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 INTRODUCTION 1.

In the world of serial-link manipulators (e.g. robotic arms) inverse kinematics 

refers to the process of finding joint variables such that the end-effector frame of the 

arm is in a desired position and orientation whereas forward kinematics refers to the 

process of finding the resulting end-effector frame position and orientation given a 

set of joint variables. One may expect that solving forward and inverse kinematics 

problems would be equally difficult, but it turns out that inverse kinematics 

problems are much more difficult to solve. This is especially unfortunate since 

inverse kinematics is necessary for arm modeling and control.   

There are many methods to solve the inverse kinematics problem, but they 

each have their own disadvantages. For example, many methods generally require 

complicated usage of trigonometry and/or run into problems when the end-effector 

frame is at or near singularities.  Common methods include solving the inverse 

kinematics purely algebraically and symbolically, decomposing the problem into 

Paden-Kahan sub-problems, and inverting the arm’s Jacobian matrix, all of which 

have the aforementioned disadvantages.  

In 2008 Samuel Cubero [Cubero 2008] suggested a new, iterative, general-

purpose method of solving inverse kinematics that he refers to as “Blind Search” [1]. 

Cubero claims that this method does not share the unattractive disadvantages of the 

more traditional methods, that it can be applied to any serial-link manipulator, and 

that only the forward kinematics is needed. The basic idea is to consider all 

combinations of small, fixed changes (or no changes) in each joint in the arm from a 

given initial configuration, search for and pick the combination that results in the 

smallest error, set the combination as the new initial configuration if the error isn’t 

small enough, and then repeat until a satisfactory solution is found.  

Cubero’s Blind Search method has a slight disadvantage, which is that it only 

works if the desired position and orientation is already very close to the initial 

configuration. This means that if one needs to find an IK solution to a goal point far 

away from the initial configuration, then one would need to create a path of discrete 

path within the manipulator’s task space that gradually leads the manipulator from 

its initial configuration to the goal configuration.  
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Planning a feasible path for a serial-link manipulator is an entirely different 

problem in itself. As such, the goal of this project and paper is to develop and 

investigate a different method of IK search that maintains all of the advantages of 

Cubero’s Blind Search and that does not require path planning or any other 

significant effort other than finding the forward kinematics for a given serial-link 

manipulator.  

 DEFINING INVERSE KINEMATICS AS A SEARCH PROBLEM 2.

 Search Space and Tree Structure 2.1

The search space of the inverse kinematics problem consists of a set of nodes 

corresponding to each joint in the serial-link manipulator. The values of the nodes 

corresponding to a particular joint are uniformly distributed within the joint’s full 

range of possible values. There are edges between any given node and all nodes 

corresponding to the joints adjacent to the first node’s joint, but there are no edges 

between nodes that correspond to the same joint. For example, consider Figure 1, 

which shows the general structure of the search tree. Any given node corresponding 

to joint 2 has edges between itself and all nodes corresponding to joints 1 and 3 and 

there are no edges between the joint 2 node and any other joint 2 nodes.   

 
Fig. 1. General search tree structure of inverse kinematics with a branching factor (B) of for a 3 degree of 

freedom (DOF) manipulator 

 

 The size of the search space is dependent on two factors: the number of 

degrees of freedom (DOF) of the manipulator, and the desired precision of the inverse 

kinematics solution. The manipulator’s DOF, which is assumed to be equal to the 

number of joints in this paper, is equal to the maximum depth of the search tree. 

Given that the forward kinematics is used to evaluate and compare possible solutions, 

every solution must be found at the maximum depth of the search tree. Solutions at 

shallower depths do not make sense because all joint variables are needed to 

evaluate the forward kinematics functions. This also implies a breadth first search 

approach is not possible given the structure of the problem.  

 The desired precision of the inverse kinematics solution is directly related to 

the branching factor of the search tree – a larger branching factor results in a 

solution with greater precision. For example, consider a revolute joint that can rotate 

in complete revolutions. To produce a solution with 1-degree precision one would 

need to divide the possible joint values into 360 points, which would result in a 

branching factor of 360.  

