

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article xx, Publication date: Month YYYY

An Agent For Playing A Customizable Card Game

JOSEPH F. GRECO, Carnegie Mellon University

I developed an agent to can play a simplified version of the Star Trek Customizable Card Game (STCCG)
collectible deck-building card game. This required the creation of an environment providing a game-state
and the listing of all possible (rule-following) actions that the agent can carry out in that state, with their
appropriate effects. An abstracted, simplified version of the game was necessary to limit the unique
actions possible. After building enough of the environment, an agent was developed, heuristics were
implemented to improve the agent’s efficiency, and changes were made in the implementation to better
support the agent’s evaluation function.

Categories and Subject Descriptors: I.2.1 [ARTIFICIAL INTELLIGENCE – Applications and Expert
Systems]: Games

General Terms: Design, Algorithms

Additional Key Words and Phrases: Game modeling, game abstraction, search, game trees, alpha beta
search, iterative deepening

ACM Reference Format:

Joseph F. Greco, 2013. An Agent For Playing A Customizable Card Game. Unpublished.   
DOI: None

 INTRODUCTION 1.
The Star Trek Customizable Card Game (STCCG) is a collectible deck-building card
game based on elements from the Star Trek series of television shows and movies.
After the successful first edition (1994-2006) of the game grew increasingly complex,
a streamlined second edition (2E) was released and expanded from 2002 to 2007 [1].
An official online version of the games was available, but was essentially a player
versus player chatroom “sandbox” environment that did not attempt to enforce game
rules.

A similar-in-concept game is the popular Magic: The Gathering. Some work has been
done with comparing gameplay strategies’ effectiveness in 2009[2]. The experimental
design seemed an appropriate model for use with a game such as STCCG 2E
(specifically, the setup of the test environment and decision separation,
acknowledging incomplete knowledge).

The goal of this project was to create an agent to play a simplified version of the
STCCG 2E. This required the creation of an environment providing a game-state and
possible (rule-following) actions and effects that the agent can manipulate. A
simplified version is necessary to limit the unique actions possible. After the creation
of the environment, an agent was developed to manipulate the environment
intelligently.

 GAME OVERVIEW 2.
In the game, each player has three groupings of cards:

• A set of 5 mission cards representing locations in the universe. These
locations are either planet missions or space missions, solved to score points,
or headquarters missions that are used for reporting compatible cards from
hand. These are placed on the table at the beginning of the game.

• A draw deck of at least 35 cards of the following card types:
o personnel – a character who has skills and attributes to solve

missions

1:2 J. Greco

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

o ships – a starship capable of moving personnel and equipment
o equipment – a piece of equipment such as a tricorder, typically

supplementing the skills/attributes of some personnel present
o event – plays during the player’s turn to have some effect on the

universe
o interrupt – plays in response to almost any action of any player,

typically affecting that action
• A dilemma pile of at least 20 dilemmas. The player uses these to attempt to

stymie attempts by another to solve missions.

Players draw a hand of cards from their draw deck, then start taking alternating
turns of the following structure:

1. Play and Draw Cards: seven counters allow playing the (varying-cost)
cards from hand or drawing additional cards from the deck

2. Execute Orders: beaming personnel and equipment between
locations/ships, moving ships between missions, attempting missions,
miscellaneous special actions on cards
a. When missions are attempted, the opponent draws and chooses

dilemmas to be encountered by the attempters, ideally requiring
skills and attributes not present.

3. Discard Excess Cards: discard (choose any) cards over seven from hand.
The game ends when draw decks have been exhausted, and victory is determined
based on missions solved and points scored.

 EXISTING WORK 3.
The Continuing Committee, an unofficial group of Star Trek enthusiasts, emerged
after the discontinuation of the games, providing a community for organized play as
well as future “virtual expansions” of the games. Various online methods of play
(non-rule-enforcing) have been developed and maintained by the group, as well as a
database of card metadata. This database of card information is already somewhat
machine-readable; with additional modifications it was useful as a starting point for
providing the data necessary to populate the environment I created. Modifications
were made to database file to be imported to support all the information and in the
format needed. The collection of card images was also useful for the debugging server
I developed.

 GAME ENVIRONMENT & ABSTRACTION 4.
I picked Java to develop this project in due to my familiarity with the language and
development environment, as well as the portability of the code for future purposes.

The code is divided into several groupings of classes:

 Constants 4.1
Constants – these are used throughout the game code to consistently represent
symbols and classifications.

 Card database 4.2
These classes used to create a database of the unique game cards with their
attributes and information

An Agent For Playing A Customizable Card Game DRAFT 1:3

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

• Card – implementing common card characteristics, such as id, game text, title,
set identification and number, rarity, type, and uniqueness. Various String
outputs are implemented for debugging purposes, as well as an equals method.

