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Rapidly-exploring Random Trees (RRTs) explore large search spaces quickly and are 

therefore often used for path planning in high dimensional spaces and complex 

environments.  While they are not guaranteed to find optimal paths, the benefits 

mentioned above make them well suited for planning paths through the large search 

space of all possible joint angles for a linked manipulator.  In addition, the non-

optimality of the solution path is of no concern for some robotic inspection tasks such 

as inspection tasks for the hyper-redundant snake robot used as motivation for this 

study.  Therefore, this paper compares the performance of three variations of RRTs 

as the search problem is scaled in dimensionality.  The three RRT variants presented 

include (1) searching and planning with no knowledge of the configuration space, and 

using prior knowledge of a solution in configuration space to (2) attempt to plan a 

more direct path and (3) perform bi-directional search from both the start position 

and the known goal position. 

 

 

 INTRODUCTION 1.

Linked manipulators are common robotic systems and subsystems that often allow 

multiple solutions for an end-effector to reach a desired location and orientation in a 

robot’s task space.   Adding links to a manipulator increases the number of available 

solutions for reaching desired end positions and orientations, or reaching around 

obstacles in an environment.  However, the advantages of redundant links come with 

the added cost of finding the inverse kinematic solutions for the manipulator and 

planning for the manipulator to reach one of those solutions. 

 

Rapidly-exploring Random Trees, introduced by LaValle [4] in 1998, are a sample 

based approach to search and planning rather than a combinatorial method, and as 

such have shown great success at rapidly exploring large search areas although they 

will often return a sub-optimal path.  Their ability for rapid exploration, however, 

makes RRTs an attractive approach for solving path planning problems for hyper-

redundant linkage systems such as the 16 degree of freedom snake robot of Carnegie 

Mellon University’s Biorobotics Lab, especially when the optimality of the path is not 

of high concern. 

 

CMU’s Biorobotics Lab’s snake robot excels at maneuvering through small spaces 

and is therefore used extensively for search and rescue and inspection operations.  

For situational awareness and for inspection, the end-portion of the snake provides a 

base of support while the head and following links lift off the ground and pan the 
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camera, positioned at the head/end-effector of the snake, through the environment as 

shown in Figure 1.   

 

This inspection motion, where the snake raises itself from its prone, locomoting 

position to balance on its tail, can be represented as path planning for a fixed base 

linked manipulator.  It is important to move the head of the robot as high as possible 

while maintaining balance and avoiding obstacles, and it is of low importance to 

optimize this path in some way such as minimizing distance covered or energy spent.  

Therefore, we examine using three variants of RRTs for both solving the inverse 

kinematics problem of finding joint values that place the head at the desired goal 

position in the robot’s task space and planning a path for all joints that moves the 

head to the desired end position while avoiding obstacles.    

 

 

 
Figure 1.  Snake robot performing inspection: tail and base links provide support while the head 

(containing the camera) and the body of the snake rise into the air to scan the environment. 

 

 

 PROBLEM FORMULATION 2.

To use an RRT to find a path from a start position to a goal position for a 

manipulator arm, we set up the problem as described below.   

 
 World Definition 2.1

First, we define the world space � and the configuration space � of the robot as 

shown in Figure 2.  � is the task space of the manipulator—for the planar example 

shown in Figure 2, this is all positions in the x-y plane that the end effector can 

reach.  The origin of the coordinate system is the manipulator base.   

 

The configuration space � is the space formed by the possible joint values for each 

link of the manipulator arm.  For a 2-link manipulator, there is a corresponding two 

dimension configuration space, or joint space, where θ1—the base joint—makes up 

one axis and θ2, the joint between the first and second link, makes up the second 

axis.   

 

While the world space may be defined as x, y, and z, with the orientation of the end 

effector described by roll, pitch, and yaw, the �-space grows with every link added to 

the manipulator and so can be well over the six dimensions defining the world space.   
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Figure 2.  (a) The world space, �, of the manipulator arm.  In this 2D example, � is the x-y plane giving 

the position of the end-effector relative to the manipulator base.   (b) The configuration space, �, of the 

manipulator arm.  � is the joint space of the manipulator—for a 2link manipulator, this is all possible 

values for the first and second joints, θ1 and θ2. 