 Note that although the search space is discretized, the input, i.e. the desired 

end effector position and orientation, is still drawn from the continuous task space of 

the manipulator. This means that in many cases the inverse kinematics solution that 

exactly matches the desired position/orientation does not exist in the discretized 

search space. Therefore, the goal of the search is to find the set of nodes that 
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produces the solution closest to the desired position and orientation within the 

discretized search space. This also implies that desired positions and orientations 

that are not within the task space of the manipulator are still acceptable inputs and 

any search algorithm would be capable of simply finding the joint configuration that 

would result in the manipulator “pointing” in the direction of the desired position and 

orientation.  
 Computed Error and Solution Optimality 2.2

Given that the search space only includes values within the manipulator joints’ 

range of motion, every solution in the search space is feasible. However, despite being 

feasible, the vast majority of these solutions are impractical and useless since they 

result in an end-effector position and orientation that are far from what we wanted. 

Therefore, the problem is not to find any solution to the manipulator’s inverse 

kinematics, but rather to find the best solution present in the search space.  

To find the best solution present in any search space, one must first define what it 

means for one solution to be better than another. In the case of inverse kinematics, 

metric for how good a solution is simply a combination of the distance between the 

current position and the goal position and the angle between the x and y basis 

vectors/axes of the current end-effector frame and the goal frame.    

The position error EP is the distance from the goal position and the current 

position and is fairly straightforward. The orientation errors EAX and EAY for the x 

and y axes are represented by 1- cos(φ), where φ is the angle between the goal basis 

vector and the current basis vector of the end-effector frame. This can be further 

simplified using the definition of the dot product to 1 - VXC·VXG, where VXC and VXG 

are the basis vectors for the x axis in the current end-effector frame and the goal 

frame, respectively. This same can be applied to the y axis. The total orientation error 

is thus EA = EAX + EAY. The combined, total error is ET = KP*EP + KA*EA, where KP 

and KA are weighting constants [Cubero 2008]. These weighting constants describe 

how important accuracy with respect to position and orientation are relative to each 

other. For example, if finding a solution very close to the goal in terms of distance is 

much more important than conforming to a particular end-effector frame, then one 

would need to choose weighting constants such that the position error dominates the 

orientation error.  

  SEARCH ALGORITHMS AND HEURISTICS 3.

 Brute Force and Divide and Conquer (DaC) Algorithms 3.1

For the sake of benchmarking other algorithms and heuristics, a naïve brute force 

method was implemented first. This solver used a depth-first approach that went 

through every possible solution in the search space and reported a list of joint 

assignments that resulted in the smallest error. The speed of this solver will be 

discussed in later sections, but in summary the brute force approach is 

unsurprisingly very slow and finding high precision solutions to manipulators with 

larger DOFs becomes very impractical. The slowness of the brute force approach is 

attributed to the number of nodes it needs to expand, which is denoted in Equation 1. 

One can easily see that if a large branching factor were to be chosen then the number 

of nodes that need to be expanded will increase exponentially for manipulators with 

greater DOFs.  

∑   
   

   
 

Eq. 1. Total number of node expansions necessary for brute force, where B is the branching factor 
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The brute force solver starts at the zero configuration for each joint and iterates 

through the joints’ possible values incrementally. The brute force solver could have 

been improved significantly if the search terminates whenever if finds a solution 

below a certain error threshold, and if a random joint value ordering were to be used. 

However, these methods were not explored, partially due to time constraints but 

mostly due to the presence of other algorithms and methods that are many orders of 

magnitude faster than the brute force approach. 

The main algorithm used in this project was a divide and conquer (DaC) 

algorithm that iteratively conducted coarse searches that gradually become more and 

more refined until a precise solution is found as explained in Algorithm 1 and 

Algorithm 2. First, let us define and review some abbreviations: DOF stands for 

degrees of freedom; let B stand for branching factor; let D be the number of joint 

space divisions per iteration, which is in other words the number of coarse samples 

taken in each joint per iteration. 

The algorithm begins by creating the search tree as a global 2D array of nodes. 

The nodes are initialized with information such as the node’s joint value, which joint 

the node corresponds to, and whether or not said joint is revolute. 

Next, the algorithm initiates the search with the first joint in the chain. Each 

joint in the chain has its own queue of nodes to expand, i.e. values to try. For every 

iteration the queue is initially populated with only D number of nodes as opposed to 

B number of nodes as is the case in brute force. Each of the D nodes has values that 

are uniformly distributed through the joint’s range of values. The algorithm 

initializes the sub-queues of each joint until it reaches the last joint in the chain, 

which naturally has no children. When the search is at the last joint (i.e. maximum 

depth has been achieved) the algorithm calculates the error between the end-effector 

position and orientation resulting from the current assignment of joint variables. The 

joint variable assignment that results in the least error is kept track of in a global 

variable.  

