
Integration of Modern Robotic Software and AI Algorithms 

MIKE LEWIS, CARNEGIE MELLON UNIVERSITY

Open-source software for robotic systems, while free and accessible, tends to suffer from the
same problems afflicting other open-source software: weak documentation, steep learning curve
for libraries, broken packages, dying support, etc. Moreover, most robot software focuses just on
hardware control and intercommunication. Artificial Intelligence (AI) exists mainly in the form of
algorithms that need to either be bolted onto robotic control software, or reimplemented to
facilitate tighter integration. This article follows an exploration of the complexity in building a
complete, intelligent robot from the ground up using the most popular software, hardware, and AI
algorithms to autonomously solve the puzzle game, Rush Hour.

General Terms: Robotics, Articificial Intelligence, Integration, Planning

Additional Key Words and Phrases: Rush Hour, software, hardware, planning algorithm, OpenCV,
BeagleBoard, ROS

INTRODUCTION

Many people comment on an apparent fact that the “robot revolution” should
have hit by now. They claim that all the technology, both hardware and
software, is here and often ask the question, “where are all the robots?”. The
first part of my answer to this question is this: they are here, but just not in
the places that the average person would be looking. No, you wouldn't find
them rolling down the sidewalk, or walking through a plaza. Rather, they're in
research labs, universities, high schools, and even elementary schools. The
Arduino-servo method for building a robot is so easy and simple that young
children can build them within minutes.

The second part of my answer to the question is that there is gap between the
robots that are so easy to build and what the public expects robots to be.
Light-sensing, differential-drive, Arduino-based robots are one thing. Robots
that can take vocal commands, execute generic tasks, and autonomously
navigate through a shopping mall are a completely different matter. This is
mostly due to the fact that building a truly intelligent robot is an inherently
difficult problem that apparently no one has been able to solve yet. And it's
not a recent problem; researchers have been working on this problem for fifty
years. The reason, I believe, for the slow progress is that there is very high
barrier to entry for most people to contribute to this research. Thus, there are
very few people working on the problem. Compare this with the speed of
advancement of traditional computer science research. These fields have
many more people working in them, using far more mature, refined
technologies.

This work is supported by the Master of Science in Robotic Systems Development (MRSD)
graduate program at Robotics Institute, Carnegie Mellon University.
Author’s address: M. Lewis, Robotics Institute, Carnegie Mellon University.
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credits permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.
© 2010 ACM 1539-9087/2010/03-ART39 $15.00

00

00:2 M. Lewis et al.

Fig. 1. Rush Hour by Thinkfun.

In the following sections, I will be documenting my experience with putting
together an intelligent robot using the most popular software platforms,
libraries, and packages and integrating it with an AI planning algorithm to
solve the puzzle game, Rush Hour as seen in Figure 1.

1.1 Basic Definitions

The word “robot” used throughout this article refers to a system that accepts
input through a sensor, manipulates the input data, then returns an output
that is based on the data in the form of an action via an actuator.

The phrase “intelligent robot” refers to a robot as stated above, but with
additional capacity in the traditional domains of Artificial Intelligence.

Rush Hour is a logic game by Thinkfun, Inc. The game consists of a 6x6 grid-
style game board with coloured pieces in the shapes of cars and trucks. The
pieces can only be moved in one degree of freedom depending on either a
horizontal or vertical orientation. The goal is to move the pieces in a particular
sequence, such that the red piece is free to move through the slot on one
edge of the board. Rush Hour comes with a stack of cards that the player can
use to set up various arrangements of the game pieces that vary in difficulty.
The game is intended for ages 8 to Adult.

1.2 Problem Formulation

The objective of this research was to identify key hurdles for building an
intelligent robotic system that integrates robotic capability with artificial
intelligence to solve Rush Hour. The system was comprised of mostly off-the-
shelf hardware and software components that are easily accessible, full-
featured, and widely supported.

The main components of the system were a camera using computer vision to
identify and encode the state of the game board, a planner that would
determine the steps needed to solve the puzzle, and a manipulator to move
the game pieces. The supporting components will be detailed in the following
sections.

1.3 Hardware

The core of any computer hardware is the microprocessor, and for a robot it is
no different. As was mentioned before, an Arduino-based platform simply does

Integration of Modern Robotic Software and AI Algorithms 00:3

not have the capacity for higher-level operation. In order to use the software
tools that are necessary to tackle this task, such as Open Source Computer
Vision (OpenCV), a 32-bit processor that is capable of running a common
operating system is required. I chose the BeagleBoard by Texas Instruments,
which is an open-hardware single-board computer that is cheap, widely
available, and has a strong development community around it.

While the Kinect by Microsoft is possibly the most popular camera for low-
budget robotics today, its form factor did not fit that of the robot I had in
mind. Interestingly enough, another video game console peripheral was a
better choice – the Playstation Eye (PSEye) by Sony. Though it doesn't come
with built-in depth perception capability, a benefit was that it is much smaller.
The PSEye is also supported by the Robot Operating System (ROS), which I will
discuss later.

Mobility is a requirement for the robot that I came up with to solve the issue of
game piece visibility and occlusion. The issue is that, when viewed from the
side, taller game pieces in Rush Hour could hide others and make it difficult
for the robot to accurately encode the game board state. Giving the robot the
ability to move around and see the board from different angles would resolve
this issue. It is worth noting that an alternative method is to simply make the
robot taller.

