our
implementation to explore the capability and limitation of this meta-heuristic opti-
mization paradigm. One thing we have noticed about the behavior of ECGA (and from
the literature [Hauschild and Pelikan 2011; Yuan and Gallagher 2005; Lozano 2006],
it’s a characteristic/problem of other EDAs in general) is that the diversity of the pop-
ulation is decreased much faster comparing to the conventional GAs. While this could
mean that ECGA is more efficient in optimizing the solutions, it might also correspond
to a greater chance of premature convergence. In this project, we propose a diver-
sity maintenance method that utilizes the information contained in the probabilistic
models built by ECGA. To assess the effectiveness of our method, we performed ex-
periments to compare our approach with a simple GA, and the original ECGA on the
minimum vertex cover (MVC) problem. The instances of MVC problem were adopted

ACM Journal Name, Vol. V, No. N, Article A, Publication date: May 2013.

Evolutionary Algorithms based on Probabilistic Modeling A:3

ALGORITHM 1: General Outline of Estimation of Distribution Algorithms
Initialize a population P with n solutions.
while the stopping criteria are not met do

Evaluate the solutions in P .
P ′ ← apply selection on P .
M ← build a probabilistic model on P ′.
O← generate new candidate solutions by sampling M .
Incorporate O into P .

end

from DIMACS benchmark set1. The results show that with our diversity maintenance
mechanism, the modified ECGA performs better than the simple GA and the original
ECGA.

The rest of this report is organized as follows: In Section 2, we review the background
of EDAs. Following that, Section 3 describes probabilistic model used in ECGA and its
model building mechanism. In Section 4, a method for maintaining diversity in ECGA
is proposed. Section 5 introduce the minimum vertex cover problem and the fitness
function for GAs. Section 6 presents and discuss the performance of GA, ECGA and
ECGA-DM on a set of benchmark instances. Section 7 presents the conclusion of the
paper with some observations and findings.

2. ESTIMATION OF DISTRIBUTION ALGORITHMS

Similar to other evolutionary algorithms, the procedure of EDAs, as listed in Algo-
rithm 1, starts from initializing a population of solutions which can be randomly gen-
erated or produced with some heuristics. Then, the algorithm iterates through the
selection process, which picks a set of promising solutions from the current popula-
tion, and the creation of new candidate solutions, which recombines the set of selected
solutions to form new solutions. The prominent feature of EDAs is that the recombi-
nation of solutions is done by building and sampling probabilistic models. From an
abstract perspective, the selected set of solutions can be viewed as samples drawn
from an unknown probability distribution. Knowing that distribution would allow the
optimization method to generate new solutions that are somehow similar to the ones
contained in the original selected set of promising solutions.

Although the actual probability distribution is unknown, there are techniques capa-
ble of estimating that distribution by using the set of selected solutions. Using these
estimation techniques, we can obtain probabilistic models that reflect the possible for-
mation of good solutions. In other words, an accurate distribution estimate is able to
capture the structure of good solutions found so far. And by sampling this distribution,
we can ensure an effective mixing and reproduction of those good structures constitut-
ing the promising solutions.

1We obtained those instances from http://cs.hbg.psu.edu/benchmarks/vertex cover.html, which were
converted from maximum clique problems.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: May 2013.

A:4 Chung-Yao Chuang and Hsien-Tang Kao

Table I. An example of marginal product model

[X1] [X2 X4] [X3]

P (X1 = 0) = 0.4 P (X2 = 0, X4 = 0) = 0.4 P (X3 = 0) = 0.5

P (X1 = 1) = 0.6 P (X2 = 0, X4 = 1) = 0.1 P (X3 = 1) = 0.5

P (X2 = 1, X4 = 0) = 0.1

P (X2 = 1, X4 = 1) = 0.4

An example of marginal product model that defines a joint
distribution over four variables. The variables enclosed in the
same brackets are considered dependent and modeled jointly.
Each variable subset is considered independent of other subsets.