When all sub-queues are empty, then the iteration is complete. The algorithm 

proceeds to the next iteration by first reducing the index spacing between nodes. For 

the first iteration D nodes were uniformly distributed through the joint’s range of 

values, so the index spacing (for the array) was B/D. For each subsequent iteration, 

this spacing variable is further divided by B. In these iterations the search begins 

with the manipulator in the configuration specified by the best joint value 

assignment found thus far. The result is a search that that iteratively narrows in on 

the general location of the optimal solution. This is illustrated in Figure 2.  

 
Fig. 2. The figure above illustrates the divide and conquer (DaC) algorithm. The black unit circle 

represents the possible values for a given revolute joint while the red lines represent nodes added to the 

queue for a given iteration. The first, second, and third iteration of the algorithm are shown in (a), (b), and 

(c), respectively. Here D = 8.  
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ALGORITHM 1. Recursive Depth Search (recursiveDepthSearch) 

Input:  Goal position and orientation in terms of x/y axes basis vectors, spacing between node 

values for a given joint, the current node being expanded, the current assignment/path of 

nodes 

Output: Technically none – results are stored in the bestAssignment and bestError global 

variables 

if current joint is not the end joint then 

         subqueue = initializeQueue(curNode, spacing)  

end 

 

repeat  

        curNode = subqueue.pop 

        assignment.append(curNode) 

        recursiveDepthSearch(curNode, assignment, goals, spacing) 

        assignment.pop  

until subqueue is empty;   

 

if current joint is end joint then 

 error = computeForwardKinematicsError(assignment, goals) 

 if error < bestError then 

  bestError = error 

  bestAssignment = assignment 

end  

 

return 

 

  

ALGORITHM 2. Divide and Conquer for Inverse Kinematics  

Input: Position/orientation goals, search tree, D = the number of samples/divisions per joint  

Output: The call to the recursive depth search results in the assignment of the 

bestAssignment and bestError global variables 

 

bestAssignment = {0,0,0…for each joint}  

spacing  = branchingFactor/D 

repeat  

        recursiveDepthSearch(None, assignment, goals, spacing) 

        spacing /= D 

until spacing < 1;   

3.1.1. Divide and Conquer. In divide and conquer, the index spacing between nodes to 

be sampled in the recursive depth search is first determined and then the recursive 

depth search is called. The recursive depth search sets up sub-queues for each joint 

except for the last joint, which evaluates the forward kinematics using the 

assignment/path used to get there. The best solution is kept in a global variable. The 

divide and conquer approach calls the recursive depth search over and over again, 

reducing the node index spacing each time until a search with a spacing of 1 has been 

completed. The best joint variable assignments are used as a starting point for each 

successive call to the recursive depth search from the divide and conquer function.   
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 Heuristics and Other Methods 3.2

There are three heuristics/methods that were imagined and tested to improve the 

performance of the DaC solver: constant breadth (CB), dynamically-created tree (DT), 

and breadth tuning (BT).   

As a divide and conquer method, the DaC algorithm described earlier boasts high 

speeds and great scalability. However, for any divide and conquer algorithm, such as 

binary search, it is assumed that the list of values being searched is already sorted or 

the function being sampled is monotonic. In the case of inverse kinematics, the 

algorithm samples the forward kinematics for a given manipulator. The forward 

kinematics for just about every manipulator is comprised of a jumble of trigonometric 

functions, and as such is not monotonic or sorted at all. However, the DaC algorithm 

ignores this and proceeds as if the forward kinematics were monotonic. This results 

in, predictably, sub-optimal solutions due to the algorithm “diving” into a local 

minimum rather than the global. The constant breadth (CB) heuristic serves to 

counter this problem.  

Before the CB heuristic can be described, it is first necessary to define what is 

meant by “breadth” as it is not the “breadth” in “breadth first search.” In Figure 2 

one can see that past the first iteration only a fraction of the joint’s possible values 

are explored. The width of this region is determined by number of nodes added to the 

sub-queues with a given fixed spacing. I noted earlier that the number of nodes 

added to the sub-queues is D, but that was actually a simplification for explanatory 

purposes. The actual number of nodes added is 2*(D/2 + Br) – 1, where Br is what 

shall be known as breadth. In regular DaC, Br is 1. This expression was used to 

ensure that the number of nodes added to the sub-queue is odd so that there will be 

an even number of nodes on either side of the node corresponding to the best 

assignment. Note that the simplified expression D + 2*Br – 1 does not work in the 

case that D is odd (D/2 is actually Floor[D/2] in many programming languages). 

