Analysis of Dominion: the original deck-builder
15-780 Project Report

Sarah Loos (sloos) and Patrick Xia (pjx)

Computer Science Department, Carnegie Mellon University

Abstract. We analyze the game of 2-player Dominion, a popular deck-
building card game published in 2008. We develop a framework that
treats the game of Dominion in a different way depending on what phase
it is in: in the beginning of the game, we abstract the game as a fully-
observable Markov decision process, and near the end of the game, when
a tree search becomes tractable, we switch to a strategic player that fully
takes into account the possible actions of the second player. Our focus
is on a subset of the game (only the base cards) to allow for concise
analysis, but the general approach can extend to the entire game.

Our approach on the early-game focused on solving the game via requires
some additional analysis, as some simplifying assumptions have made
for a poor player. However, our endgame analysis offers some marginal
improvement against state-of-the-art computer players, though the im-
provement is marginal and often swamped by the variance in the game.
Our endgame analysis was also able to recover a popular advanced hu-
man strategy, indicating that improved versions should be able to fare
competitively against humans.

1 Background

The popular card game Dominion, published by Rio Grande Games, presents
an interesting new challenge for good game Al. It has pioneered what is called
the “deck-building” genre of card games, where the primary game mechanic is
that players make decisions on which cards to include in their deck. The game
is very popular, with a significant online following, and some rudimentary work
on computer players has been done. The official game implementation, at Goko,
offers a very rudimentary Al to play against, but most players of medium skill
are able to easily outpace their algorithms.

At its core, Dominion is a partial-knowledge game that requires deep game
tree analysis in its execution (as decisions made now change the composition of
the deck and therefore the value of future moves). Though many amateur at-
tempts have been made at a good game Al for Dominion, most of these attempts
rely on heuristic from what is commonly agreed to be “good gameplay decisions”
and not based on any rigorous formulation of the problem from a planning or
decision perspective. In this project, we examine the planning that is required
for good deck building, and the decisions that are necessary for good endgame

play.

2 Sarah Loos (sloos) and Patrick Xia (pjx)

2 Game Mechanics

The goal of Dominion is to maximize the number of cards offering victory points
in one’s deck at the end of the game. We examine a stripped-down version of
Dominion in which there are two types of cards: Treasure cards and Victory
cards, as shown in Figure 1. Players begin the game by drawing five cards;
every turn, players are allowed to buy one card with Treasure they have in hand
(adding the card to their deck for the remainder), and then discard their cards.
All discarded cards are eventually reshuffled, so deck sizes increase as the game
goes on.

o D

~ COPPER (@

Fig. 1: Base cards for Dominion

There is a tension between the goal of maximizing victory points and having
a deck that allows for future purchases of victory points; since cards that offer
victory points do not add to treasure, having a deck that is high in victory
points makes it more difficult to buy victory points in the future. Therefore,
good endgame analysis of exactly when to stop buying additional Treasure and
to start buying victory points is essential to a good player’s strategy.

An interesting point to mention here is that the full set of cards includes
dozens of cards (see Figure 2 for a somewhat-out-of-date sampling) that change
from game to game (ten cards are chosen randomly out of the entire set). For the
purposes of analysis, we have restricted the game to the base set of treasure cards
and victory cards. It is important, however, to note that the generalized form of
our approach is certainly not limited to this subgame and that our strategies can
certainly deal with the added cards that are present in a full game of Dominion.

3 Owur approach

The approach for a good Dominion Al in the wild right now is essentially a search
over heuristic strategies: people define the parameters of what’s important about
a game of Dominion and then tune those parameters by hand by observing
the percentages of games such a strategy wins. If this iteration is done by a
machine, the approach would almost be akin to genetic programming. However,

Analysis of Dominion: the original deck-builder 15-780 PI‘OjGCt Report 3

Fig. 2: Kingdom cards for Dominion, circa 2010

this approach requires a lot of intuition about the game and also misses some
of the larger game state — novel strategies cannot be developed because the
strategies are already essentially encoded; the parameters are only a small form
of tuning.

From the perspective of the literature and our AI course, the traditional
approach when presented with this game (which primarily has to deal with
building a deck to account for the randomness of drawing cards) is to model
it as a partially-observable Markov decision process. Here, a Dominion strategy
maps from the current observable game state to the actions that are available to
the current player. However, this also abstracts away the second player entirely
by subsuming him into the state and transition model.

4 TImplementation

We base all of our strategies on the open-source project Dominiate [4]. Dominiate
is an all-purpose Dominion simulator and comes with a library of community-
contributed strategies. A lot of the work on the project has the goal of making
it easier for people unexperienced with coding to write strategies of their own,
which explains many of the design decisions (it is implemented in CoffeeScript,
a language that compiles to JavaScript so that strategies can be run completely
in the browser). This also makes the library of Als completely of the form earlier
mentioned—“if the deck has z amount of Treasure and the piles are roughly y
deep, then buy card z.”