 

 
 Defining the Search 2.2

Our goal is to find a path for the manipulator in the world space from the 

manipulator’s starting position to a final goal position without hitting any obstacles 

that may be present. 

 

We begin the search task knowing the beginning position of the manipulator arm in 

both � and �.   We also know the x-y position of the goal in �, (xgoal, ygoal).  What we 

want to find are the values for θ1 and θ2 that put the end effector at (xgoal, ygoal); in 

fact, we need not just θ1goal, θ2goal but a series of values for θ1 and θ2 that define a 

path that guides the end effector from its beginning location to the goal location 

without hitting obstacles.   

 

In order to find this path we must search over �, the combination of all possible joint 

values.  We will perform this search using the RRT algorithm as described in [2] and 

[4] to search over the �-space of the manipulator.  Before we begin, it is necessary to 

give ourselves the tools to determine whether a point in �-space yields a valid 

manipulator position in �. 

 

 Validating points in ����  2.3

For any point in �, we can find the position of the end-effector (or any other point 

along the manipulator arm) in �.  The forward kinematics of the manipulator 

describes how a point in �-space maps to a point in �.  The position of the end-

effector in � is a function of θ1 and θ2, and is given by: 

 

 
��
 	� 	� cos��
�
� � � cos��� � ��� (1) 

 ���
 	 � 	� sin��
�
� � � sin��� � ���, (2)	

 

where l is the length of a manipulator link and for simplicity we let all linkages be 

the same length l, θ1 is the angle between the horizontal and the first link, and θ2 

defines the angle between the first and second links. 
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This mapping between � and � allows us to determine whether a point we find in � 

is a valid position for the end effector.  If the chosen values for θ1 and θ2 do not 

position the manipulator over an object, then q = (θ1, θ2) is a valid point in �. 

 

To determine if the manipulator has contacted an object, we can use equations (1) 

and (2) to compute the positions of multiple points along the manipulator.  For 

example, the position of (x,y)test as shown in Figure 3 would be: 

 

 
���� 	� 	� cos���� � 5�� cos��� � ��� (3) 

 ����� 	� 	� sin���� � 5�� sin��� � ���, (4)	

 

If the Euclidean distance between any test point and the obstacle center is less than 

a radius of collision (i.e., the radius of a circular obstacle), then the manipulator will 

collide with the obstacle if positioned using the chosen θ1 and θ2. 

 

  !	"�
���� # 
$%��&'(��� � ������ # �$%��&'(��� ) *$%��&'(� → ,-../0/-1  (5) 

 

 
Figure 3.  Example of calculating collisions between a manipulator and an object. 

 

Finally, we can compute the error between the end-effector and the desired goal 

position in the same manner as collision checking.  We may use xend and yend as 

directly computed from equations (1) and (2), and find the Euclidean distance 

between the end position as a function of θ1 and θ2 and the known goal position.   

 

 2**3* � "�
4$&( # 
��
�� � ��4$5( # ���
��  (6)  

 

 

 RRTS : SEARCH AND PLANNING 3.

This idea of using picked values for θ1 and θ2 to compute the end-effector error and 

to check for obstacle collisions allows us to describe the basic RRT algorithm used to 

both search and plan through the configuration space of the manipulator.  To 

distinguish the basic RRT algorithm from the variations we will describe next, we 

call this RRT Search, because we are searching the �-space without knowing in 

advance the values for θ1goal and θ2goal. 

 

The one remaining point to mention is that when a point q is picked at random from 

the �-space, the point q itself may not result in obstacle collision but the path from q-

nearest (the nearest node in the search tree to our picked q) to q may result in the 

 (x,y)
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manipulator passing through an obstacle.  Therefore, the distance between q and q-

nearest should be split into intermediate nodes, and each intermediate node must be 

checked for collisions starting from q-nearest (which is already part of the approved 

search tree).  As each successive node out from q-nearest is checked, it is added to the 

tree.  If a node results in a collision, it and all subsequent nodes after it are not added 

to the tree.  This way, every node on the tree is a valid manipulator position and 

when the goal is found, all parents of the found goal node is returned as a valid path.  