Historically, EDAs were grown out of studying the limitation of genetic algorithms
(GAs). GAs mimic the mechanism of natural evolution by introducing artificial selec-
tions and genetic operators to discover and recombine partial solutions. By properly
growing and mixing promising partial solutions, which are often referred to as build-
ing blocks [Goldberg 1989; 2002], GAs are capable of efficiently solving a host of prob-
lems. The ability of implicitly processing a large number of partial solutions has been
recognized as an important source of the computational power of GAs. Unfortunately,
proper growth and mixing of building blocks are not always achieved. GA in its sim-
plest form employing fixed representations and problem-independent recombination
operators often breaks the promising partial solutions while performing crossovers.
This can cause crucial building blocks to vanish during the optimization process.

In order to overcome this building block disruption problem, EDAs employ the
concept of constructing probabilistic models on promising solutions to identify the
relationship among partial solutions. Higher-order EDAs, such as ECGA [Harik
1999], Bayesian optimization algorithm (BOA) [Pelikan et al.], and the estimation
of Bayesian network algorithm (EBNA) [Etxeberria and Larrañaga 1999], are able to
discover multivariate interaction exhibited in the promising solutions. Using this in-
formation, EDAs can recognize important substructures that constitute the promising
solutions, thus avoid the building block disruption problem.

3. EXTENDED COMPACT GENETIC ALGORITHM

The extended compact genetic algorithm (ECGA) [?] uses a product of marginal dis-
tributions on a partition of the variables. This kind of probability distribution belongs
to a class of probabilistic models known as marginal product models (MPMs). In this
kind of model, subsets of variables can be modeled jointly, and each subset is consid-
ered independent of other subsets. In this work, the conventional notation is adopted
that variable subsets are enclosed in brackets. Table I presents an example of MPM
defined over four variables: X1, X2, X3 and X4. In this example, X2 and X4 are mod-
eled jointly and each of the three variable subsets ([X1], [X2 X4] and [X3]) is considered
independent of other subsets. For instance, the probability that this MPM generates a

ACM Journal Name, Vol. V, No. N, Article A, Publication date: May 2013.

Evolutionary Algorithms based on Probabilistic Modeling A:5

sample X1X2X3X4 = 0101 is calculated as follows,

P (X1X2X3X4 = 0101)

= P (X1 = 0)× P (X2 = 1, X4 = 1)× P (X3 = 0)

= 0.4× 0.4× 0.5.

In fact, as its name suggests, a marginal product model represents a distribution that
is a “product” over the marginal distributions defined over variable subsets.

In the ECGA, both the structure and the parameters of the model are searched and
optimized with a greedy approach to fit the statistics of the selected set of promising
solutions. The measure of a good MPM is quantified based on the minimum descrip-
tion length (MDL) principle [Rissanen 1978], which assumes that given all things are
equal, simpler distributions are better than complex ones. The MDL principle thus
penalizes both inaccurate and complex models, thereby, leading to a near-optimal dis-
tribution. Specifically, the search measure is the MPM complexity which is quantified
as the sum of model complexity, Cm, and compressed population complexity, Cp. The
greedy MPM search first considers all variables as independent and each of them forms
a separate variable subset. In each iteration, the greedy search merges two variable
subsets that yields the most Cm + Cp reduction. The process continues until there is
no further merge that can decrease the combined complexity.

The model complexity, Cm, quantifies the model representation in terms of the num-
ber of bits required to store all the marginal distributions. Suppose that the given
problem is of length ` with binary encoding, and the variables are partitioned into m
subsets with each of size ki, i = 1 . . .m, such that ` =

∑m
i=1 ki. Then the marginal

distribution corresponding to the ith variable subset requires 2ki − 1 frequency counts
to be completely specified. Taking into account that each frequency count is of length
log2(n+1) bits, where n is the population size, the model complexity, Cm, can be defined
as

Cm = log2(n+ 1)

m∑
i=1

(
2ki − 1

)
.

