
[Type	
 text]	
 [Type	
 text]	
 [Type	
 text]

Exploring Ms. Pac-Man Playing Agent 1
CHENKAI KUANG, Carnegie Mellon University
HUI TU, Carnegie Mellon University

Pac-Man is a well-known, real-time computer game that provides an interesting platform for research and also requires non-
trivial strategies for successful game play. This paper describes an approach to develop Pac-Man playing agent that
dynamically chooses a target based on game state and uses A* search to find the best path with least cost. Cost model is
specifically defined to ensure the path with least cost is the safest path. The experiment result shows the agent can achieve
reasonable scores when compared to recent Pac-Man AI competition result. This paper also proposes an outline of using
reinforcement learning to build the agent, and some discussion about future game AI as well.

Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and Search

Additional Key Words and Phrases: Pac-Man, A* Search, Cost Model, Reinforcement Learning

1. INTRODUCTION

During the last two decades, games have always been used as a test platform for Artificial Intelligence
algorithm. In the same period, game industry becomes one of the fastest-growing industries in the
world with sophisticated technology in game consoles and development of mobile device and social
gaming as well. Moreover, applying AI to games has achieved some very notable successes such as
Deep Blue, a chess playing machine that defeated world-champion Garry Kasparov in 1997. As more
fields, no matter industry or academia, become aware of the importance of AI research on game
playing strategy, the variety of discussion increases.
 Ms. Pac-Man is a popular maze game in recent AI research. While it is no longer the latest or most
advanced example of game development, it still provides a classical platform that is complex and
challenge enough to require intelligent strategies for superb gameplay. In recent years, IEEE
Computational Intelligence in Games Conference (CIG)[1] has hosted annual competitions that allow
AI controller design for Ms. Pac-Man to complete for the highest score.
 Looking back to the previous working with Ms. Pac-Man, several technologies, such as Genetic
Algorithm and Neural Networks, are used in implementation of Ms. Pac-Man and Ghost. At the same
time, the hand-coded algorithm from every year IEEE CIG enjoyed higher performance. Therefore,
our work aimed at producing high-scoring agent to participate IEEE CIG this year.
 This paper describes the application of A* search strategy with ghost behavior prediction to find
best path in Ms. Pac-Man controller. The rest of this paper is organized as follows: we review the
previous work on Ms. Pac-Man in Section II, in Section III we have a description on our framework
and experimental environment, in Section IV we give the details on our implementation of Ms. Pac-
Man controller, in Section V we present our experiment result along with recent result of the annual
competition , Section VI is our ideas on utilizing reinforcement learning, and Section VII provides
summary and conclusions.

2. PREVIOUSR WORK

Koza used Pac-Man as an example to study the effectiveness of genetic algorithm for task
prioritization [2]. His work relied on a set of predefined control primitives for perception, action and
program control. His version of game is that different items and mazes have different scores. In his
version, the approximated score is about 5000 points.

This work is Carnegie Mellon University 15780 Grad AI course’s final report.
Author’s email: Chenkai Kuang, chenkaik@andrew.cmu.edu; Hui Tu, hui.tu@sv.cmu.edu

1

1:2 • C. Kuang and H. Tu

Kalyanpur and Simon [3] utilized a genetic algorithm to try to improve the strategy of the ghosts in a
Pac-Man-like game. Here the solution produced is also a list of directions to be traversed. A neural
network is used to determine suitable crossover and mutation rates from experimental date.
 Gallagher and Ryan [4] used a Pac-Man agent based on a simple finite-state machine model with a
set of rules to control the movement of Pac-Man. The rules contained weight parameters which were
evolved using the Population- Based Incremental Learning (PBIL) algorithm. They ran a simplified
version of Pac-Man with only one ghost and no power pills, which takes away scoring opportunities in
the game and takes away most of the complexity of the game. This approach was able to achieve some
degree of learning, however the representation used appeared to have a number of shortcomings.
 Lucas [5] proposed evolving neural networks as move evaluators in a Ms. Pac-Man implementation.
Lucas focused on Ms. Pac-Man because it is known that the ghosts in this game behave in a pseudo-
random fashion, thus eliminating the possibility of developing path-following patterns to play the
game effectively and presumably making the game harder and leading to more interesting game play.
The neural networks evolved utilize a handcrafted input feature vector consisting of shortest path
distances from the current location to each ghost, the nearest power pill and the nearest maze
junction. A score is produced for each possible next location given Pac-Man’s current location.
Evolution strategies were used to evolve connection weights in networks of fixed topology. The results
demonstrate that the networks were able to learn reasonably successful game play as well as
highlighting some of the key issues of the task, such as the impact of a noisy fitness function providing
coarse information on performance.
 More recently, ICE Pambush won in the IEEE Congress on Evolutionary Competition (CEC)2009.
He moves Ms. Pac-Man based on the path cost and lures the Ghost near the power pill. With this
strategy, he got a maximum score of 24,640 and an average of 13,059[6].

