
 

 

 

Exploration Planning for Structural Inspection 

LUKE YODER,  Carnegie Mellon University 

In this paper, I extend traditional frontier based exploration planning to 3D environments. In addition, I propose an integrated 

exploration exploitation strategy that trades off frontier based exploration planning with prediction of unseen structure and 

optimal path planning. Considering highly repetitious architectural structures, I propose exploiting observed structure to 

predict unobserved structure, using these predictions to plan and execute locally optimal paths. Unfortunately, I found that my 

proposed technique performed equal to or worse than the greedy exploration planning in terms of path cost. 

1. INTRODUCTION 

Large structures like bridges must be inspected periodically for safety. Currently, inspections are 

done manually—a dull, dirty, dangerous, and expensive job. In this paper I propose to partially 

automate structural inspection with a small flying vehicle. The proposed vehicle would autonomously 

build a complete map of a structure, storing images and geometric data of every structural component 

for offline analysis by engineers. Automating the data acquisition associated with structural 

inspection has two benefits. First, the efficiency and safety of inspection teams would improve by 

removing workers form dull, dirty, dangerous tasks. Second, the amount and consistency of inspection 

data archived would increase—providing engineers with better tools for insuring public safety. 

The contribution of this paper is an exploration planning approach for completely observing an a 

priori unknown structure with a flying vehicle. Real world inspection of unknown environments is a 

challenging problem. To build an accurate map of an environment, a robot must visit all locations 

within the environment necessary for it to observe every surface. In two dimensions this problem has 

been solved in a range of environments. In 3D, however, large scale real time exploration planning is 

still an open research problem. In this paper, I borrow known exploration strategies and extend these 

strategies in a simple 3D simulation. My approach involves two complementary algorithms: 

 

 Frontier based exploration path planning 

 Prediction of unseen structure based on observed structure, followed by optimal local path 

planning 

 

These two algorithms can be thought of as exploration and exploitation, where a robot begins by 

exploring a structure, then exploits what is has learned about a structure to choose a shortest path 

required as it continues to observe the structure. 

2. RELATED WORK 

There is a large body of related work surrounding frontier based exploration planning. This work 

attempts to answer the question: without prior knowledge of a structure, how can a shortest possible 

path be planned incrementally to completely observe an environment? This question has been 

answered numerous times with respect to a range of applications. 

Traditional exploration techniques were pioneered by a frontier based exploration path planner 

proposed by Yamauchi (1997). Later, frontier based exploration was extended to include entropy and 

information gain approaches. All of these approaches select exploration goals that minimize either 

map uncertainty or path cost to the next frontier. Traditional frontier based exploration techniques 
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rely on dense occupancy grid maps that record all known free, known occupied, and unknown cells in 

the map. Because of this, naive extensions from 2D to 3D are computationally expensive. One such 

extension is proposed by Dornhege (2011). This approach has not been proven to run in real time on a 

computationally limited robot. 

Next best view (NBV) algorithms were developed for digitizing objects.  This family of algorithms 

tries to answer the question: where should the sensor move next to maximize information gain? NBV 

algorithms have been extended for use with mobile robots, as described Foissotte (2008) and Torabi 

(2011); however their computational expense also makes them impractical for real-time use with 

mobile robots in large environments.  

Less complex exploration algorithms have been implemented on computationally limited micro 

aerial vehicles, namely by Shen (2012). These results are promising for exploring indoor 

environments. Because they focus on expanding free space instead of surface coverage, however, they 

are not effective at exploring large convex architectural structures. 

There have been no proposed methods for predicting unobserved environment during exploration. 

This is likely explained by the fact that very few environments have enough repetition to consistently 

make correct predictions. In these environments a low prediction success rate may not justify complex 

and computationally expensive prediction algorithms. 

3. EXPLORATION 

Exploration planning answers the question: where should the robot move next if the goal is to build a 

complete map? Although there are many techniques, simply moving towards the closest occupied cell 

that borders an unknown cell (frontier) yields a short overall path at minimal computational cost. 

Compared to other techniques, this greedy approach is shown to produce an order of magnitude 

shorter paths in some environments, as shown by Juli´a (2012). Because this approach is the most 

effective at finding the shortest path, it is used exclusively throughout the rest of this paper.  

 

 
Fig. 1. A visualization of a partially observable environment. The foreground is a map built incrementally by a robot observing 

the environment shown in the background. 

The major shortcoming of existing 3D frontier based exploration techniques is the high 

computational cost. This computational cost is partially due to the dense occupancy grid 

representation of the world. This dense representation is required because many algorithms require 

unknown space in the world to be defined as either occupied or free before exploration terminates.  