The compressed population complexity, Cp, quantifies the suitability of the model
in terms of the number of bits required to store the entire selected population (the
set of promising solutions picked by selection operator) with an ideal compression
scheme applied. The compression scheme is based on the partition of the variables.
Each subset of the variables specifies an independent “compression block” on which
the corresponding partial solutions are optimally compressed. Theoretically, the opti-
mal compression method encodes a message of probability pi using − log2 pi bits. Thus,
taking into account all possible messages, the expected length of a compressed message
is
∑

i−pi log2 pi bits, which is optimal. In the information theory [Cover and Thomas
1991], the quantity− log2 pi is called the information of that message and

∑
i−pi log2 pi

is called the entropy of the corresponding distribution. Based on the information the-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: May 2013.

A:6 Chung-Yao Chuang and Hsien-Tang Kao

Table II. Illustration of MPMs built by ECGA when solving con-
catenated 4-bit trap function

Generation Marginal Product Model

1 [1 2 3 4] [5 6 7 8] [9 10 11 12] [13 14 15 16]
2 [1 2 3 4] [5 6 7 8] [9 10 11 12] [13 14 15 16]
3 [1 2 3 4] [5 6 7 8] [9 10 11 12] [13 14 15 16]
... · · · · · · · · · · · · · · · · · ·

Marginal product models built by ECGA when solving con-
catenated 4-bit trap problem. The variables are denoted
by their indexes. Each group of variables represents a
marginal model in which a marginal distribution resides.

ory, the compressed population complexity, Cp, can be derived as

Cp = n

m∑
i=1

2ki∑
j=1

−pij log2 pij ,

where pij is the frequency of the jth possible partial solution to the ith variable subset
observed in selected population.

To see how ECGA avoid the building block disruption problem, consider a 4-bit trap
function that takes a binary string of length 4,

ftrap4
(x1x2x3x4) =

{
4, if u = 4;
3− u, otherwise.

,

where u is the number of ones in the string x1x2x3x4. Suppose that we are dealing with
a 16-bit maximization problem formed by concatenating four 4-bit trap functions,

f(s1s2 · · · s16) =
3∑

i=0

ftrap4
(s4i+1s4i+2s4i+3s4i+4) ,

where s1s2 · · · s16 is a solution string and the variables to the same sub-function are
considered as strongly related. Assume that we use ECGA to tackle this problem. By
observing subsequent generations of the optimization process, a series of models built
by ECGA can be obtained like those listed in Table II. From the table, we can see that
the built model capture the structure of the problem properly from the first generation
(i.e., the model building algorithm reasoned a probabilistic model that has the struc-
ture consistent with the decomposition of the problem.) and it continued to identify the
building blocks correctly. By sampling the probabilistic model that is consistent with
the problem structure, new candidate solutions can be generated in a building-block-
wise way. As a result, the building block disruption can be avoid.

4. DIVERSITY MAINTENANCE IN ECGA

One situation that directly affects the EDAs’ ability to find the best solutions is the
premature convergence to some local optimum due to diversity loss. Diversity loss is a

ACM Journal Name, Vol. V, No. N, Article A, Publication date: May 2013.

Evolutionary Algorithms based on Probabilistic Modeling A:7

problem that affects the exploration ability of evolutionary algorithms in general, and
increasing the diversity of a population can help such algorithms to better explore the
space of candidate solutions and avoid stagnation in some local optimum.

However, if we introduce diversity blindly, the resulting new solutions are often of
low fitness value and subsequently not selected to be included in the parent population.
This is because the chance is usually very small that a randomly drawn solution will
be better than the solutions in the current population. Thus, we think that it may
be more beneficial to place our diversifying samples around the current promising
region than spending our search effort on remote, and possibly low fitness area. In this
way, the introduced diversity has a greater chance to be incorporated into the parent
population.

