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Planning Efficient Paths through Dynamic Flow Fields in Real World
Domains
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This research addresses the problem of planning efficient paths for agents through flow fields in small
real-world domains where vehicle dynamics and environmental uncertainty can significantly affect the op-
timality of a path. The objective of this project is to develop a method that can account for vehicle dynamics
during motion planning in an efficient and reusable manner that does not incur a prohibitive computa-
tional cost when replanning. In particular, this work examines the feasibility of using forward expansion
techniques to generate a reachable interface, and then level set methods to evolve this interface forward
over time. To validate the effectiveness of the planner developed, it will be deployed on the Cooperative
Robotic Watercraft platform developed by the Robotics Institute, equipped with a Nortek AD2CP acoustic
doppler current profiler, and the results will be compared against the performance of current state of the art
planning techniques.

1. INTRODUCTION
The problem of planning efficient routes for agents is of great importance across do-
mains in mobile robotics, where energy is at a premium. In domains involving move-
ment through fluids, which themselves may be moving, such as flight through various
wind patterns or navigation through river currents, it is understandably desirable for
algorithms to harness the available kinetic energy in the environment to decrease a
robots energy consumption. Successful implementation of such techniques in turn fa-
cilitates new robotic applications involving extended deployment range and duration
(e.g. autonomous environmental monitoring of long stretches of river).

This particular domain has motivated much research in the past and many planning
algorithms have been adapted or developed to solve this problem. In their work, Garau,
Alvarez, and Oliver assume constant thrust navigation and use the A* algorithm to
compute the optimal paths for a set of different current and eddy distributions [Garau
et al. 2005]. Warren has proposed a method based on artificial potential fields, which
is less susceptible to local minima but requires most of the global workspace to be
known and does not account for variabilities in the flow [Warren 1990]. A method using
the forward evolution of level sets that can produce time optimal paths assuming a
constant vehicle velocity through time dependent flow fields was developed by Lolla et
al [Lolla et al. 2012]. In their work on autonomous underwater gliders, Davis, Naomi,
and Fratantoni develop a variational calculus approach for path planning through
time invariant velocity fields of comparable magnitude to the operating velocities of
long range gliders [Davis et al. 2009].

Many of the proposed algorithms make simplifying assumptions regarding the ve-
hicle dynamics and oftentimes operate with at least some model for the environment.
Although this makes for efficient performance in simulation, in reality measuring the
rate of a moving fluid while moving through that fluid is difficult and developing a
detailed environmental model beforehand is impractical and not robust to unexpected
events. Further difficulty comes from the inherent uncertainty of state estimation, as
even small differences in a robots perceived state can yield very different optimal paths
to the goal state, as evident in Figure 1 below. This figure shows the time-optimal paths
for a boat travelling at various fixed velocities upstream against a parabolic current
distribution in a river.

In order to limit the scope of the experiments to be done, this research focuses on
planning paths through river domains for use with small autonomous airboats. This
relative size of the domains under scrutiny with respect to the vehicles is such that
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Fig. 1. Optimal Constant Velocity Paths to Upstream Waypoint Assuming Parabolic Current Distribution

the dynamics of the agents have significant bearing on the optimal path through the
current field. A more detailed description of the airboat platform and domain repre-
sentation is discussed in the following section.

2. METHODOLOGY
2.1. Cooperative Robotic Watercraft Platform
The testing platform chosen for this research is the Lutra 1.0 series of the Cooperative
Robotic Watercraft system developed at the Robotics Institute of Carnegie Mellon Uni-
versity. The platform, pictured in figure 2, is comprised of a vaccuum-formed ABS hull
filled with expanding polyurethane foam, a panning ducted fan assembly for propul-
sion, and an electronics compartment, which houses a smartphone, a custom embedded
board, and batteries. The characteristics of the system make it an ideal candidate for
the deployment of the efficient algorithms this research seeks to produce; as a low-cost
autonomous monitoring system, the CRW platform carries a limited energy supply,
making it desirable to optimize navigation and sampling procedures as to maximize
the information that can be gathered before recharging is necessary. A more detailed
treatment of the platform can be found in our previous publications [Scerri et al. 2012;
Valada et al. 2012b; Valada et al. 2012a].