4 Sarah Loos (sloos) and Patrick Xia (pjx)

However, because Dominiate is a complete Dominion simulator, the simulator
itself needs to keep track of a lot of internal state in order for the simulation to
return the correct results. Therefore, it is very simple (but runtimes are slow,
again, due to choice of language and runtime environment) to create a minimax
tree search player. Our “build” step is currently done outside of the simulation
environment because we focused solely on the base set of cards and did not
require a heavy simulation platform—however, further work in this area can
totally be done by borrowing the action semantics from the Dominiate simulator
itself.

5 Extensive Form Representation

In Figure 1 we illustrate an extensive form representation of just one round of
the game. We assume that the value of the hand for the player is known. In
this example extensive form, the equilibrium is just the very basic dominating
strategy. While this simple equilibrium strategy is a result of the simplifications
we made to the state space, adding in Kingdom cards (that differ from game
to game) in the endgame results in a state space that is too large for simple
analysis and is not incredibly useful to understanding the dynamics behind this
game.

C—Copper, 1 treasure
S —Silver, 2 treasures
G - Gold, 3 treasures
E - Estate, 1 VP

D —Duchy, 3 VPs

P — Province, 6 VPs
LR 0 — Buy nothing

YAV A AT A o 1\
A 7 ENY EAS P\ PAE /ﬁ'"\

&\ J Uy Vi Vo ¢y

Fig. 3: Extensive form representation for a single hand for one player.

While this approach (generalized equilibrium solving) is useful for highly-
strategic two player games like poker, it is probably too large of a hammer
for Dominion. The reason here is that Dominion has relatively little player
interaction in the beginning stages of the game, and the depth of the game tree

Analysis of Dominion: the original deck-builder 15-780 Project Report 5

is fairly large, which makes for a lot of wasted computation. We believe the
game may be better suited to optimization analysis rather than a search for
an equilibrium. We, however, point the interested reader to [5] for a general-
purpose equilibrium solver for 2-person zero-sum games if one wants to extend
our approach in this direction.

6 2-ply Minimax

As mentioned in Section 4, our minimax tree traversal algorithm is based on the
internals of the open-source project Dominiate. The heuristic value of the game
at any given node is simply the difference between the first and second player’s
scores. Since all of the important information is fully observable (specifically, the
score of one’s deck), this endgame analysis is easy to implement on the behalf
of one player.

Unfortunately, as mentioned in the earlier section, Dominiate was never de-
signed for speed, and such a search can only happen at realtime speeds if severely
depth-limited. Since the game of Dominion suffers from very high variance, many
iterations of testing are required to determine whether or not one strategy beats
another. We implemented a 2-ply minimax algorithm that looks ahead by two
player moves to choose the best course of action, using a worst-case opponent
model (the opponent can buy anything that their deck allows them to).

We noticed during trial runs of the 2-ply minimax algorithm that in some
cases, the computer player would choose to buy a Duchy (which gains 3 victory
points) instead of a Province (which gains 6 victory points) even when the player
could afford the Province. This is counterintuitive player because a Duchy is a
strictly inferior card to a Province. Upon further analysis, we noticed that this
only happened when the Province pile only had two cards remaining and the
player was only slightly behind: this action therefore makes sense in retrospect
because buying the penultimate Province means that the player loses if the
other player responds by buying the last province. An example might make this
clearer: suppose Player 1 is 2 points behind. Buying a Duchy puts him at 1 point
ahead and buying a Province puts him at 4 points ahead. But if Player 2 buys
a Province on the next turn, Player 1 loses by 4 points, whereas if he bought
a Duchy, Player 1 would only be behind by 4 points and possibly could buy a
Province on his last turn to end the game.

We tested a pure version of this strategy (which, unfortunately, upon a lit-
erature review before writing this writeup, is not novel, but is an “advanced
strategy” used by humans known as the Penultimate Province Rule) to see the
advantage that a strategic player would have against a player with no strategy
at all. The results of 100,000 iterations are shown in Figure 4.

The resulting player is approximately .4% better than the naive one. Unfor-
tunately, this is not a very large improvement, but it shows that very simple
search can improve the outcome of games and offer an advantage to a player.
Deeper tree search, if used in combination with a successful heuristic, might be
able to offer even larger improvements. The importance here, though, is that we

6 Sarah Loos (sloos) and Patrick Xia (pjx)

50 .