The result of this algorithm is shown in Figure 4.   

 

ALGORITHM 1. RRT Search – No Knowledge of � -goal 

Input:  xstart, ystart, θ1start, θ2start, xgoal, ygoal, error_threshold, obstacles 

Output:  Series of θ1, θ2 waypoints from θ1start, θ2start to θ1goal, θ2goal 

While (error > error_threshold) 

        q = random(θ1, θ2);  

        qnearest  = nearest node in search tree to q 

       for index = 1: branchlength(q, qnearest) / dq  //check for obstacles between qnearest and q 

in increments of dq 

  q = qnearest + dq; 

        if false(collision(q, obstacles))   //collision is as described by Equation (5) 

connect q to qnearest; 

use Equations (1) and (2) to compute xend, yend as a function of (q); 

use Equation (6) to compute error; 

sample = sample + 1; 

qnearest = q; 

        end; 

end;   //end “for” 

end;    //end “while” 

return q and all parent nodes; 

 

In general, computing the inverse kinematics—finding the joint angles that result in 

the desired end position for a manipulator—is a difficult problem that must be solved 

numerically.  While we have shown with RRT Search that we can find the desired 

angles through search, we have additional knowledge in the case of the snake robot 

that allows us to find the goal in �-space before searching.  The knowledge of the goal 

in �-space allows us to use additional search techniques with our RRT and plan a 

path more quickly.   
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Figure 4.  RRT Search, implemented on a two link planar manipulator.  

   

Because we desire the snake to move to the vertical position, we are searching for a 

singular configuration of the manipulator.  We can easily see by inspection that in 

order for the manipulator (or snake) to reach its highest point, the value of the first 

angle should be ̟/2 and the value of all subsequent link angles should be 0.  Using 

this knowledge of the goal position, we can try sampling the goal in �-space a 

percentage of the time rather than randomly sampling a q with every iteration.  If 

the environment is relatively free of obstacles, heading directly to goal will be much 

quicker than searching the path to goal.  However, if there are obstacles in the way, 

we must still search for a path around the obstacles.  Algorithm 2 and Figure 5 and 6 

show the outline of RRT Sample and its results on two different obstacle 

environments—a sparse obstacle environment, and then the same obstacle 

environment as shown in Figure 4 for comparison with RRT Search. 

 

ALGORITHM 2. RRT Sample – Sample the known goal in �-space 

Input:  xstart, ystart, θ1start, θ2start, xgoal, ygoal, error_threshold, obstacles, θ1goal, θ2goal 

Output:  Series of θ1, θ2 waypoints from θ1start, θ2start to θ1goal, θ2goal 

sample = 0; 

While (error > error_threshold) 

        if modulo(sample, sample_freq) == 0   //with frequency sample_freq, let q = goal 

 q = (θ1goal, θ2goal); 

        else         

q = random(θ1, θ2);  

World Space � 

(a) (b) 

Values for θ1 and θ2 resulting in an end 

position in � within .1 of the desired goal 

position. 
Values for θ1 and θ2 resulting in 

manipulator collision with an object in �  
Values for θ1 and θ2 resulting in 

manipulator collision with the ground in �  
Search tree Found path to goal 

Goal position xxxx     
Obstacle 

End effector trajectory 
Manipulator 
Ending manipulator configuration 

XXXX            Start node/root of tree 
     

x    x    x    x    Goal 

Configuration Space �  



7                                                                                                                            E.Cappo 

 

 

15-780 Graduate Artificial Intelligence: May 2013 

        end; 

        qnearest  = nearest node in search tree to q 

       for i = 1: branchlength(q, qnearest) / dq  //check for obstacles between qnearest and q in 

increments of dq 

 q = qnearest + dq; 

        if false(collision(q, obstacles))   //collision is as described by Equation (5) 

connect q to qnearest; 
use Equations (1) and (2) to compute xend, yend as a function of (q); 

use Equation (6) to compute error; 

sample = sample + 1; 

qnearest = q; 

        end; 

end;   //end “for” 

end;    //end “while” 

return q and all parent nodes; 