In order to take into account the vehicle dynamics, it was necessary to develop a
rough dynamic model for the system. The airboats were measured under controlled
conditions in the lab and deployed at Panther Hollow Lake in order to characterize the
system parameters. The resulting dynamic model is of the form show below:

m~̈x = −~b~̇x2 + ~F

Jθ̈ = −bθ θ̇2 + ||F ||L sinφ

where m is the mass of the vehicle, ~b is the vector of linear drag coefficients, ~F is
the force vector applied by the propulsion assembly, J is the moment of inertia of the
vehicle, bθ is the torsional drag coefficient, L is the moment arm of the vehicle, and
φ is the angle of the propulsion assembly. The empirically derived values for these
parameters are provided within the included simulator code.
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Fig. 2. A Complete CRW Airboat

Figure 3 shows the results of using these dynamics equations to simulate the motion
of an airboat under constant thrust at various angles for a period of 5 seconds. The
green vectors represent the resultant velocity of the boat at the end of the simulation
period, while the red vectors indicate the heading of the boat at the same time.

In figure 4, we present a curve depicting the relationship between the static thrust
provided by the propulsion assembly and the current draw measured from the battery.
Although we do not model energy usage in our experiments, the nonlinear relation-
ship we see here raises several interesting questions for future work regarding how
to best vary the vehicle’s thrust for optimal battery life. We can imagine that it may
be advantageous to thrust harder as the boat passes through regions with unhelpful
currents, or cut power and float when the current is moving towards the goal. Some of
these scenarios will be tested during field tests this summer.
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Fig. 3. 5 Second Forward Expansion Using Dynamic Model and Constant Control Signals

Fig. 4. Thrust Output vs. Current Draw of CRW Platform

2.2. Level Set Evolution
The level set method described by Lolla et al. in their paper is a two phase algorithm
where the first part involves propagating an interface (denoted as the zero level set of
the signed distance function φ) forward in time, and the second part entails tracking
a particle back from the goal state along the normal vectors to the intermediate inter-
faces [Lolla et al. 2012]. The interface being tracked actually represents the farthest
set of points reachable by the vehicle at any point in time, under some fairly strict
assumptions. The process modeling the evolution of this interface is constructed as a
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Hamilton Jacobi partial differential equation, which is then solved discretely over a
grid. The general form of this PDE is given below.

0 =
δφ(~x, t)

δt
(1)

+ F |∇φ(~x, t)| (2)
+ V (~x, t) · ∇φ(~x, t) (3)
− b(~x, t)κ(~x, t)|∇φ(~x, t)| (4)
+ λ(~x, t)φ(~x, t) (5)
+H(~x, t, φ(~x, t),∇φ(~x, t)) (6)

Lines 1 and 6 make up the general form of the hamilton jacobian partial differential
equation, however, these general form equations are typically more difficult to solve.
Therefore, there are a few terms that are sometimes added, which are specifically con-
strained and can be more easily solved. In their algorithm, Lolla et al use only the
terms on lines 1, 2, and 3 to represent the farther points reachable by some vehicle in
a given amount of time. Line 2 represents motion normal to the level set at a constant
speed F , while line 3 represents motion due to the external velocity field. In using this
representation, Lolla et al make the assumption that the vehicle is always traveling
at speed F normal to the level sets. Furthermore, their method relies on having exact
knowledge of the velocity field V and how it will change over time. Clearly these are
not the best assumptions to make for real world implementation, which further moti-
vates our objective of producing an algorithm that calculates paths more true to the
dynamics of the vehicle.

After the interface has evolved far enough that the goal state is within the signed
distance function, the forward evolution terminates and a particle is traced back along
the normals to the intermediate instances of the tracked interface. Lolla et al prove in
their work that if a vehicle always travels at speed F in a normal direction to the set of
its currently reachable states, and the external velocity field V (~x, t) is known perfectly
for all times, then the path computed by this algorithm is time-optimal.

In our level set experiments, we made use of Ian Mitchell’s Matlab Level Sets Tool-
box, which implements several partial differential equation solvers [Mitchell 2008].
For consistency we chose to use a single domain for all of our simulations - a river
30 meters across, with a current distribution modelled after fully developed pipe flow.
Figure 5 illustrates this distribution - essentially the speed of the current is twice the
average velocity at the center of the river and then drops off to zero as you get closer
to the banks. For our purposes, we included a two meter buffer by each bank that the
boat should avoid. Initially the method of forbidden regions described by Lolla et all
in their work was implemented, where the external velocity field is zeroed out and
the normal velocity of the vehicle is held at zero within these regions. Unfortunately
when such a discontinuous change in velocities was introduced, we experienced nu-
merical instabilities while solving the partial differential equations; after the level set
evolution reached the discontinuity, the interface would sometimes develop unstable
distortions that would magnify during propagation and produce inaccurate paths.