• Dilemma – representing a dilemma card, extending Card with mission type
(planet/space) and cost information.

• Equipment – representing an equipment card, extending Card with keywords
(relevant for some cards) and cost information.

• Event – representing an event card, extending Card with keywords (relevant for
some cards) and cost information.

• Interrupt – representing an interrupt card, extending Card with keywords
(relevant for some cards). No cost information is needed as interrupts do not have
a numeric cost.

• Mission – representing a mission card, extending Card with the mission type,
skills needed to solve, keywords, affiliations able to attempt, span, quadrant, and,
most importantly, points. A method in this is called at initiation to place the
skills read in from the data file to table form.

• Personnel – representing a personnel card, extending Card with the card subtitle
(lore text but relevant to gameplay), cost, skills, keywords, affiliation, species,
standard values (integrity, cunning, and strength), and special icons.

• Ship – representing a ship card, extending Card with the card subtitle (lore text
but relevant to gameplay), cost, keywords, affiliation, ship classification,
standard values (range, weapons and shields), and special icons.

 Cards in play 4.3
These wrappers representing cards actually in play (including groupings) with any
attribute modifiers or state information, referencing the templates to save space.
Only some card types were implemented with matching wrappers:
• CardInPlay – implements common card characteristics, with a link to the

template from the card database, the owner, and number the card is in the
player’s deck. Common methods to be overridden and called by the below classes
include methods for performing start and end of turn actions, comparing and
cloning cards, and methods for debugging.

• Pile – a class containing an ArrayList of CardInPlay cards, with methods for
taking cards, peeking at cards, randomizing cards, as well as gathering
information aggregated over the cards.

• MissionInPlay – extending CardInPlay, implements some of the below interfaces
as well as piles for cards of ships in orbit or personnel on the surface of the planet,
if applicable.

• EquipmentInPlay, PersonnelInPlay, ShipInPlay, extending CardInPlay and
implementing some of the interfaces below.

 Card interfaces 4.4
These are implemented by cards in play, assisting with the organized determination
of possible actions, as rather than referencing particular card types, casting can be
used for convenience with certainty that necessary methods are implemented.
• Beamable – methods a card must implement if it is able to be transported from a

location to another, such as being given a location and determining if it is
suitable, as well as actually beaming.

• Costs – methods a card must implement if counters are used on play, such as
getting the cost and uniqueness (as uniqueness limits the playability of a card).

1:4 J. Greco

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

• Moveable – typically ships, methods a card must implement for moving, such as
determining if a ships is staffed for movement, remaining range for movement,
and actually moving.

• Oxygen – methods a card must implement if it is a location that cards can be
beamed to. This includes receiving or departing a personnel, as well as
performing aggregate information gathering for use by action determination.

• Reportable – methods a card must implement if it can be played from hand to the
headquarters card, such as reporting the card or discarding it.

• Stoppable – methods a card must implement if it can be stopped during a turn,
such as stopping, unstopping, and getting stopped status.

 Game classes 4.5
These objects represent the game state, modeling players (including the decks, table
cards, and hand), as well as logic for determining legal actions based on the game
state.
• Action – a container for an action, including an action description “method,”

optional cards affected, and optional pile relevant.
• GameState – the main game container class, handling start and end of game,

turn logic, and the game loop. Supports console, GUI, and server debug modes.
• GameWrapper – sets up the card database and reads in player information to

create the game state.
• Main – simple class to create a GameWrapper.
• Player – maintains all the piles of the player (draw deck, hand, discard pile,

missions, etc) as well as legal action possibilities generation as well as action
interpretation.

 Search program 4.6
These classes are used to represent the game and do the game tree searching.
• AlphaBetaSearch – code from the AIMA website implementing alpha beta search

as described in the textbook
• CutoffAlphaBetaSearch – based on code from AlphaBetaSearch, modified based

on the textbook-described needed changes for iterative deepening.
• Game – code from the AIMA website of the interface needed to be implemented

for the representation of a game used for search.
• MinmaxSearch – code from the AIMA website implementing min max search as

described in the textbook
• Searcher – invoked as a thread from GameState, used to call

CutoffAlphaBetaSearch to highest depth possible until stopped.
• STGame – an interface implementing Game, reading GameState to provide the

information needed for the search, including the evaluation function.

 Server 4.7
The server was used for debugging graphically, allowing for action possibilities to be
verified for correctness by manually examining card information
• Servlet – interfaces with the GameWrapper to support manipulating the game

environment through a web browser.
• JSP & Images – used for rendering the game environment.

An Agent For Playing A Customizable Card Game DRAFT 1:5

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

 IMPLEMENTATION 5.
Starting from the online card database, modifications were made to support reading
this file through the OpenCSV library, as well as to clean up and insert new fields as
needed. Creating the classes to handle the card database mostly mapped to those
fields, though as implementation went on the fields were revised to store additional
data.