 

The pseudo-code shown above is illustrated in Figure 5.  As sample is initialized at 0, 

Figure 5.  Example of RRT Sample on a sparse obstacle configuration resulting in the 

optimal path.the result returned from modulo(sample, sample_freq) is equal to zero 

and so the algorithm attempts to travel straight to (θ1goal, θ2goal) on its first run 

through.  As there are no obstacles between the start and the goal position, this 

algorithm returns not just a possible path but the optimal path for this instance. 

 

Figure 6 compares the performance of RRT Search with RRT Sample for the same 

obstacle configuration, and with random initialized to the same seed value.  The 

algorithm cannot reach the goal until it expands the search tree from the start 

position and spreads beyond the obstacles.  As the algorithm continues, it updates 

sample until reaching a point where modulo(sample, sample_freq) is equal to zero 

and it attempts to go straight to goal.  At this point it succeeds, because it has 

explored the space enough to connect directly from a node of the search tree to the 

goal. 

 

Finally, we look at one other variation of RRT that, like RRT Sample, makes use of 

the goal knowledge in �-space.  RRT Connect [1] forms a search tree both from the 

starting position and from the goal position.  A solution is found when the trees 

expand and touch—when the trees connect, they form a path from the start 

configuration to the goal.   

 

Depending on obstacle configurations, this can be a very advantageous search 

method as illustrated in Figure 7.  In Figure 7, the final search tree formed by RRT 

Connect is shown next to the search trees formed by RRT Search and RRT Sample 

for the same obstacle configuration.  The RRT Connect algorithm (Algorithm 3) finds 

a solution much more quickly than either method that searches only from the start 

location.  Methods searching from only one direction take many iterations to reach 

around this obstacle configuration in the �-space, while the search tree growing from 

the goal in RRT Connect throws branches out quickly into open space, allowing it to 

connect to the tree formed from the starting position quickly. 
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Figure 5.  Example of RRT Sample on a sparse obstacle configuration resulting in the optimal path. 

 

 

 

Figure 6.  RRT Sample and RRT Search on the same obstacle configuration, initialized with the same seed 

value for random. 
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Figure 7.  RRT Search, RRT Sample, and RRT Connect on the same obstacle configuration, initialized with 

the same random seed value.  It can be clearly seen that RRT Connect is able to expand from the goal and 

explore around the obstacles in �-space, which allows it to connect to the tree formed from the start node 

and find a path much more quickly than its counterparts, which grow a tree only from the start location. 

 

ALGORITHM 3. RRT Connect – Search from both the start �-space 

Input:  xstart, ystart, θ1start, θ2start, xgoal, ygoal, error_threshold, obstacles, θ1goal, θ2goal 

Output:  Series of θ1, θ2 waypoints from θ1start, θ2start to θ1goal, θ2goal 

sample = 0; 

While (error > error_threshold) 

        q = random(θ1, θ2);  

        if modulo(sample, 2) //i.e., every other time through 

         qnearest  = nearest node in search tree rooting at (θ1start, θ2start) to q 

        else 

 qnearest  = nearest node in search tree rooting at (θ1goal, θ2goal) to q 

        end; 

       for i = 1: branchlength(q, qnearest) / dq  //check for obstacles between qnearest and q in 

increments of dq 

  q = qnearest + dq; 

        if false(collision(q, obstacles))   //collision is as described by Equation (5) 

connect q to qnearest; 

use Equations (1) and (2) to compute xend, yend  as a function of (q); 

use Equation (6) to compute error; 

sample = sample + 1; 

qnearest = q; 

RRT Search RRT Sample 
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if branchlength(q, qnearest_of_other_tree) < dq    //our most recently added valid node is 

within connection distance of the other 

tree 

 update child & parent information of q and qnearest_of_other_tree 

 break;  //break and jump to “return q and all parent nodes” 

end;  //end “if branchlength(q, qnearest_of_other_tree) < dq” 

        end;  //end “if false(collision(q, obstacles))” 

end;  //end “for” 

end;  //end “while” 

return q and all parent nodes; 

 

 RESULTS OF COMPARISON IN ADDITIONAL DIMENSIONS 4.