NaiveI . /
45 - Optimized ’/’

. ¢

40 ——P%//—k—kj«———k ottt
s

35 /

30

25 #

Points

20 /-
15 #

10 /

K

0 5 10 15 20 25 30 35 40 45

Turn

Fig.4: A plot of a player that uses the “penultimate Province rule.” We can see
that the optimized player gets fewer points on average, but wins slightly more
games due to that slight peak.

have presented a generalized framework to be able to find new strategies in the
presence of new cards as well (the endgame need not be the simplified endgame
that we have considered here)—discovering new strategies like the “Penultimate
Province Rule” can come simply from observing seemingly-anomalous behavior
of a tree-search baed player.

7 Q-Learning

So far our approaches in Sections 6 and 5 have focused on the interplay between
two players during the endgame of Dominion. However, individual actions of the
opposing player don’t have a big impact on your own choices, especially early
in the game. For example, the other player can not change the composition of
your deck, or the value of your hand. And, once you buy a victory card, you will
have those points until the end of the game. The opposing player will, however,
influence when the game ends.

In this section and in Section 8 we analyze Dominion as an optimization
problem for a single agent, rather than as a two-player game. We do this by

Analysis of Dominion: the original deck-builder 15-780 Project Report 7

abstracting the actions of the opposing player to its most important role: de-
termining the length of the game. To do this we run 200,000 games using our
benchmark “Big Money” strategy and record the total number of turns taken in
each game. This results in the distribution found in Figure 5.

0.18

0.16

0.14 B

012 +——

01 1 HH

008 +— 1 — & Series2

0.06 B

0.04
I,

0.02 EEE

0 rr—rr T e T et et T

13 15 17 19 21 23 25 27 29 31 33 35 37 39

Fig. 5: Distribution of total number of turns.

Now we can consider the game of Dominion as a Q-Learning problem, where
the probability of the game ending at any given turn (modeled as a sink state)
is derived from the sampled data in Figure 5. The only state that has a reward
is the sink state, and that reward is the current number of victory points in the
player’s deck.

If we were to model the game precisely, we would model the state as the exact
composition of the deck, as well as each individual hand that could be drawn
from each of those decks, in addition to the number of turns taken. However, due
to the combined combinatorial nature of the deck composition, and the possible
hands that can be drawn out of each deck, this state space is intractably large.
However, if we had the computational power to handle it, we would model the
system’s state, actions, and rewards as:

State: {all possible decks, all possible hands given the deck, turns taken}
Action: {Province, Duchy, Estate, Gold, Silver, Copper, nothing}, where

each card is only available if the value of the hand exceeds the cost of that card.
Reward: {If in sink state — victory points in deck}

Since it is necessary to reduce the state space in order to make the problem
tractable, we first look at simplifying our model of the hand and the deck. Instead

8 Sarah Loos (sloos) and Patrick Xia (pjx)

of modeling each card in the deck, the state only tracks the total number of cards
in the deck, the sum of all the victory points in the deck, and the sum of all the
treasures in the deck. Then we simplify the state again by taking the value of
each hand to be its expected value, i.e., 5 * (%

We also reduce the complexity of the actions by only allowing the largest
affordable treasure or the largest affordable province to be purchased. Since we
don’t restrict the total number of treasures and provinces, this is a dominating

strategy.

State: {number of cards, value of all cards, victory points, turns taken}
Action: {buy largest coin, buy largest victory card, buy nothing}
Reward: {if in sink state — victory points}

After running Q-Learning through 500, 000, 000 exploration episodes, the av-
erage reward over a thousand episodes, each starting at a random point in the
state space, improved from 31.36 to 33.30 rewarded victory points. The strategy
that the Q-Learning approach gives when starting at the initial state and always
choosing the action with the maximum corresponding Q-Value is outlined in
Section 8.

Even though we have abstracted the state so much, we still have trouble
getting the Q-Learning algorithm to converge on this problem. So, in the next
section, we analyze Dominion as a Markov Decision Process (MDP), which can
be solved directly.

8 Solving the MDP

The MDP mentioned in Section 7 can also be solved directly with a variety of
MDP solvers; Q-learning is an approach typically used when the environment
is not known. Although state-of-the-art POMDP solvers, such as ZMDPI6], can
also solve MDPs, our MDP has special properties that make it easier-to-solve:
specifically, the graph is acyclic (since we introduced the turn number into the
state!, which means that only one iteration through the state space is necessary:
on turn 30, we set the utility of every state to be the number of points it contains,
and then we iterate, starting from turn 29 and going down, updating the value
of U, the expected utility from choosing a given action (which, of course, is the
value of the current state times the probability the game ends this turn, plus
the probability the game continues and the value of the next state). It is clear
that this approach will result in an optimal path through this state space.
After solving the MDP, we obtain that the optimal value of this game is
31.9285, with the optimal choices to be made at every turn given in the table

! One might ask why we’ve done this seeing that it blows up the state space, but it
was very difficult to model the termination probability well if not given the state
number. It’s empirically not a Poisson process (see Figure 5), so more training is
needed on some other aspects of the state space. Future modeling could negate this
assumption.