In order to solve this problem, we treat the external velocity field as a cost function
and exploit its lower dimensionality to eliminate the discontinuities while retaining
the guarantee that the optimal path will never lie within the forbidden regions. Since
our domain description assumes the river has the same parabolic current distribution
along its course, we can define the cost function to be proportional to the velocity of
the river. When the goal state is upstream from the vehicle, the cost function is postive
because the agent must fight against it, and when the goal is downstream the cost
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Fig. 5. Parabolic Current Distribution with -0.25 m/s Average Speed

function is negative because the boat is moved towards the goal by the current. Us-
ing the definition, we can exploit the lower dimensionality of the cost function (i.e. the
fact that for a given X coordinate, the cost function does not vary as you move up and
down stream) and apply the theorems described by Vernaza and Lee [Vernaza and Lee
2012]. They state that when the cost function does not vary in some dimension, then
the optimal path to the goal will never move away from the goal in that dimension.
Therefore, it must be that in our particular domain, the boat will never head down-
stream when the goal is upstream and vice versa. If we consider the forbidden regions
again, and simply clamp the value of the external velocity field in these regions to the
value at the boundary of the region, our cost function no longer varies in the X direc-
tion in these regions and therefore the optimal path will never head away from the
goal along the X axis in these regions as well. If we define the goal state as always
lying outside of a forbidden region, this guarantees that the optimal path will never
cause the boat to head into the forbidden regions, which we defined on the banks of the
river. Now we have removed our discontinuities and should be able to evolve our level
sets like normal with just a modification to our external velocity field. Sure enough,
the paths produced with this modification never head into the forbidden regions at the
banks and the partial differential equation solver produces more stable results.

Figure 6 shows one example of a level set evolution and the path it yields using
this method. The boat starts at the top left waypoint and heads to the bottom right
waypoint. Notice that the level sets can evolve out past the banks of the river (-15 and
15), but the backward propagation along the normals does not guide the vehicle into
the banks. The small blue lines along the path indicate the heading of the boat, while
the path itself indicates the resultant motion of the vehicle (in this case the current is
helping the boat in the vertical axis so the boat is dedicating more of its thrust to move
along the horizontal axis).

Figures 7 and 8 show the different time-optimal paths generated when one varies
the average current velocity and goal states respectively, while hold all other parame-
ters constant. The former figure is very interesting, because there is a large common
component that many of the paths share (driving upwards along the right bank). If an
expression could be developed for the length of this component in terms of the aver-
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Fig. 6. Example Output from Level Set Evolution Planner

age current velocity, this could be the basis for a fast and robust algorithm that may
approximate the optimal solution but can easily be adjusted for changes in currents
or faultly environmental models. In the latter figure, there is an obvious phase tran-
sition where the optimal path switches which bank it follows. From simulation of a
variety of combinations of these scenarios, it seems that this transition occurs when
the goal state is further from the center of the river than the starting state. Although
this is likely tied to the current distribution function used, in our application this can
be a useful heuristic for guiding exploration or quickly determining which direction to
head towards.

2.3. Forward Expansion
The idea behind this component of the project was to investigate methods for efficiently
simulating the dynamics of a vehicle and generating an interface to track within the
level set evolution. Unfortunately, because the control signals are continuous, there
is an extremely high branching factor when considering all possible control signals.
Without any modifications, it was computationally intractable to compute the dense
branches of the search tree more than a few levels deep. Therefore, the search tree
must be pruned to allow for deeper expansion. Figures 9 and 10 show two pruned
search trees 3 levels deep. In the former case only every 3rd control angle is considered
and then only every 3rd state is expanded further. In the latter, only every 5th angle
is considered and every 5th resulting state is expanded. We explored some alternative
pruning techniques such as penalizing large variations in propulsion assembly angle,
and these seem to further decrease the size of the search space.
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Fig. 7. Optimal Paths as Currents Vary

Fig. 8. Optimal Paths as Goal State Varies

Fig. 9. Three 1 Second Iterations, 3 Degree Increments, Expand Every 3rd Branch
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Fig. 10. Three 1 Second Iterations, 5 Degree Increments, Expand Every 5th Branch

3. CONCLUSIONS
Although we have yet to integrate the forward expansion techniques with the level
set evolution algorithm, we have thusfar developed a dynamic model for our platform,
identified methods to utilize the lower-dimensionality of our current distribution in
order to produce more numerically stable results when solving the Hamilton Jacobi
partial differential equations, and identified several techniques to prune our search
tree when sampling random control signals. Future work includes the development
of further search tree pruning techniques, contour extraction from the forward sim-
ulation, and appropriate level set propagation while preseving the dynamics of the
system. We would also like to develop some more realistic models for current flow in a
river using data gathered from the Nortek AD2CP current profiler that was awarded
to use as part of a grant in March.
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