This perspective fits nicely into the framework of EDA, because the probabilistic
model built by EDA can be seen as a description of our current belief of where the
promising region is. To produce the desired allocation of samples, i.e., dense around
the current promising region and sparse in the distant area, we can generate sam-
ples using a distribution that is slightly diverted from the one encoded in the proba-
bilistic model to cover the vicinity of the current promising region. In ECGA, we can
achieve this in a principled way: assuming the MPM is composed of m marginal mod-
els (i.e., a solution is decomposed into m substructures), we can devise an “exploration”
mechanism that creates some of the substructures in a solution not by sampling the
constructed MPM, but by generating them uniformly randomly.

Of course, any good search algorithm will try to balance between exploration and
exploitation. In ECGA, exploitation can be defined as sampling the constructed MPM,
which corresponds to placing samples in the current promising region. To incorporate
our mechanism of exploration, we introduce a tunable trade-off between exploration
and exploitation. Suppose an “exploitation rate” ξ (0 ≤ ξ ≤ 1) is specified, then it
could be saying that in the next generation, approximately ξ of the population should
be created by sampling the MPM. Now let the probability of invoking the exploration
mechanism be p, we have that

(1− p)m = ξ.

which says that the probability that a solution is created entirely according to the built
model is ξ. Base on that, we can derive

p = 1− ξ1/m.

In implementation, when composing a new solution, most of the time we generate
each substructure by sampling the corresponding marginal model in the MPM, but
with probability p as derived above (based on specified ξ), we place a partial solution
that is generated uniformly randomly for that substructure. In this way, we can control
the trade-off between exploration and exploitation (by specifying ξ), and make the “ex-
ploration points” dense near the current promising region but sparse in more distant
area (on average, only mp substructures in a solution are not generated according to
the constructed MPM.)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: May 2013.

A:8 Chung-Yao Chuang and Hsien-Tang Kao

5. MINIMUM VERTEX PROBLEM

In order to examine the performance of ECGA, we runned the algorithm on mini-
mum vertex cover(MVC) problem. A vertex cover of a graph is a set of verteces that
includes at least one endpoint of each edge and a minium vertex cover is the vertex
cover with smallest size. The minimum vertex problem belongs to the class of NP-hard
optimization problem and its corresponding decision problem, vertex cover problem, is
NP-complete.

The minimum vertex problem is formulated as following: consider a graph G =

(V,E) where V = {1, 2, ..., n} is the set of vertices and E denotes the set of edges. There
exists a smallest subset V ′ ⊆ V such that ∀ 〈i, j〉 ∈ E, we have i ∈ V ′ or j ∈ V ′. V ′ is
said to be a vertex cover of graph G. The objective of minimum vertex cover problem is
to minimize the size |V ′| of the vertex cover and the optimal solution is a vertex cover
V ′ that minimizes |V ′|.

In genetic algorithm implementation, a vertex cover V ′ of the problem can be defined
as a binary vector

V ′ = ~x =< x1, x2, ..., xn > .

where n is the number of vertices |V | and

xi =

{
1, if the ith vertex is in vetex cover V ′

0, if the ith vertex is not in vertex cover V ′

It is well known that choosing a proper fitness function is important for the efficiency
and effectiveness of genetic algorithm. In this paper, we define the fitness function as:

f(~x) =

n∑
i=1

(xi + γ(1− xi)
n∑

j=i

(1− xj)eij).

where γ is weighting factor and

eij =

{
1, if 〈i, j〉 ∈ E
0, if 〈i, j〉 /∈ E

The first term
∑n

i=1 xi in the fitness function represents the size of vertex cover and
the remaining term penalize the vertices that are not vertex cover by a factor of γ.
It can be shown that if |V ′| is the minimum vertex cover, then f(V ′) = |V ′| and V ′ is
the global minimum of fitness function. The penality of the fitness increased as the
solutions departed from the minimum vertex cover.

Table III shows an example of marginal product model of graph (fig. 1) built in the
first iteration. Based on the probabilistic model, the original graph are divided into four
subgraph. It was observed that in order to solve the minimum vertex problem, a better
way to generate candidate solutions is to sample from probabilistic model rather than
arbitrarily choose the crossover point or mutation. The probabilistic approach took the
whole graph structure into account and have higher probability to generate the better
candidate solution for the optimization problem.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: May 2013.

