
CoBot planning: Asking for human assistance
Armando Aguileta Mendoza

A robot asking for help is a topic that has recently started to be explored. The existent research
mainly focuses on asking supervisors, bystanders or occupants for observations in order to reduce
uncertainty. In this project we intend to model a planning problem in which a robot has to ask for
help with actuation. In contrast to asking for observations, asking for actuation generally requires
the person to move where the actuation-related task needs to be completed (i.e. getting the robot an
object). Hence, we would prefer the robot to look for people available in such area. We took the
approach of modeling the problem as a Markov Decision Process, and then analyzed its complexity
and efficiency, resulting to be exponential in state space, but manageable for up to 5 people (about a
quarter of a second computing time). With this baseline it is now possible to find heuristics to
improve the model, and learn probabilities for getting help by using reinforcement learning.

1. INTRODUCTION

The CoBot robots are symbiotic agents that accomplish tasks both
independently and with the assistance of humans. They are intended to
operate autonomously until they are not able to perform a task given their
physical, cognitive or perceptive limitations [1]. When this occurs, they ask
for assistance.
This project intends to study; from a planning perspective, the situation in
which a CoBot robot needs to choose between different humans to ask
them for help in order to accomplish a task related to actuation. The goal is
to maximize the probability of getting help while minimizing the costs
incurred in navigation from one location to another, and the burden of
asking people to leave their current activities to help the robot.
The current work models the problem as a Markov Decision Process,
describes the complexity and presents test results.

2. RELATED WORK

This project models the situation in which a robot needs help specifically
for completing an actuation related sub-task. Previous work has mainly
modelled humans as observation providers, which the robot can ask for
assistance in order to reduce uncertainty. For example, in Oracular
Partially Observable Decision Processes (OPOMDPs) the agent can rely on
a special type of supervisor; an Oracle, to provide the agent’s exact state at
anytime, at a fixed cost [2 ORACULAR POMDP]. Hence there is no
precondition for the agent to ask, such as navigating to the Oracle’s
location, and it is assumed that it is always available. Similar approaches
rely on asking bystanders; with the difference that they don’t get any
benefit from the robot, or don’t have any affiliation with it [3 –
BYSTANDERS].
More recently research has been done in asking for observations to
occupants of the building, people with a fixed spatial location that benefit
from the robot services. In the former framework; called Human
Observation Provider POMDP (HOP-POMDP) [4], the concept of
availability is taking into account, which is the probability of getting help

from a specific person. Also the robot has to navigate to the person’s
location in order to get help.
Asking for help with actuation takes into account concepts from previous
work such as the cost of asking, availability, and having to move to a
person’s location in order to receive help. Nevertheless it differs in the
following aspects: the robot first navigates to the area where the actuation
related sub task needs to be performed, for example it navigates to the
kitchen when it needs to get a cup of water, then it senses the area looking
for people, and creates a specific problem representation (using Markov
Decision Processes) based on the sensor data. We assume that the tasks
are usually performed in common, populated areas, and that the cost of
asking one person already located in the area is less than asking an
occupant in an office, or a supervisor. The model also includes a ‘Give-Up’
state, in which the robot fails to get help from people in the area and could
proceed to ask the occupants or an oracle

3. MODELING THE PROBLEM

The problem is modelled using a Markov Decision Process (MDP) which is
represented by a tuple {S, A, R, T}:

⎯ S: States
⎯ A(s): Actions for each state s
⎯ T(s, a, s’): Transition function, probability of reaching state s’ by

taking action a in state s
⎯ R(s): Reward, or cost (a negative reward) for each state s

The advantage of modelling the problem as a MDP, is that it can be solved
by standard solvers and algorithms, such as value iteration; which was
used for testing.

3.1 The states
There are three default states for this modelling approach, included in
every problem representation):

⎯ The Initial State (0), which represents the robot is in the initial
position X, Y and assumes that all the people detected is available to
help.
⎯ The goal state (G), which represents a scenario in which the
robot has completed the actuation related sub-task
⎯ The ‘Give Up’ or ‘Abort’ state (A), which represents a scenario in
which nobody is available to help, or the cost of asking for help was so
high that the agent wouldn’t take it.