The manipulation component of the robot was intended to be implemented
with an arm made out of sub-micro-class servos. However, given the
complexity of the system and the project already, this had to be scrapped in
favor of giving more attention to other parts of the project. Nevertheless, the
mobility and manipulation servos needed to be controlled somehow. Though I
explored the possibility of having an Arduino handle the control based on
commands received from the BeagleBoard, I decided it was simpler to
purchase a 16-channel servo controller with an I2C interface and connect it
directly with the BeagleBoard's expansion port.

Power to the servos was supplied through the servo controller by a 6 Volt, 900
mAh Lithium Polymer Battery with a discharge rate of 20C. The BeagleBoard
required a regulated 5 Volt supply, so it was powered separately with a wall
brick. This did restrict its movement, but in practice it was not much of a
problem.

I fabricated the chassis myself using High-Density Polyethylene (HDPE), which
is durable type of plastic than is easy to machine. One thing that I did not
know about HDPE is that it is particularly abrasive when reduced to a
particulate form, such as when filed or sanded.

1.4 Software

The software platforms and libraries that I used were the most popular ones
available. Robot Operating System (ROS) by Willow Garage is a messaging
layer that can serve as a platform upon which to build a robotic control
system. It uses a publish/subscribe and service-oriented communication style
to facilitate communication between hardware and software nodes. OpenCV is

00:4 M. Lewis et al.

a computer vision library that is also maintained by Willow Garage. Both of
these are best supported when run on Ubuntu Linux, which is what I decided
to use for the robot's operating system. Had I not required these two software
packages, I could have used any 32-bit operating system that can be built
against the ARMv7 instruction set.

The first thing I had to do was get Ubuntu installed on the BeagleBoard. Two
websites were very useful toward this [Sobral 2012] and . However, I
encountered many issues across different versions of Ubuntu, different Linux
kernel versions, and various pre-installed SD card images.

1.5 Planning

The initial plan was to develop a planner that would take in a Rush Hour
game's initial state, compute a solution to the puzzle, then output the plan
back to either the robot's manipulator or the operator.

ALGORITHM 1. Rush Hour domain in PDDL
(define (domain rush_hour)

(:predicates
(at ?car ?loc)
(start ?car ?loc)
(end ?car ?loc)
(left ?loc_a ?loc_b)
(above ?loc_a ?loc_b)
(horiz ?car)

 (in_motion))

(:action mv_up
:parameters

(?car ?from ?to ?from_bk ?to_bk)
:precondition (and

(at start (not (horizontal ?car)))
(at start (top_of ?to ?from))
(at start (top_of ?to_bk ?from_bk))
(at start (start ?car ?from))
(at start (end ?car ?from_bk))
(at start (forall (?car) (not (at ?x ?

to))))
(at start (not (in_motion))))

:effect (and
(at start (in_motion))
(at end (not (in_motion)))
(at end (not (start ?car ?from)))
(at end (not (end ?car ?from_bk)))
(at end (start ?car ?to))
(at end (end ?car ?to_bk))
(at end (not (at ?car ?from_bk)))

Integration of Modern Robotic Software and AI Algorithms 00:5

(at end (at ?car ?to)))
)
)

Determining a representation for the Rush Hour domain and any of its
planning problems was a critical first step. Planning Domain Definition
Language (PDDL) is the most common way to represent planning problems, so
this is what I went with. The best way that I came up with was to use the
natural grid that makes up the game board and encode the positions of the
pieces as single spaces that are linked together depending on the size of the
game piece (either two or three spaces) and their orientation (horizontal or
vertical). The predicates included relations between the pieces such as
“above” or “left”. The resulting PDDL domain representation for Rush Hour
can be seen in Algorithm 1.

Part of the plan was to quickly validate the domain representation with an
existing planner. However, it was nearly impossible to find any partial-order
planner that would compile and/or execute. The only working planner that I
found was a STRIPS planner by Tansey, that would only accept ADL input.
Thus, I was not able to test my domain representation and catch the issues
that still remain a part of it.

Moreover, building a partial-order planner from scratch turned out to be more
difficult than I had anticipated. With time in short supply, I was only able to
implement several C++ classes and part of the algorithm.

CONCLUSIONS

Building an intelligent robot out of the most accessible, documented, and
available components, hardware and software, is a very difficult task. There
were numerous situations where my personal experience with Linux kernel
development helped me solve some of the initial installation problems that I
would expect a novice would have significant problems with.

Fig. 2. TCOP the Rush Hour solving robot

The fact that the planning algorithm had to be re-implemented in the first
place is unfortunate. I was unable to find any common AI libraries that could
easily interface with the other components in my system.

00:6 M. Lewis et al.

By the end, a robot capable of object detection and discrimination based on
blob colour was produced, but without the ability to solve Rush Hour.

ACKNOWLEDGMENTS
The author would like to thank Dr. Manuela Veloso, Dr. Tuomas Sandholm, John Dickerson, and
Prateek Tandon of Carnegie Mellon University for providing education and guidance throughout
the Graduate Artificial Intelligence course curriculum.

REFERENCES
Andrews Sobral. 2012. Embedded Computer Vision Platform with PandaBoard. Retrieved April 15,

2013 from http://sites.google.com/site/andrewsobral/pandaboard

	1.1 Basic Definitions
	1.2 Problem Formulation
	1.3 Hardware
	1.4 Software
	1.5 Planning