Evolutionary Algorithms based on Probabilistic Modeling A:9

Table III. An example of marginal product model built in the first iteration

[1 2 3 4 5] [6 7 8 9 10] [11 12 13 14 16] [15]

P(1 0 1 1 1) = 0.125000 P(1 0 1 1 1) = 0.092250 P(1 0 1 1 1) = 0.110500 P(0) = 0.543750
P(1 1 0 1 1) = 0.083250 P(1 0 0 1 1) = 0.087250 P(1 1 0 1 1) = 0.088750 P(1) = 0.456250
P(1 1 1 1 1) = 0.079500 P(1 1 1 0 0) = 0.083500 P(1 0 1 1 0) = 0.086250
P(0 1 1 1 1) = 0.072500 P(1 1 0 1 0) = 0.071250 P(1 0 0 1 1) = 0.079500
P(0 1 1 1 0) = 0.062000 P(1 1 1 1 1) = 0.069000 P(0 1 1 1 1) = 0.076000
P(1 1 1 0 0) = 0.061500 P(0 1 1 1 1) = 0.067750 P(1 1 1 0 1) = 0.075250
P(1 0 0 1 1) = 0.050000 P(0 1 1 0 1) = 0.067000 P(0 1 0 1 1) = 0.070250
P(1 0 1 0 1) = 0.042250 P(1 1 1 1 0) = 0.064500 P(1 1 1 1 0) = 0.069250
P(1 1 0 0 1) = 0.039500 P(1 1 0 1 1) = 0.060750 P(1 1 1 1 1) = 0.066500

...

The table shows the marginal product model that build in the first iteration which has lowest com-
bined complexity. The variables represent the probability calculated after population initialization.

Table IV. Experimental results of different genetic algorithms using DIMACS benchmark instances

Vertex Edge MVC
GA ECGA ECGA-DM

Success Mean Std Dev Success Mean Std Dev Success Mean Std Dev
hamming6-2 64 192 32 0 44.033 33.6905 0 39.6 3.2547 28 32.5 2.0129
hamming6-4 64 1312 60 12 60.767 0.7279 22 60.267 0.4498 30 60 0
johnson8-2-4 28 168 24 17 24.433 0.5040 29 24.033 0.1826 30 24 0
johnson8-4-4 70 560 56 0 61.833 0.8339 0 60.233 1.3309 17 57.5 1.8708
johnson16-2-4 120 1680 112 9 112.733 0.5208 22 112.267 0.4498 30 112 0

The variables in the table compared the number of sccesses, mean of vertex cover, standard deviation of vertex cover
with different genetic algorithms (GA, ECGA and ECGA-DM) and DIMACS benchmark instances (hamming and johnson).

6. EXPERIMENTAL RESULTS

In our experiments, we describe the results by running GA, ECGA and ECGA-DM on
DIMACS datasets maintained by Nguyen and Bui at PSU. The test instance Hamming
and Johnson graphs are constructed based on algebraic coding theory and information
theory. Our genetic algorithms were implemented in Matlab and runned 30 times on
each instance.

Table IV tested on the benchmark dataset demonstrates the usefulness of main-
taining diversity throughout the run. The performance of ECGA is better than GA
with higher success rate, lower mean of vertex cover and lower standard deviation
of vertex cover in 30 test runs, which shows that proper probabilistic model building
approach can solve some difficult problem than simple GA. The experimental results
also show that the ECGA-DM algorithm performed better than ECGA. The diversity
maintenance technique increased the algorithm’s exploration space of candidate solu-
tion. It can avoid premature convergence and prevent the solution converged to local
optimum.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: May 2013.

A:10 Chung-Yao Chuang and Hsien-Tang Kao

7. CONCLUSION

In this study, we looked into the mechansim of ECGA and applied it to solve the mini-
mum vertex cover problem. In addition, we proposed a method to maintain the popula-
tion diversity in ECGA. With the proposed diversity maintenance mechansim, ECGA
is better in avoiding premature convergence. The results show that our approach yields
a better performance compared to both conventional GA and ECGA.