Increasing Br by 1 means that one more node on both “sides” of the node 

corresponding to the best assignment will be added to the queue. Given that there is 

constant spacing between nodes in terms of array indices and values, this results in a 

slightly broadened search (Figure 3). The constant breadth (CB) heuristic is to simply 

choose the value of Br that results in the best balance of speed and accuracy. 

 
Fig. 3. The figure above illustrates the effects of increasing the breadth variable (Br) during the second 

iteration of the divide and conquer algorithm (D = 3). Red lines correspond to nodes added to the queue for 

a given revolute joint. Br = 1, 2, and 3 for (a), (b), and (c), respectively.   

 

It turns out that varying Br results in large tradeoffs of speed and accuracy within 

a small range of values, so it would be nice if we could use fractions in Br rather than 

just whole numbers to find a better balance of speed and accuracy. Unfortunately, Br 

needs to be a whole number, but the next best thing also works: varying Br 

depending on the joint and DOF, which is what breadth tuning (BT) is all about.  

In breadth tuning (BT), one needs to examine the manipulator in question and 

determine whether or not it would be okay to sacrifice accuracy for some joints for 

the sake of speed of computation. For example, consider the elbow manipulator in 

Figure 4. If one is much more concerned with having a solution that matches with 

the goal position rather than the goal orientation, then one can easily see that the 

first three joints (from the base) are more important than the latter three because the 
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position of the end effector is dependent on only those three joints. Similarly, the end 

effector orientation is dependent only on the latter three joints. Thus, one would be 

able to get away with having higher Br on the first three joints and lower Br on the 

last three joints. Note that for manipulators with very few DOF, e.g. the two link 

planar manipulator, one can get away with CB with a larger Br for all joints since it 

is fast enough as it is anyway.  

So far all of the heuristics and methods have been concerned with the speed of the 

solver and the accuracy/optimality of the solution. The dynamically-created tree (DT) 

method addresses the potential issue of memory. Even with moderately high solution 

resolution, i.e. branching factor, most modern computers can handle creating every 

node in the search tree without any problems. However, for very high solution 

resolutions (e.g. when the branching factor is literally in the millions) or when 

working with an embedded device without as much memory, memory usage can be a 

concern. Finding a way to reduce memory usage is especially relevant when one 

realizes that in a typical DaC search the majority of nodes aren’t expanded – they 

aren’t even added to the queue since they aren’t even needed. 

In regular DaC, all the nodes of the search tree are created once during the 

preprocessing phase with global scope (or equivalent) and are used repeatedly for all 

subsequent searches. In DT, a data structure containing all of the nodes in the search 

tree does not exist. Instead, the algorithm creates nodes as necessary for each call to 

the recursive depth search function. This is possible and easy due to the fact that the 

values of all nodes are implicitly known and in order from least to greatest value. For 

example, consider the case when B = 360 and D = 3 for a given revolute joint. We 

know that if the nodes existed in an array that the node in index 0 has a value of 0, 

the node in index 1 has a value of 1 (degree), the node in index 2 has a value 2, etc. 

Therefore, if we want to add nodes to the sub-queue we need to add the nodes with 

indices 0, B/D, and 2*B/D, which are 0, 120, and 240. But given that these nodes 

don’t exist yet, we have to create three nodes and give each the values the 0th, 120th, 

and 240th nodes would have had. This value is just 360/B*index, and so we get 0 

degrees, 120 degrees, and 240 degrees, which are the nodes we wanted. Since these 

nodes are created within the recursive function call, they are stored on the stack and 

have local scope. As such there is a loss of efficiency in that a particular node that is 

only created once in DaC can be created many times in DT. Despite this, DT still 

results in a dramatic reduction in memory usage, as will be seen later.  

  

 EXPERIMENTAL SETUP AND RESULTS 4.