3. EXPERIMENT SETUP

While our project is focused on researching AI approach to build our Pac-Man agent, we didn’t spend
time programming the game engine and the graphics interface. Instead, we used a well-built and
documented Pac-Man source package [7] which is used for every year’s competition.

3.1 Basic Game Engine
The game is played asynchronously in real time: every discrete game tick, the game uses the moves
supplied by the controllers to update the game state. Then, the game waits for 40ms for new actions to
come in, after which the game updates again. At each game tick, the controllers have 40 ms to
respond. The controllers are given a copy of the current game and the time the move is due. Each
controller can then query the game using its many methods to compute an appropriate response. It is
the responsibility of the controller to respond in a timely manner (this is one of the challenges of the
competition).
 If a controller returns a move on time, the game will use that move to advance the game. If the
move happens to be illegal, the game tries to replay the previous move or chooses a new legal move
randomly. If a controller does not replay on time, the game tries to play the previous move or, if that is
not possible, chooses a legal move randomly.
 The controller will receive a new copy of the game state for the remaining time of that game tick to
compute a new move. In other words, if a controller takes 60ms to respond, it will have roughly
(2x40)-60=20ms in the next game tick. If a controller does not reply over several game ticks, the game
keeps replaying previous actions.
 The game has four different mazes. The mazes are modeled as graph, with each node in the graph
being connected to its immediate neighbors. Each node has two, three or four neighbors depending on
whether it is in a corridor, a T-junction, or a crossroads. Each node occupied two screen pixels. After

 Exploring MS. Pac-Man Playing Agent

the maze has been loaded, a simple bread first search algorithm will run to compute the shortest path
distance between every pair of nodes in the maze. Theses distances are stored as a look-up table,
which speeds up our implementation of Pac-Man agent.
 Game play is defined by the ghosts behaviors. The ghosts we use are starter ghost: if edible or Pac-
Man is close to the power pill, run away from Pac-Man; if non-edible, attack Pac-Man with 0.9
probability, else choose random direction. Ghosts do reversals with a very low probability. The path
ghosts choose to chase Pac-Man is the path with shortest distance.

3.2 Game APIs
 The software package provides us with plenty of APIs to directly query the game state. Some useful
APIs are:
 getPacManCurrentNodeIndex(): current node index of Pac-Man
 getGhostCurrentNodeIndex(Ghost ghost): current node index of specified ghost
 getGhostEdibleTime(GHOST ghost): edible time left of specified ghost
 getPillIndices() / getPowerPillIndices(): the indices to all nodes that have pills / power pills.
 getShortestPath(int src, int dest): the shortest path from src to dest specified by their indices. We
also have another version of this function that doesn’t allow reversals.
 isPillStillAvailable(int index) / isPowerPillStillAvailable(int index): whether the pill/powerpill
specified is still there or has been eaten.

4. PAC-MAN AGENT DESIGN

In our approach, we mainly solve four problems:

• Pac-Man doesn’t have a fixed target. We defined its target according to current game state.

Destination candidates are the nearest pill, power pill and edible ghost.
• Given a destination, Pac-Man should choose a best path with least possibility of being eaten and

maximize pills count in the path. We carefully create a cost model so that the path with least cost
will be our best path. And we use A* to search the best path.

• Game state is changing in every game tick. So we need to recalculate the path at every move of
Pac-Man.

• There are some rules for the four ghosts. We study these rules to predict ghosts’ movement.
Simple Markov Model is used for anticipation.