The two link manipulator works well to illustrate the principles of RRT search and 

path planning, as the �-space is easily visualized.  However, it is important to 

understand how the different RRT algorithms presented here scale as additional 

links—and therefore additional dimensions to �—are added.   

 

Each of the three RRT methods described in Section 3 (RRT Search, RRT Sample, 

and RRT Connect) were run over randomly generated obstacle fields for linkage 

systems containing from two to six links.  100 trials were run for each algorithm on 

each linkage system, and the seed value for the random number generator was 

changed across obstacle fields but held constant for each algorithm per obstacle field, 

so that each algorithm approached an obstacle field with the same sequence of 

random numbers.  The only difference in performance across an obstacle field then 

was due to the algorithm, and not a lucky or unlucky random start.  

 

Figure 8.  Planned paths for 3, 4, 5, and 6 link manipulators over randomly generated obstacle fields. 

 

Note that as obstacle fields were randomly generated, some fields would not have 

solutions.  However, we can see by looking at Figure 9(a) that RRT Sample and RRT 

Connect were able to continue to solve trials for the six link case while RRT search 

was unable to find a solution given the same amount of time.  After three links, the 

success rate of RRT Search drops sharply, yielding a success rate of under 50% that 

of the next best method, RRT Sample.  We can take from this that having a 

knowledge of the goal in �-space is a critical requirement for performing searches in 

high dimensions in a reasonable time frame (approximately under a minute).  RRT is 

probabilistically complete, so given infinite time RRT Search would find a solution if 

one existed, but field inspection applications rarely allow such a leisurely schedule.  

  

Figure 9(b) shows a box and whisker plot of the breakdown of the time taken per 

algorithm per linkage system to solve a trial.  It is worth noting that all code was 

written in MATLAB 2012b and run on an Intel Core i7 laptop with 8GB of RAM.  

4 links 5 links 6 links 3 links 
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Faster speeds could certainly be gained by implementing these algorithms in a 

language such as C or Java, but MATLAB is a sufficient program with which to 

compare performance in low dimensions such as those implemented here.  

 

Figure 9.  (a) Number of trials solved (out of 100) per algorithm per linkage system.  (b) Box and whisker 

plot of time needed to find a solution path for a trial, for all solved trials, per manipulator per algorithm.  

Note that manipulator systems of 5 and 6 links are shown in the inset plot, as they took much longer to 

solve and are therefore shown with a coarser time axis.   

 

 

 FUTURE WORK 5.

The algorithms tested here provide interesting insights into what additional methods 

one could use to improve search through the configuration space.   

 

First, points q in the configuration space were chosen randomly, and the error 

function (Equation 6) was used only to test if the manipulator had arrived at a 

solution in the world space.  However, the error function can provide more 

information than just a “yes” or “no” for the validity of a point q.  The change in error 

between two choices of q gives an estimate of whether we are moving towards or 

away from a solution.  It may be beneficial to bias the random sampling of q based on 

the gradient of the error function to converge faster to local minima. 

 

Secondly, we chose a singular configuration for the goal location of the manipulator.  

This greatly reduces the benefit of a redundant link system—while additional 

degrees of freedom help maneuver around obstacles, there is only one end orientation 

and position that the manipulator can form that reaches the desired goal.  If we were 

to choose a goal position that the manipulator could reach from multiple positions, 

we would have multiple solutions in the configuration space.  This may make higher 

dimension search spaces easier to solve, as additional solutions (depending on the 

picked goal) are added with each additional dimension.  Future work for this project 

involves trialing an inverse kinematic numerical solver to populate the configuration 

space with goal locations, in order to perform goal-based searches such as a 

combination RRT Connect and Sample on a configuration space with multiple 

solutions.   

 

   

(a) (b) 
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