Analysis of Dominion: the original deck-builder 15-780 Project Report 9

below. We note that the Q-learning player has learned well, having matched the
optimal value of the game.

Turn|[MDP action] MDP VP|(, traint ecton) (Vi M)
1 | Buy Silver 3 Buy Silver 3
2 | Buy Silver 3 Buy Estate 4
3 | Buy Silver 3 Buy Silver 4
4 | Buy Silver 3 Buy Silver 4
5 | Buy Silver 3 Do Nothing 4
6 | Buy Silver 3 Buy Estate 5
7 | Buy Silver 3 Buy Silver 5
8 | Buy Gold 3 Buy Silver 5
9 | Buy Duchy 6 Do Nothing 5
10 | Buy Duchy 9 Buy Duchy 8
11 | Buy Gold 9 Buy Silver 8
12 | Buy Duchy 12 Buy Duchy 11
13 | Buy Duchy 15 Buy Silver 11
14 | Buy Duchy 18 Buy Silver 11
15 | Buy Duchy 21 Buy Duchy 14
16 | Buy Duchy 24 Buy Duchy 17
17 | Buy Duchy 27 Buy Estate 18
18 | Buy Duchy 30 Buy Estate 19
19 | Buy Silver 30 Buy Estate 20
20 | Buy Duchy 33 Do Nothing 20
21 | Buy Silver 33 Do Nothing 20
22 | Buy Duchy 36 Buy Estate 21
23 | Buy Silver 36 Do Nothing 21
24 | Buy Duchy 39 Buy Estate 22

Of course, our strategy does not work in an actual game of Dominion because
our simplification of the state space means that it’s impossible to buy that
number of Duchies. In addition, the use of the expected value to determine what
cards one can buy is a problem because it is very difficult to amass 8 treasure
worth of expected value, but it’s hard to make a deck that rarely ever has
8 treasure (loosely speaking, buying Gold makes your treasure very “lumpy”,
which increases the variance, which means that there is a good chance that you
can draw 8+ hands even with relatively low expected value).

9 Conclusions

Our idea of splitting the game into a “building” phase and a “strategic” phase,
on first glance, does not seem to have made a very good player. The “building”
phase player optimizes for a very flat strategy—buying low-valued victory point
cards—that will get beaten even by the most amateur human player. There,
however, is some merit in modeling the game like this. First, improving the

10 Sarah Loos (sloos) and Patrick Xia (pjx)

model that our “building” player uses results in a much stronger player—one
that doesn’t attempt to buy all the Duchies, for example, because there simply
aren’t that many Duchies available. Secondly, our “strategic”’-phase player can
already be bolted on top of a heuristic-based player that is seen in the wild
today, which offers improvements over any of the Als available in the Dominiate
library. This suggests that further work on this analysis will result in a truly
superior computer player for the game of Dominion, and one that doesn’t require
individual human tuning for every additional card added to the library.

In fact, there exists a happy medium between tracking all possible permuta-
tions of the deck and the simplified version that we used. We can add granularity
to the treasure cards, add granularity to the victory point cards, and add a hand
value to each state, which only produces a state that is a few hundred to a few
thousand times larger (depending on the specific constants used). Although this
will make the computation take a much longer period of time, we note that
this computation can easily be parallelized within each turn computation, which
makes it tractable for large computing clusters.

Our experience in using Q-learning for an acyclic Markov model seems to
indicate that there is sometimes good convergence to an optimal strategy. Fur-
ther work may be warranted on this observation, as acyclic Markov models are
certainly simpler than the general case. Since Q-learning frameworks are often
present in many toolkits and libraries, it can often be easier and less error-prone
to implement a Q-learning solution (because there exists a clear separation be-
tween the optimizer and the model under consideration) than to use an MDP
solver, which often requires additional integration work. In addition, Q-learning
solutions can either attempt to learn an unknown game simply from observing it
being played, or be able to learn the value of various cards in Dominion without
knowing their specific interactions.

References

1. http://www.riograndegames.com/games.html?7id=278

2. Varley, Allen (2009-08-09). “Dominion Over All”. Escapist.
http://tinyurl.com/mkhpk5

3. http://forum.dominionstrategy.com/index.php?topic=619.0

4. https://github.com/rspeer/dominiate

5. Gilpin, A. Pefia, J, and Sandholm, T. First-Order Algorithm with O(In(1/epsilon))
Convergence for epsilon-Equilibrium in Two-Person Zero-Sum Games. Mathematical
Programming 133(1-2), 279-298.

6. Smith, T. ZMDP Software for POMDP and MDP Planning. Github repository.
trey0/zmdp