4.1 Choose a target
There are three targets: edible ghost, power pill and the nearest pill. Our Pac-Man makes this
decision based on the game state. The details is as Figure 1:

1:4 • C. Kuang and H. Tu

Fig. 1. How to choose a destination given game state

4.2 Cost Model
The basic idea of our Pac-Man AI is to define cost for every path that Pac-Man can move along when
given current state. And then it will choose the path with least cost. A good cost model should satisfy
three requirements:

• The path that will put Pac-Man in a dangerous state should have larger cost than safe path.

Dangerous state means Pac-Man will be easily caught by ghosts or trapped by several ghosts in
the near future. This is also the most crucial part of our cost model.

• The path that has more pills should cost less when dangerous costs are the same. So Pac-Man will
prefer the path with more pills.

• If Pac-Man’s target is not power pill, power pill cost should be large so that Pac-Man will leave
power pill uneaten when it is safe.

We use A* to search for the path with least cost, which uses formula f(n) = g(n) + h(n). Each node in
the path has an accumulative cost and a heuristic cost. For accumulative cost, we consider node cost
and ghost cost. Node cost is based on what node contains. Therefore, cost = heuristicCost + nodeCost
+ ghostCost. We define some cost constants in the table below. The values of these constants are
determined based on lots of experiments and observations. The description of these constants will be
covered later.

 Exploring MS. Pac-Man Playing Agent

Table I. Constant values in cost model

EMPTY_COST 4
PILL_COST 3

POWRPILL_COST 1
GHOST_IN_PATH 2000

GHOST_OUT_PATH 1000

4.2.1 Heuristic cost and nodeCost
For game like Pac-Man that is on a square that allows 4 directions of movement, heuristic cost is
usually calculated using Manhattan distance. However, in Pac-Man game, we can adopt an exact
precomputed heuristic between every pair of nodes. As mentioned before, the shortest path look-up
table is loaded with each maze. Since ghost will not do reversal freely (actually in our game ghost has
0.05 possibility to turn around), so the distance which regards ghost as source node takes no-reversal
into consideration.
 To make our heuristic cost admissible, we assume among all the grid points along the shortest path,
there is one power pill and others are pills. It is admissible because it uses minimum node cost along
that path as heuristic cost, therefore, the real node cost will never below the heuristic cost. It uses
minimum node cost because the cost relation is EMPTY > PILL > POWER_PILL. And when we limit
search depth, there is at most one power pill in a path.
 Heuristic cost’s equation is:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒!"##$%&_!"_!"#$%&'$%(& − 1 ×𝑃𝐼𝐿𝐿_𝐶𝑂𝑆𝑇 + 𝑃𝑂𝑊𝐸𝑅_𝑃𝐼𝐿𝐿_𝐶𝑂𝑆𝑇 (1)

 Where 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒!!""#$%_!"_!"#$%&'$%(& is the shortest path between current node and destination,
𝑃𝐼𝐿𝐿_𝐶𝑂𝑆𝑇 and 𝑃𝑂𝑊𝐸𝑅_𝑃𝐼𝐿𝐿_𝐶𝑂𝑆𝑇 is the cost constants. 𝑃𝐼𝐿𝐿_𝐶𝑂𝑆𝑇 represents the cost of a node with
pill, 𝑃𝑂𝑊𝐸𝑅_𝑃𝐼𝐿𝐿_𝐶𝑂𝑆𝑇 represents the cost of a node with power pill. The following figure
demonstrates the way to compute heuristic cost and node cost.

Fig. 2. Node Cost and Heuristic Cost. Node cost is the real cost so far. Heuristic cost is the admissible estimated cost to the goal.

4.2.2 Ghost Cost
It is intuitive that if there is a ghost residing in the path, then this path’s cost should be very large.
Meanwhile, the ghost cost should be inversely proportional to the distance between ghost and current
node we are computing. Therefore, we simply calculate the ghost by the following logic:

 If(ghost is edible) ghostCost = 0

if(current index == ghost index) ghostCost = GHOST_IN_COST
else ghostCost = GHOST_OUT_COST / distance(ghost to current)

Since we are determining the whole path’s dangerous level by ghost cost of the last node expanded in
this path. The last node should be aware of the previous ghost cost. So when thinking about single
node’s ghost cost, it’s reasonable that the node’s ghost cost should inherit from previous node in the
same path. And current node’s ghostCost will only be updated when new ghostCost > prev_ghostCost.

