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Collecting samples from water bodies is not only important for understanding the physiology of aquatic life 
but also for understanding how these systems are affected by both natural changes in the environment as 
well as human activities. However collecting spatially distributed samples from the environment can be an 
exhaustive and complex task. First, for the data to be valid, the samples have to be collected in a short 
interval of time before the environment changes significantly, hence coordinated robot teams have to be 
used to accomplish this task. Secondly, many environmental sensors that are used have significant 
hysteresis in them, making sampling using them a very slow process.  Rate dependent hysteresis can be 
observed in several sensors and poses a very serious problem to autonomous sampling where a robot 
continuously collects measurements while moving through a large field to create models of a physical 
parameter. This phenomenon cannot be ignored in dynamic sensing applications as the lag between the 
input and output causes a delay in the responsiveness of the sensor: for a change in input, the output of 
the sensor slowly and consistently approaches the actual value. In this research, I propose an adaptive 
sampling solution to this problem, where robots can be used to collect samples intelligently, while 
compensating for the hysteresis using a filter and a complementary RRT based planner that accounts for 
this effect.  

Categories and Subject Descriptors: I.2.9 [Robotics]: Sensors 

General Terms: Design, Algorithms, Sensing  

Additional Key Words and Phrases: Adaptive sampling, autonomous mapping, field robotics, 
environmental data, hysteresis compensation 

 INTRODUCTION 1.
Recent advances in Autonomous Surface Vehicle (ASV) technology have enabled 
these systems to be used in missions that involve sampling large bodies of water for 
extended periods in order to monitor dynamic spatial and temporal phenomena with 
little or no human supervision. Monitoring water bodies is not only important for 
understanding the physiology of aquatic life but also for understanding how these 
systems are a affected by both natural changes in the environment such as storms 
and volcanic eruptions as well as human activities such as surface run o 
 from farms and industrial discharges. By collecting spatially distributed samples 
and analysing the data it may be possible to predict how some of these processes 
work and potentially prevent adverse ecological effects such as eutrophication, 
oxygen depletion, and accelerated aging. ASVs are a natural choice for this kind of 
application as they have the capability to sample large areas while providing real-
time measurements. They have been successfully used for mapping applications both 
above and below the water surface [J. C. Leedekerken et al, 2010], even at varying 
depths [Hitz. G. et al, 2012]. Cooperative fleets of ASVs have advantages over a 
single ASV in reliability, coverage and fault tolerance. Moreover intelligent sampling 
techniques can greatly improve the efficiency and quality of sampling by adaptively 
determining the next sampling locations based on the previously measured data. 

 

In this report, I describe my work on developing an algorithm to adaptively sample 
dissolved oxygen and temperature using autonomous boats. Initial experiments with 
autonomous sampling revealed that slow response of the polyethylene membrane 
used in dissolved oxygen sensors causes rate-dependent hysteresis, which 
significantly affects measurement accuracy. Similarly, with temperature sensors 
hysteresis is often caused by the introduction of some amount of strain or moisture 
penetrating inside the sensor. As these sensors are not specifically designed for 
dynamic measurements, a lag in the response of the sensor causes erroneous 
measurements if the vehicle travels at a rate that does not allow the sensor readings 
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to stabilize. Developing a sensor model that predicts the rate of change is one 
potential solution, but even small errors in this estimate can dramatically affect the 
final measurement value. In my work I adopt an approach in which I use the time 
derivative of measurements, rather than the measurements themselves, to alter a 
pre-defined set of bounds that converge to the true value over time. The vehicle then 
plans its path based on the expected sensor value, range of the bounds, and the 
frequency with which the cell has been previously visited. To validate this approach I 
compare my algorithm to a suite of other sampling algorithms including random 
walk and lawn-mower pattern. 

 

The rest of the report is organized as follows. In Section 2, I formulate the problem in 
question and identify the associated related work in Section 3. I outline my bounding 
filter solution for modelling the environment in Section 5 and apply it to the problem 
of planning in Section 6. In Section 7, I describe the results obtained from comparison 
of my bounded filter approach with other standard algorithms and subsequently 
analyse the performance. Finally, in Section 8, I conclude the report with a summary 
of the results and an outline of future work directions. 

 

 PROBLEM FORMULATION 2.

 
For modeling purposes, the dissolved oxygen sensor by Atlas Scientific and the 
temperature sensor by Decagon Devices were chosen. Several samples were collected 
and the response of the sensor was recorded for different water samples. The 
response of the sensor was similar to a trend such as an exponential moving average. 
Hence we can model the sensor with hysteresis as a process with internal state, 
based on a exponential moving average. 
 

𝑠 𝑡 + 1 =   𝛼!  𝜓 𝑥 + 1 −   𝛼!   𝑠(𝑡) 
 
In continuous time, this corresponds to a first order differential process. 
 

𝜕𝑠
𝜕𝑡
= log 𝛼 (𝜓 𝑥 −   𝑠 𝑡 ) 

 
The objective is to estimate the value of 𝜓 𝑥  at some set points of time. An easy way 
of doing this is to simply visit each point and wait for a certain amount of time for the 
sensor output 𝑠  to approach 𝜓 𝑥 . However as 𝛼  is small, !"

!"
 will also be small, 

therefore it can take a very long time for 𝑠 to approach 𝜓 𝑥 . A sample trend from the 
dissolved oxygen sensor is shown in Figure 1. 
 

 
Fig. 1. Sample trend obtained from the dissolved oxygen sensor. 
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 RELATED WORK 3.