REFERENCES

S. Baluja. 1994. Population-Based Incremental Learning: A Method for Integrating Genetic Search Based
Function Optimization and Competitive Learning. Technical Report. Pittsburgh, PA, USA.

S. Baluja and S. Davies. 1997. Using Optimal Dependency-Trees for Combinational Optimization. In ICML
’97. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 30–38.

Thomas M. Cover and Joy A. Thomas. 1991. Elements of information theory. Wiley-Interscience, New York,
NY, USA.

J. de Bonet, C. Isbell, and P. Viola. 1997. MIMIC: Finding Optima by Estimating Probability Densities. In
Advances in Neural Information Processing Systems, Vol. 9. The MIT Press, 424–430.

Kenneth A De Jong. 2006. Evolutionary computation: a unified approach. The MIT Press.
Agoston E Eiben and James E Smith. 2008. Introduction to evolutionary computing. springer.
R. Etxeberria and P. Larrañaga. 1999. Global Optimization using Bayesian Networks. In Proceedings of

(CIMAF-99), A. Ochoa Rodriguez, M.R. Soto Ortiz, and R. Santana Hermida (Eds.). Habana, Cuba,
332–339.

David E Goldberg. 1989. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley
Professional.

David Edward Goldberg. 2002. The design of innovation: Lessons from and for competent genetic algorithms.
Vol. 7. Springer.

G. Harik. 1999. Linkage Learning via Probabilistic Modeling in the ECGA. IlliGAL Report No. 99010. Illinois
Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign.

G. R. Harik, F. G. Lobo, and D. E. Goldberg. 1999. The Compact Genetic Algorithm. IEEE Transactions on
Evolutionary Computation 3, 4 (November 1999), 287.

Mark Hauschild and Martin Pelikan. 2011. An introduction and survey of estimation of distribution algo-
rithms. Swarm and Evolutionary Computation 1, 3 (2011), 111–128.

Pedro Larrañaga and Jose A. Lozano. 2001. Estimation of Distribution Algorithms: A New Tool for Evo-
lutionary Computation. Genetic algorithms and evolutionary computation, Vol. 2. Kluwer Academic
Publishers, Boston, MA. ISBN: 0-7923-7466-5.

Jose A Lozano. 2006. Towards a new evolutionary computation: Advances on estimation of distribution algo-
rithms. Vol. 192. Springer-Verlag New York Incorporated.

H. Mühlenbein and G. Paaß. 1996. From Recombination of Genes to the Estimation of Distributions I. Binary
Parameters. In Proceedings of the PPSN IV. Springer-Verlag, London, UK, 178–187.

Martin Pelikan, David E. Goldberg, and Erick Cantú-Paz. Vol. I. Morgan Kaufmann Publishers, San Fran-
sisco, CA, Orlando, FL, 525–532.

Martin Pelikan, David E. Goldberg, and Fernando G. Lobo. 2002. A survey of optimization by building and
using probabilistic models. Computational Optimization and Applications 21, 1 (2002), 5–20.

Martin Pelikan and Heinz Mühlenbein. 1999. The Bivariate Marginal Distribution Algorithm. In Advances
in Soft Computing - Engineering Design and Manufacturing, R. Roy, T. Furuhashi, and P. K. Chawdhry
(Eds.). Springer-Verlag, London, 521–535.

J. Rissanen. 1978. Modelling by shortest data description. Automatica 14 (1978), 465–471.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: May 2013.

Evolutionary Algorithms based on Probabilistic Modeling A:11

Bo Yuan and Marcus Gallagher. 2005. On the importance of diversity maintenance in estimation of distribu-
tion algorithms. In Proceedings of the 2005 conference on Genetic and evolutionary computation. ACM,
719–726.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: May 2013.

A:12 Chung-Yao Chuang and Hsien-Tang Kao

Fig. 1. Sample graph for Marginal Product Model Building

ACM Journal Name, Vol. V, No. N, Article A, Publication date: May 2013.