1:6 • C. Kuang and H. Tu

Total ghost cost is equal to the sum of four ghosts’ costs.
 Another problem comes is how to anticipate ghosts’ movement, Sometimes we want to expand node
in A*, however, it’s inappropriate to use ghost’s current index, because at the time when Pac-Man
reaches the expanded node, ghost’s index may change. Therefore, we predict ghosts’ position at the
time when expanded node is reached. The anticipation is based on ghosts’ fixed rules, which is, if
edible, run away from Pac-Man, if non-edible, attack Pac-Man with 0.9 probability. Simple Markov
model is used to compute the expectation of ghost cost according to the probability distribution of
ghost’s position.

4.3 A* Search for least cost path
 We use a min-heap to store all the nodes waiting to be expanded in A*. So the branch operation is of
𝑂(log (𝑛))running time and select min-cost node operation is 𝑂(1). The search begins at current node
of Pac-Man, then expand to its neighbors that are not wall. Compute all the neighbors’ cost and add
them into heap. Then select the node with minimum cost to expand. The search will terminate when it
reaches destination or exceeds maximum search depth. We set search depth to 20, which is a
sufficient length for our agent to look ahead and also guarantee to make a decision in every game tick
time limited (40ms). The flow chart of A* is as following:

Fig. 3. A* search flow chart. It uses a min-heap to store nodes waiting to be expanded. It will not expand the node backwards.

The maximum depth of the search is 20, which is a reasonable depth guaranteeing good performance and computational speed.

5. EXPERIMENT RESULT

Figure 4 shows the scores our agent got in consecutive 300 games.

 Exploring MS. Pac-Man Playing Agent

Fig. 4. Scores of 300 games. Average score is 10782.36. Maximum score is 35890.27.

The average score is 10782.36. The maximum score is 35890.27. Figure 5 shows the result of IEEE
CIG 2011[8] competition result. From that we can tell our agent’s performance is at medium level.

Fig. 5. IEEE CIG 2011 Pac-Man vs. Ghost competition result

 The score distribution of our agent is not stable. We predict ghosts’ move so the agent can forecast
dangerous states before it happens and try to avoid them. However, the prediction is not 100% correct

1:8 • C. Kuang and H. Tu

due to the randomness of ghosts’ movement. Once the ghosts move in a path out of our expectation,
even though our agent can realize it can try to save its life as soon as possible, however, sometimes it
is too late to do any rescue. That is the main cause of the instability.
 We also found if we changed the some constants in our A*, the game would advance differently. For
example, if we increase the minimum distance between Pac-Man and nearest ghost that triggers Pac-
Man to go to eat power pill, Pac-Man would eat the power pills too early. The final constants we
choose are based on many experiments with different constants’ values.

6. REINFORCEMENT LEARNING FOR PAC-MAN

Although most game AI used finite state machine (just as our A* approach). Using reinforcement
Learning to build a learning agent is also an attractive topic. This type of agent uses a reward
function to determine how good a movement is when it explores the environment and updated its
decision set incrementally. In Pac-Man game, the world is fully observable and agent’s movement is
deterministic.
 For Pac-Man game, State-Action-Reward-State-Action(SARSA) is a better choice than Q Learning.
The difference between them is Q Learning update function takes into consideration the action the
agent actually picks rather than the best action in next state. The other difference is that SARSA
doesn’t cut of the eligibility trace when an action is performed, this allowed updates to be passed back
to earlier states. This ability allows the stochastic nature of the game to be considered as the rewards
will be gained stochastically.
 The equation below shows the update 𝛿 function.

𝛿 = 𝑟 + 𝜇𝑄 𝑠!!!, 𝑎!!! − 𝑄(𝑠, 𝑎) (2)

SARSA Algorithm is defined as following:

ALGORITHM 1: SARSA Algorithm
1. Initialize Q(s,a) arbitrarily and e(s,a) = 0 for all s,a
2. For each episode
 (a) Initialize s, a
 (b) Repeat until s is a final state
 i. Take action a in s
 ii. Observe r, 𝑠!!!
 iii. Choose 𝑎!!! from 𝑠!!! using policy derived from Q
 iv. 𝛿 = 𝑟 + 𝜇𝑄 𝑠!!!, 𝑎!!! − 𝑄(𝑠, 𝑎)
 v. e(s,a) = e(s,a) + 1
 vi. For all s,a
 Q(s,a) = Q(s,a) + 𝛼𝛿𝑒 𝑠, 𝑎
 e(s, a) = 𝜇𝜆𝑒 𝑠, 𝑎
 vii. s = 𝑠!!! 𝑎𝑛𝑑 𝑎 = 𝑎!!!