Work on the classes for the card wrappers and interfaces was mostly simultaneous.
As methods were determined to be needed, the interfaces they would belong in and
supporting methods in the card wrappers were created. The creation of a Pile class
also assisted in allowing for methods to be performed across multiple cards at once.
Only the standard parts of Missions, Ships, and Personnel were implemented, with
special skills and abilities unimplemented, to keep the game simple and devote more
time to search.

The game classes were challenging to implement, as the game logic is complicated
and actions varied. Development of a console-based interface, allowing selection from
a generated list of legal actions based on state, was completed first. However,
debugging the game logic was difficult as state printouts were long and difficult to
read.

A GUI was created to better present the state of the game for logic debugging.
However, this was also problematic, as verification required knowing and comparing
card details. A simple Java Tomcat servlet was developed, delivering the complete
state as HTML and allowing for action selection and game control from the page.

 SEARCH 6.
Building on code from the AIMA site, an interface between the gamestate for using
the Minimax search was created. This interface implemented methods to provide a
model of the game:

• STATE	
 getInitialState();	

• PLAYER[]	
 getPlayers();	

• PLAYER	
 getPlayer(STATE	
 state);	

• List<ACTION>	
 getActions(STATE	
 state);	

• STATE	
 getResult(STATE	
 state,	
 ACTION	
 action);	

• boolean	
 isTerminal(STATE	
 state);	

• double	
 getUtility(STATE	
 state,	
 PLAYER	
 player);	

• boolean	
 isCutoff(STATE	
 state,	
 int	
 depth);	

• double	
 getEstimatedUtility(STATE	
 state,	
 PLAYER	
 player);	

These methods allowed for the search to access all the information needed to build
the trees for search for the game. Getting the current player enabled the multiple
moves by a single player in series to be supported.

Alpha Beta Pruning search was then substituted, and finally a custom version of
Alpha Beta Search using iterative deepening with a time limit (5 seconds was
selected) was developed. A move ordering heuristic was implemented to allow Alpha
Beta Search to work more efficiently, as well as additional actions such as “beam all”
eligible personnel from one location to another, allowing for multiple similar actions
to be played in one move, essentially getting deeper in the prior search trees faster.

1:6 J. Greco

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

The evaluation function for the search went through multiple iterations, before a
simple function incorporating domain-specific knowledge, prioritizing points,
personnel/staffed ships with personnel meeting missions requirements at unsolved
missions, staffed ships at the headquarters, and finally personnel (using the cost
metric as an estimate of value) at the headquarters:
public	
 double	
 getEstimatedUtility(GameState	
 state,	
 Integer	
 player)	
 {	

	
 //	
 most	
 importantly,	
 if	
 terminal	

	
 if	
 (isTerminal(state))	
 {	

	
 	
 return	
 getUtility(state,	
 player);	
 //	
 simply	
 returns	
 points	

	
 }	

	

	
 //	
 start	
 a	
 counter	

	
 double	
 tempUtility	
 =	
 0;	

	
 //	
 get	
 the	
 current	
 player	

	
 Player	
 p	
 =	
 state.players.get(player);	

	
 //	
 add	
 points	
 of	
 missions	
 so	
 far	

	
 tempUtility	
 +=	
 p.points;	

	
 	
 	

	
 for	
 (CardInPlay	
 mc:	
 p.missions.pileCards){	

	
 	
 //	
 for	
 each	
 mission	

	
 	
 MissionInPlay	
 m	
 =	
 (MissionInPlay)	
 mc;	

	
 	
 double	
 missionUtility	
 =	
 0.0;	

	
 	
 for	
 (ShipInPlay	
 sc:	
 m.getShipsHere()){	

	
 	
 	
 double	
 shipUtility	
 =	
 0.0;	

	
 	
 	
 shipUtility	
 +=sc.getPrintedCost();	

	
 	
 	
 shipUtility	
 +=	

(double)sc.getPersonnelHere().size()/(double)sc.getPrintedCost();	

	
 	
 	
 shipUtility	
 +=	
 (double)sc.deckNum*0.00001;	
 //	
 attempt	
 to	

differentiate	
 between	
 copies	
 of	
 same	
 ship	
 by	
 using	
 a	
 unique	
 value,	
 prevent	

oscillation	
 between	
 same-­‐scored	
 states	

	
 	
 	
 for	
 (PersonnelInPlay	
 sp:	
 sc.getPersonnelHere()){	

	
 	
 	
 	
 shipUtility	
 +=	
 sp.getPrintedCost();	

	
 	
 	
 }	

	
 	