When exploring architectural structures one can assume that the structure is fully connected—

there are no floating bodies. This means that if we define a volume in space to be searched, it is 

unnecessary to observe all free space in the search volume. For example, in the extreme case that the 

search volume is void of all objects, the robot only needs to search the edges of the search volume to 

prove that the world is empty. In this paper, I propose defining frontiers as unknown cells bordering 
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known, occupied cells. This simple change means that the algorithm can use a sparse occupancy grid 

that only records occupied cells and free cells that border the occupied cells. Then, traditional closest 

frontier exploration is applied, computing the paths to a frontier by running Dijkstra’s algorithm 

starting from the robot’s position. Dijkstra’s algorithm terminates when the first frontier is found, and 

this shortest path to a frontier is sent to the motion planner. 

An example environment and map (with free space hidden) are shown in Fig. 1. 

4. PREDICTION AND EXPLOITATION 

Nearly all architectural structures have repetition. My algorithm takes advantage of this repetition in 

an attempt to reduce overall path length. The algorithm predicts unobserved structure based on 

segments of the observed structure. Then, a locally optimal path is planned around the prediction by 

solving a version of the traveling salesperson algorithm (TSP). 

          My approach always begins by exploring the environment for a given distance. After this 

initialization period, the algorithm samples features from the partially complete occupancy grid map. 

Sampled features are centered at occupied cells, and include cells in a fixed volume around the 

occupied cell. Features do not only include occupied cells in the fixed volume, but also include free 

cells that will later be used to compute a locally optimal path. After sampling a fixed number of 

features, the algorithm slides the features through the occupancy grid looking for a match. The goal of 

this step is to select a repeating feature then match it to a region of the map that is currently being 

explored. Each feature is matched to the map and the match quality Q is computed using 

           (
∑                  

∑         
    )                                                                    (1) 

Equation 1 is maximum for features that have 50% overlap with the current map, allowing for the 

selection of predictions that have a high confidence but also provide a large prediction.  

After choosing the best prediction, a near optimal path is generated using the opt-2 version of the 

traveling salesperson problem created by Croes (1958). The traveling salesperson problem is 

computed over the observation locations that were saved with chosen feature, excluding any 

observation locations that have already been visited. The robot’s current position is included in the 

goal locations. The output of the TSP algorithm is not necessarily a feasible path, but it is executed by 

the motion planner until a difference between the prediction and reality is observed. 

It is important to have a strategy for trading off between exploration and exploitation. If the 

prediction portion of exploitation fails due to insufficient map data, exploration resumes for a set 

distance. If unpredicted occupied cells are observed when carrying out the locally optimal path, 

exploration resumes for a set distance. In this way, the robot constantly trades off between 

exploration and exploitation until the map is complete. Although the exploitation algorithm is not 

complete, frontier based exploration planning is complete. Because of the tradeoffs described, the 

overall algorithm is therefore complete. 

5. IMPLEMENTATION 

To test my exploration planning approach I implemented a simple simulator. This simulator provides 

the robot with perfectly known pose and perfect sensor measurements within a set radius of the 

robot’s position. The simulator handles ray tracing so that the robot cannot observe occluded cells and 

so that the robot can define cells between it and occupied cells as free. A simple bridge-like structure 

was created in the world map, while a separate map is created incrementally as the robot explores the 
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world. A simplified diagram of my exploration planning approach, as described in the previous 

sections, is shown in Fig. 2. 

 

 
 

Fig. 2. This system diagram depicts my approach at a high level. The algorithm either chooses to explore the environment or 

exploit the knowledge it has recorded during exploration. 

6. RESULTS 

Despite its simplicity, the frontier exploration technique always found an equal or  shorter path when 

compared to the exploitation algorithm. Fig. 3 compares total path length for three techniques that 

were tested. Fig 4, 5, and 6 show paths planned by the near optimal, exploration, and exploration 

exploitation algorithms, respectively. The exploration exploitation path shown in Fig 6 clearly shows 

an incorrect prediction inefficiency just left of center, an efficient path similar to the optimal path just 

right of center, and a backtracking inefficiency that occurred due to a series of locally optimal paths 

missing several cells. The optimal local planning strategy suffered from several inefficiencies: 

1) It missed small groups of cells that had to be returned to later on 

2) Predictions were occasionally wrong, especially when little data had been accumulated from 

exploration. 

3) Traveling from one locally optimal path to another often increased path length but did not 

yield new observations 
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Fig. 3. The results for the two approaches implemented compared to the optimal path computed with full domain knowledge 

 

 

Fig. 4. The near-optimal path computed with a TSP algorithm 
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Fig. 5. The path incrementally found using the nearest frontier exploration algorithm 

 

 
Fig. 6.  The path found by trading off between exploration and exploitation. Note the incorrect prediction inefficiency just left of 

center, the efficient path similar to the optimal path just right of center, and the backtracking inefficiency that occurred due to 

a series of locally optimal paths missing a small surface. 
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7. FUTURE WORK 

The goal of combining exploration with exploitation was to create a planner in a partially observable 

world that over time converged to the optimal path length possible with full domain knowledge. I 

expect that these results are still achievable; however improved techniques for feature extraction and 

transitioning between locally optimal paths are needed. 
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