 Experimental Setup 4.1

The all code was written in Python and executed on a laptop with a 2.0GHz dual 

core processor and 4 GB of RAM within an Ubuntu operating system. Tests were 

done on comparing average error and speed of the brute force method, DaC with CB 

with various breadth values, DaC with BT, and DaC with BT and DT across several 

DOF. Separate tests were conducted to compare various results of varying D, and 

varying B with DaC with and without DT. All tests consisted of picking random joint 

values, plugging them into the forward kinematics of a particular manipulator, and 

then feeding the resulting end-effector positions and orientations as input into the 

inverse kinematics solver. Most tests consisted of running the solvers for 100 random 

points, but there were some that were limited to 10 points due to lengthy run times.  
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Each of the solvers was tested on 4 distinct serial link manipulators (Figure 4): a 

2 DOF two link planar manipulator, a 3 DOF cylindrical manipulator, a 4 DOF 

SCARA manipulator, and a 6 DOF elbow manipulator. The link lengths for these 

manipulators were chosen to be similar to one another to make their respective end-

effector position errors comparable. For reference, the link lengths for the two link 

planar manipulator were .5m for the first link and .25m for the second link.  

 
Fig. 4. The figure above shows the four kinds of manipulators whose forward kinematics were used for 

testing: (a) two link planar manipulator, (b) cylindrical manipulator, (c) SCARA manipulator, (d) elbow 

manipulator with 2, 3, 4, and 6 DOF respectively. 

 

 Results 4.2

The first few tests conducted were to see what kinds of branching factors (B) were 

feasible for the brute force approach. It turned out that the 2 DOF manipulator could 

handle a B of 720 in a few seconds, which results in a solution resolution of half of a 

degree. For larger DOF manipulators the largest practical B dropped exponentially, 

with some points taking several minutes to solve. Eventually a test was conducted 

with B = 60 across multiple manipulators to compare the number of nodes expanded, 

which is directly related to the speed of the solver, by the brute force solver and the 

DaC (D = 3) + DT + BT solver. The results can be seen in Figure 5. Note that the 6 

DOF manipulator was not tested with the brute force algorithm given that the brute 

force algorithm took several minutes to expand over 10 million nodes to solve a single 

point for a 4 DOF manipulator. For all of the following tests involving errors, only 

position error is shown in graphs and discussed since orientation error turned out to 

vary in the same way position error varied. In other words, there were no cases in 

which a solution produced high position error but low orientation error, or vice versa. 
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Fig. 5. Brute force algorithm vs. DaC (D = 3) + DT + BT, with the number of nodes expanded to solve one 

point vs. the DOF of the tested manipulator 

 

The next few tests conducted were to see the effects of varying D for the 

manipulators with 2, 3, and 4 DOFs, with D ranging un-uniformly from 3 to 32 and 

with B set at 7200, which results in a solution resolution of 1/20th of a degree. As can 

be seen in Figure 6 (D is labeled as Number of Joint Space Divisions per Iteration), 

the time it takes to solve a single point increases quite rapidly as the DOF of the 

manipulator increases. The 3 and 4 DOF manipulators have fewer data points than 

the 2 DOF manipulator because the missing points would have been extremely 

impractical to evaluate due to run times. Now consider Figure 7, which arguably has 

the most surprising result of the project. As D increases within the range of 3 to 32, 

we see that the resulting average position error actually tends to increase, which is 

the opposite of what one may expect. One point that literally stands above the others 

is the point corresponding to D = 4 for the 2 DOF manipulator. This high error wasn’t 

the result of bad luck – multiple tests were re-run to verify the consistency of this 

error. The reason for this is not well known and is further discussed later in this 

paper. One may conclude from these tests is that the optimal value of D is clearly 3, 

and as such D is 3 for the rest of the tests that did not vary D. It is also worth noting 

that other tests with the 2 DOF manipulator were run with D increasing past 32 to 

180 and 360. By the time D reaches these larger values there is an overall decrease 

in the average position error, but by then there is a very significant increase in run 

time.  
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Fig. 6. Average runtime per point vs. D for various DOFs 

 

 
Fig. 7. Average position error per point vs. D for various DOFs 

 

The next tests were to compare speed and accuracy of the various heuristics 

developed for this project (i.e. CB, DT, BT). For these tests D was held constant at 3 

and B was set to be 7200. B is set to 7200 for many of the tests because it was 

thought that a B of 7200 results in a high enough solution resolution and it leads to a 

node count that is high enough to make the tests interesting and informative when it 

comes to speed. Various breadth values of 1, 2, and 3 were also tested for CB. Also 

recall that DaC + CB(1) is essentially DC without any heuristics other than the value 

of D. Figure 8 shows the results of the tests measuring position error. As one can see, 

the worst solver by far is DaC + CB(1) while the rest have comparable performance. 