 	
 //	
 if	
 mission	
 solvable	
 by	
 ship,	
 ship	
 gets	
 bonus	

	
 	
 	
 if	

((!m.isHeadquarters())&&(!m.isSolved())&&(m.canSolve(sc))){	

	
 	
 	
 	
 shipUtility	
 *=	
 2.0;	

	
 	
 	
 }	

	
 	
 	
 //	
 if	
 mission	
 already	
 solved,	
 gets	
 less,	
 not	
 useful	
 here	

	
 	
 	
 if	

((!m.isHesadquarters())&&((m.isSolved())||(!m.canSolve(sc)))){	

	
 	
 	
 	
 shipUtility	
 *=	
 0.75;	

	
 	
 	
 }	

	
 	
 	
 missionUtility	
 +=	
 shipUtility;	

	
 	
 }	

	
 	
 if	
 (m.hasPlanet()){	

	
 	
 	
 double	
 personnelUtility	
 =	
 0.0;	

	
 	
 	
 for	
 (PersonnelInPlay	
 sp:	
 m.getPersonnelHere()){	

	
 	
 	
 	
 personnelUtility	
 +=	
 sp.getPrintedCost();	

	
 	
 	
 }	

	
 	
 	
 //	
 if	
 mission	
 solvable	
 by	
 personnel,	
 gets	
 bonus	

	
 	
 	
 if	

((!m.isHeadquarters())&&(!m.isSolved())&&(m.canSolve(null))){	

	
 	
 	
 	
 personnelUtility	
 *=	
 3;	

	
 	
 	
 }	

	
 	
 	
 //	
 if	
 mission	
 already	
 solved,	
 personnel	
 get	
 less	

An Agent For Playing A Customizable Card Game DRAFT 1:7

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

	
 	
 	
 if	

((!m.isHeadquarters())&&((m.isSolved())||(!m.canSolve(null)))){	

	
 	
 	
 	
 personnelUtility	
 *=	
 0.75;	

	
 	
 	
 }	

	
 	
 	
 missionUtility	
 +=	
 personnelUtility;	

	
 	
 }	

	
 	
 tempUtility	
 +=	
 (missionUtility*0.25);	

	
 }	

	
 return	
 tempUtility;	

}	

 RESULTS 7.
During testing, run with both opponents using the same search program (Alpha beta
search with an initial evaluation function), the players would often draw without a
clear winner. After revising the evaluation function, games between players running
the same search were always played to a winner. Limited testing was performed with
the program against a player modeled to always perform random selection of actions
(initially developed for use during correctness testing of the game abstraction); the
search program always won.

From the web interface, the search program could be launched from the current state
to perform the best next move, or moves until the end of the current player’s turn.
The program was also always invoked for the opposing player’s turn. In practice, a
competent human player that did not delay could handily beat the program. If the
human player “skipped” a few turns by making neutral in value moves, the computer
player could win. This was due to depth of the search tree, as well as the simple
evaluation function; while the computer player would always make the best moves as
determined by the search program, the evaluation function’s estimate was not as
focused on individual goal accomplishment as having a good position to rapidly
accomplish goals in series, which, if the game had not been lost yet, it was able to do.

 CONCLUSION 8.
The game abstraction was able to accurately modify a simplified version of the game,
and the interface developed to the search algorithm allowed for a reasonable
computer opponent.

 FUTURE WORK 9.
I did not get as far as I had planned to, as the complexity of the rules of the game
made implementation of the game itself more difficult than anticipated. There is still
room for significant improvements to the game and search.

The game implementation itself would benefit from implementation of equipment,
dilemmas, and special actions. Dilemmas and special actions are particularly
challenging, as some sort of interpreted language for determining action applicability
and effects operating against the game state would be preferable to hard-coding for
each individual card.

The search implementation would benefit from the implementation of chance nodes,
moving the game from a fully observable game to a partially observable game, as
otherwise the agent is able to “cheat” as it is currently. Precomputing ideal dilemma
combinations or the equivalent of “opening books” would also be a possible direction.

1:8 J. Greco

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

The evaluation function was more tuned to having a player be in a generally good
position, which would be more beneficial were dilemmas (requiring personnel skills
not as easily anticipated by a human as it could be by a computer that can plan for
likely possibilities) implemented, than focused narrowly on reporting personnel
specifically useful for missions as human players (correctly) would tend to.

REFERENCES
[1] Wikipedia, Star Trek Customizable Card Game,

https://en.wikipedia.org/wiki/Star_Trek_Customizable_Card_Game
[2] C. D. Ward and P. I. Cowling, Monte Carlo Search Applied to Card Selection in Magic: The Gathering,

IEEE Symposium on Computational Intelligence and Games, 2009. Proceedings, IEEE, 2009.
[3] http://www.trekcc.org
[4] http://aima.cs.berkeley.edu

	

Received May 2013;