The remaining states encode the following information:
⎯ The robot is located in the coordinates X, Y corresponding to a

specific person location

⎯ The availability of all the people sensed before (not available can
either represent that the robot arrived to the location and the
person is not there anymore, or that the agent asked the person for
help, and the person didn’t help)

For example, a valid state could be: The robot is in (5,0); corresponding to
person 1’s (P1) location, P1 is not available, P2 is available and P3 is
available. One reason for modelling the availability of all people in each
state is to avoid asking the same person again.

3.2 The actions
There are three types of actions the agent can perform: move to a different
location, ask for help and give up. The action function A(s) determines a
list of actions available at each state. In the MDP problem representation
the actions are no different from each other per se, what governs the
outcome of each action is the Transition model.

3.2 The Transition Model
For the actions that represent moving from one location to another, the
transition function returns a value which represents the probability of
arriving to the destination and that the person is still there (available) or
not. For example, consider in the following scenario, according to Fig 1:

⎯ Suppose that agent is in the initial state S
⎯ State 4 represents that the agent is in the location sensed for

person 1, and person 1 is available (and person 2 is available also)
⎯ State 3 represents the agent is in the location sensed for person 1,

person 1 is not available
T(S, 0, 4) = .2 , means that there is an 20% probability of arriving to
person’s 1 location from the initial state using action 0, and that person 1
is available (also person 2). And the complimentary transition T(S, 0, 3)
means that there is a 20% chance of arriving to person’s 1 location from
the initial state using action 0, and person 1 is not available (but person 1
is available).
For the ask for help action the transition function T(s, a, G) represents the
probability of reaching the Goal state by asking a specific person for help
with action a, being in state s. By applying action a in state s, there is also
a probability of arriving to a state; in the same location, where the person
is not available to help. For example in Fig. 1, if the agent is in state 5, and
performs action 0, the is a .4 probability of arriving to the Goal state; as
indicated by T(5, 0, G) = .4, and a .6 probability of staying in the same
location with person 6 not available to help anymore; which is determined
by T(5, 0, 6) = .6
For the give up action, there is always a 100% probability of arriving to the
Give Up state.

Fig.1 Problem Representation for two people

3.3 The reward function
The reward function for this problem works as follows:

⎯ The Initial state (S), Goal state (G) and Give Up state (A) have a
predefined reward, usually a low or null reward for the initial
state, a high reward for the goal state, and a negative reward for
the Give Up state. What is important to mention, is that the
reward for the Give Up state could represent the expected reward
for achieving the goal in other way (external from this problem
model), for example, the expected reward for asking for help to a
supervisor, or an occupant.

⎯ The reward for the other states is the negative of the last
immediate distance the robot had to travel to get to the state. For
example in Fig. 1, for state 4, if person 1 is located in (5,0), and
the initial location of the robot in state 0 was (0,0), then R(4) = 5.
Similarly, if state 5 represents the robot is in (8, 0), R(5) = 3 since
the robot arrived from state 3, which is located in (5, 0).

4. TESTING
For purposes of testing and evaluating the modelling of the problem, a
system was developed consisting in two main components, as shown in Fig 2:

⎯ A Problem Generator, which receives sensor data describing the
location of each person in the area and generates a MDP Problem
representation as outlined before

⎯ A Standard MDP Solver implementing value iteration, which
receives the problem representation as an input, and produces a
Policy

Fig. 2 System implementation

The first part of the testing consisted in generating problems for different
amounts of people (1 to 10), verify correctness and calculate the number of
nodes necessary to represent the problem. The Fig.3 shows that the number
of states increases exponentially, this is because the structure of the MDP
representation. If we look back at Fig. 2 it is possible to appreciate that from
the initial state it is possible to reach 4 nodes (which we will call Level 0):

⎯ State 3: The robot is in P1 location, P1 is not available, P2 is available
⎯ State 4: The robot is in P1 location, P1 is available, P2 is available
⎯ State 9: The robot is in P2 location, P1 is available, P2 is available
⎯ State 10: The robot is in P1 location, P1 is available, P2 not is available

Then next level (non terminal states reached from 3, 4, 9 or 10) is reached
when the robot fails to get help from a person in level 0, and moves to
another one, there are 2 nodes for each remaining person. In this case two
nodes for failing with person 1 in level zero:

⎯ State 5: The robot is in P2 location, P1 is not available, P2 is available
⎯ State 6: The robot is in P2 location, P1 is not available, P2 is not

available
And two nodes after failing with person 2 in level zero:

⎯ State 7: The robot is in P1 location, P1 is available, P2 is not available
⎯ State 8: The robot is in P1 location, P1 is not available, P2 is not

available
Following this logic it is possible to deduce that in a 3 people problem, there
would be 3 * 2 states in the level zero, 3 * 2 * 2 in level one, and 3 * 2 * 2 in
level three. Hence the equation that determines the total number of states for
each problem representation is:

MDP	
 Solver Problem	

Generator

Policy

Sensor	

data

MDP	
 Problem
Representation

.txt	
 file .txt	
 file

Where x is the total number of people detected.

Figure 3. People vs. Nodes generated

The second part of testing consisted in generating 60 different scenarios, 10
per number of people (from 2 to 7) using a computer with a 3.16 GHz Intel
Xeon processor (CMU Linux Timeshares), and measuring the time in which
the MDP was solved it using value iteration. The following graph shows that
the time is also exponential:

Fig 4. Average computing time

0	

1E+12	

2E+12	

3E+12	

4E+12	

5E+12	

6E+12	

7E+12	

8E+12	

1	
 3	
 5	
 7	
 9	
 11	
 13	
 15	
 17	
 19	
 21	
 23	
 25	

Number of people

States

0.075	
 0.23	
 0.992	
 12.392	
 277.18	

10120.5	

0	

2000	

4000	

6000	

8000	

10000	

12000	

Time	
 (ms)	

States	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5	
 	
 	
 	
 	
 	
 	
 	
 11	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 33	
 	
 	
 	
 	
 	
 	
 131	
 	
 	
 	
 	
 	
 653	
 	
 	
 	
 	
 	
 3915	

It is possible to see that for 5 states (corresponding to 2 people) the solving
time was .000075 seconds, and even for 6 people (3915 states) the problem
was tractable taking 10.12 seconds. For the problem with 7 people (27401
states) the system killed the process.

5. CONCLUSIONS AND FUTURE WORK

The modelling approach for this problem turned out to be exponential in state
space and computing time. Nevertheless for up to 5 people, it could be
computed in real time by taking .27 seconds, so one approach would be for the
robot to generate the problem representation for the closest 5 people, and if it
fails generate another with the remaining people in the area. Also given that
the robot is supposed to operate indoors, typically the number of persons is
expected to be in that order of magnitude.
As far as now, the probabilities for getting help were fixed, the next step
would be to use reinforcement learning to learn those values, and then try to
map them to the people characteristics, to use as a priori probability later.
For example, the robot would learn a probability for a person seated and
isolated several times, and we could try to determine if there is a correlation
between this people characteristics and the probability of getting help from
the person.
Another topic of future work would be to find heuristics or alternative
methods to solve the MDP. One possibility would be not taking into account
the cost of navigation to one location to another while generating the problem
representation (which dramatically reduced the state space) and including it
until the calculation of the policy, choosing the action with maximizes “Best
expected value – Cost of navigating”.

5. REFERENCES

1. S. Rosenthal, J. Biswas and M. Veloso. An Effective Personal Mobile Robot

Agent Through Symbiotic Human-Robot Interaction. Proceedings of
AAMAS'10, the Ninth International Joint Conference on Autonomous
Agents and Multi-Agent Systems, Toronto, Canada. Pages 915-922, 2010.

2. N. Armstrong-Crews and M. Veloso, “Oracular POMDPs: A very special
case”. ICRA ’07, 2007

3. Weiss, A., Igelsböck, J., et al. Robots asking for directions: the willingness
of passers-by to sup- port robots. In: HRI ’10. Pages 23–30, 2010

4. Stephanie Rosenthal and Manuela Veloso. Modeling humans as
observation providers using POMDPs. Proceedings of the 20th IEEE
International Symposium on Robot and Human Interactive
Communication (RO-MAN), Atlanta, GA, August 2011.

5. Stephanie Rosenthal, Manuela Veloso, and Anind Dey. Learning Accuracy
and Availability of Humans who Help Mobile Robots. aaProceedings of
AAAI'11, the Twenty-Fifth Conference on Artificial Intelligence, San
Francisco, CA, August 2011.