Other than the CB(1) solver, all solvers were able to achieve position errors less than 

or close to less than a millimeter, which is pretty good. Note that the position errors 

were actually average position errors in a run of 100 random points, which were 

different for each solver tested. This explains the apparent difference in performance 

between DaC + BT and DaC + DT + BT, which result in the exact same errors and 

solutions given that DT does not actually affect the search process in any way except 
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in terms of speed and memory usage. Another thing to point out is the relatively 

extreme errors produced by DaC + CB(2) and DaC + CB(3) for the 2 DOF 

manipulator. These results will be discussed later in the paper.  

In terms of speed, we see clear trends due to mathematically consistent changes 

in node counts. As seen in Figure 9, DaC + CB(1) is, although very error-prone, by far 

the fastest of the solvers, beating the next best ones by almost an order of a 

magnitude. Also note that DaC + CB(3) is by far the slowest solver, being slower than 

the rest by at least an order of magnitude. It is interesting to see such wide ranges in 

performance between Br = 1 and Br = 3, and it is these results that prompted the 

creation of BT, which has been shown to maintain a balance of speed and accuracy.  

 
Fig. 8. Average position error per point vs. manipulator DOF for all heuristics 

 

 

  
Fig. 9. Average run time per point vs. manipulator DOF for all heuristics 
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The next test was to compare memory usage (measured as the number of nodes 

created before and during the search for a single point) between DaC + BT + DT and 

DaC + BT. The results are shown in Figure 10. Given that the number of nodes 

created is exponential (see Equation 1) as the branching factor increases, the line for 

DaC + BT appears to be linear when both axes are logarithmic. On the other hand, 

we see that the solver using DT creates much fewer nodes when the branching factor 

exceeds 10000, but before that point it turns out that the solver without DT creates 

fewer nodes simply because any given node isn’t created more than once. Note that 

the solver without DT has fewer data points because my computer began stalling 

when the solver attempted to create over 4.7 million nodes. 

Speed was also compared for the tests between the solver with DT and without 

DT. As one can see in Figure 11 and Figure 9, the solver without DT performs 

slightly faster than the one without DT. This graph mostly serves to prove the speed 

scalability of DaC. For example, the solver with DT experienced a speed decrease by 

a factor of 7 while the branching factor increased by a factor of over 4.7 million. This 

shows that the time complexity of the DaC solver(s) is logarithmic in nature with a 

base of D.  

 
Fig. 10. Number of nodes created for a single run vs. the branching factor of the search tree 

 

 



Solving Serial-Link Manipulator Inverse Kinematics with Search                                                                     
42:13  
                                                                                                                                         

 

 

 
Fig. 11. Average run time per point vs. the branching factor of the search tree 

 CONCLUSIONS AND DISCUSSION 5.

As seen from several of the tests, there were some situations in which the 2 DOF 

two link planar manipulator produced errors much larger than the older 

manipulators did with the same solvers. I do not have a full explanation of this 

phenomenon, but my guess is that it has something to do with the forward 

kinematics function that is unique to each manipulator. It may be the case that there 

are certain regions in the two link planar manipulator’s forward kinematics that 

result in local minima that are close to the global minimum and that mislead the 

solver. This would explain the strange data presented in Figure 7, which shows a 

sharp increase in error when D = 4 for only the two link planar manipulator.   

From the results shown and discussed, we can conclude that the DaC inverse 

kinematics solver with some heuristics applied is a viable solution to the problem of 

inverse kinematics for serial-link manipulators. The best of the solvers developed for 

this project can consistently produce solutions sub-millimeter accuracy on average. 

These solvers can also produce such solutions in less than 2 seconds per point for a 6 

DOF manipulator, which is reasonably fast. However, it is still an order of magnitude 

or two slower than solving inverse kinematics directly with twists and matrix 

exponentials. For example, it takes MATLAB approximately 10 seconds to solve 500 

points accurately for a 7 DOF manipulator. 

The DaC algorithm can certainly be further improved. For example, one heuristic 

one may be able to look into is to break up the manipulator into separate chains. This 

would be possible only for certain cases in which the end-effector position and 

orientation only depend on a subset of the joints available. For example, one could try 

to run the solver on the first 3 joints on the SCARA robot and then run the solver for 

the last joint after a solution for the x-y position has been found. Another thing to 

note is that all of the DaC solvers used for this project store the possible joint values 

within nodes, which are distinct data structures. Having a large number of data 
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structures around surely has some overhead cost, so one may wish to investigate 

ways of dealing with numbers without the objects.  
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