 The agent is provided with all the information of the game. So if all the related information is used
in state space, our agent would perform very well. However, Pac-Man game’s state space is too large,
including available pill position, four mazes, four ghost’s positions, four possible actions, edible ghost
exists or not, power pill exists or not. Agent would need to explore all the state and get the reward for
all actions in that state. It’s impossible to explore a so large state space, so reducing the state space
wisely is where the challenge lies.
 The state space we thought would works well is as the following table:

Table 2. State Space for Reinforcement Learning

 Exploring MS. Pac-Man Playing Agent

d1..d4 distance between pacman and four ghosts
dp distance between pacman and nearest pill
dpp distance between pacman and nearest power pill
a1…a4 possible actions
jn junctions count in the shortest path between nearest ghost and pacman

 The reward function can be the same as score function, except that we can make losing a life to be -
10000.
 It’s also important to balance exploration and exploitation. By choosing the best action with p = 1- e
we can set how often it explores and how often it exploits. We use the following equation, which
decreases e to 0 over time. So we do more exploration in the early time and choose the best action
when e tends to be 0.

 e = e0 – (e0 * EpisodesNum / TotalEpisodes) (3)

However we didn’t have time to implement the proposed reinforcement learning. We may want to
spend some time working on it later and to see if this approach is better than A* or not.

7. CONCLUSION

In this project we applied artificial intelligence technology we learned from class to Ms Pac-Man
game, including A* search and reinforcement learning. The simulation of the game retains most of the
features of the origin game. The Pac-Man package is convenient for us to implement our algorithm
and saved us a lot of time in building up the simulator and querying game state.
 We implemented the handed-coded finite state machine approach based on our cost model and A*
search. It is proved that with well-defined cost model, the agent can have an impressive performance.
We recalculate the best path at every game tick, which may be a waste of computational power as
some information can be cached and used later. A possible improvement of our approach is to adopt
incremental search algorithm like D*.
 In fact, most game AI is designed using finite state machine. It is easy to implement and
computational speed is fast in real time game. Moreover, the world to game AI is fully observable,
making it pretty convenient to apply handed-coded strategy.
 We also proposed reinforcement learning approach for Pac-Man game. However, we didn’t fully
implement it due to the limited time this semester. Actually some articles have proved methodology in
machine learning such as neutral network / generic algorithm and reinforcement learning can be used
to build game AI, especially the game with stochastic nature.
 The future of game AI is still unknown. Pac-Man game is a small test-bed for implementing AI
technology. There is much work remains to be done in this area. It would also be interesting to
investigate how to combine the hand-coded rule based AI and AI that uses machine learning
methodology for a better performance instead of using either one of them.

REFERENCE

[1] Ms. Pac-Man competition official website, http://www.pacman-vs-ghosts.net
[2] J. R. Koza, Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press, 1992
[3] A. Kalyanpur and M. Simon, “Pacman using genetic algorithms and neural networks,” Retrieved from

http://www.ece.umd.edu/∼adityak/Pacman.pdf (19/06/03), 2001.
[4] M. Gallagher and A. Ryan, “Learning to play pac-man: An evolutionary, rule-based approach,” in IEEE Symposium on

Computational Intelligence and Games, 2003, pp. 2462–2469.
[5] S. M. Lucas, “Evolving a neural network location evaluator to play ms. pac-man,” IEEE Symposium on Computational

1:10 • C. Kuang and H. Tu

Intelligence and Games, pp. 203–210, 2005.
[6] R. T. Hiroshi Matsumoto, Chota Tokuyama, Ritsumeikan University, “Ice pambush 2,” in

http://cswww.essex.ac.uk/staff/sml/pacman/cec2009/ICEPambush2.pdf, 2008.
[7] Pac-Man software package, https://s3.amazonaws.com/wcci12/documentation/javadoc/index.html
[8] IEEE CIG 2011 Results, http://dces.essex.ac.uk/staff/sml/pacman/CIG2011Results.html