Several intelligent sampling strategies have been developed for autonomous vehicles 
that aim to identify hotspots, reduce resource costs, optimize sampling coverage or 
more accurately measure environmental phenomena. The authors in [Zhang. Bin et 
al, 2009] explored a sampling technique, using both a team of robotic boats and static 
sensor nodes, in which the sensing field is partitioned into sub regions either 
according to equal gains or equal area and each boat is assigned a specific subarea for 
sampling. The readings are gathered from the static nodes and paths are computed 
for the boat such that they reduce the integral mean squared error. In [Dan O. Popa 
et al, 2004], the authors explore an approach based on model parameter estimation of 
a variable in which the physical parameter being measured is assumed to be linearly 
distributed across the field and the algorithm aims to minimize the measured 
uncertainty in the field distribution. The algorithm also has multiple secondary 
objectives such as to minimize the network utility of multiple AUVs by controlling 
the sampling location and sampling rate using a potential function that encapsulates 
the network model and minimizing the energy consumption by varying the speed of 
the vehicle according to the energy available. 

Thermoclines are believed to be an important breeding zone for marine 
microorganisms and hence a considerable amount of work has been done on 
thermocline detection and monitoring using sensor networks, gliders and other AUVs 
[Cruz, N.A. et al, 2010 and S. Petillo et al, 2010]. Zhang in [Bin Zhang et al, 2004] 
used a wireless sensor actuator network and a robot mule to detect thermoclines 
using distributed binary search. In this algorithm the nodes were assigned regions to 
sample and could move vertically by altering their buoyancy. Each node first 
localized the temperature variation in its own region, then combined this data with 
that of children nodes, forwarded it to the parent node and so on, until the final bulk 
data was transferred to the user. They further improved the performance of the 
algorithm by using a mobile robot to collect data from an active node and 
communicate it to another. 

Sampling of Phytoplankton has also gained popularity in recent years as it plays a 
very important role in ocean ecology. In [Yanwu Zhang et al, 2009] the authors used 
a Dorado AUV to describe a method to detect and collect water samples at peak 
chlorophyll fluorescence, taking into consideration the delay in measurement while 
detecting the peak. The AUV followed a yo-yo pattern and used gradient following to 
detect a peak in the ascend stage and successfully collected the peak chlorophyll 
fluorescence sample at the same depth in the descend cycle. 

 

 TEST PLATFORM 4.

 
The algorithm discussed in this report was designed and implemented on the 
Cooperative Robotic Watercraft (CRW) platform [A. Valada et al, 2012]. CRW is a 
multi-robot autonomous surface vehicle, equipped with an Android smartphone that 
provides the inertial sensors and computing platform for the system. The CRW's 
design is similar to that of an airboat with a modified steering mechanism in which 
the entire propulsion assembly is actuated using servo motors, allowing for improved 
thrust vectoring, which enables sharper turns. The drive system and other 
electronics are interfaced to an Arduino microcontroller that communicates with the 
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smartphone via Bluetooth. Most of the autonomy software resides on the phone while 
some of the application specific intelligence, such as the sampling algorithms, are 
implemented on a centralized operator interface that interacts with the individual 
vehicles via 3G or WiFi. 
 

 
Fig. 2. Lutra 1.0, Cooperative Robotic Watercraft 

 
Water quality sensors such as dissolved oxygen, temperature, specific conductivity 
and pH, are mounted on the vehicle and interfaced to the system through the 
Arduino. The camera on the smartphone provides real-time situational awareness 
about the operating environment using a steady stream of images that are processed 
through an image queue and displayed on the operator interface. A water sampling 
mechanism on board each vehicle has the ability to collect physical samples on 
demand for more detailed analysis in the laboratory. A diagram depicting the CRW is 
shown in Figure 2. 
 

 BOUNDED FILTER 5.
 
Rate dependent hysteresis can be observed in several sensors and poses a very 
serious problem to autonomous sampling where a robot continuously collects 
measurements while moving through a large field to create models of a physical 
parameter. This phenomenon cannot be ignored in dynamic sensing applications as 
the lag between the input and output causes a delay in the responsiveness of the 
sensor: for a change in input, the output of the sensor slowly and consistently 
approaches the actual value. This effect is not as important in static sensing 
applications, where the rate of change of the physical parameter in the field is much 
slower than the hysteresis in the sensor. However, in our case the watercraft 
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traverses through the water while simultaneously taking measurements, making 
compensating for the hysteresis effect critical. Within the suite of sensors on the 
CRW platform, I observed this effect significantly in both temperature and dissolved 
oxygen. 
 
I propose an intelligent sampling solution to this hysteresis compensation problem in 
the form of a filter that accounts for this effect. Rather than recording the sensed 
value at a location, I maintain an upper and lower bound on the predicted value in 
each area and use the direction of change in the sensor measurement to adjust the 
bounds. For example, if the gradient is trending downwards (as shown in Figure 3), 
the actual value must be lower than the value reported by the sensor, hence the 
upper bound can be adjusted. The inverse holds when the values are trending 
upwards, allowing the lower bound to be increased. 
 

 
Fig. 3. Illustration of the bounding technique. 

 
While the gradients tend to be consistent and reasonably noiseless, I use a median 
filter to remove occasional noise in sensor measurements. The median value over a 
window of readings is computed and linear regression is used to find a gradient 
across a larger window over the median filtered values. The gradient is then used to 
change either the upper or lower bound in the area if it has an absolute value above a 
constant defined as 𝜖. Based on my initial experiments with water quality sensors 
exhibiting hysteresis I made two practical design decisions on the filter. Firstly, a 
zero gradient is the most useful gradient as it could be used to bring the upper and 
lower bound to the current value, since the sensor must be at the true value. 
However, in practice I found that this was misleading in view of discretization in the 
sensor output, as the gradient might appear to be zero even when it is not. Therefore 
I choose to ignore gradients of zero, though these will be considered in future work. 
Conversely, at times a sensor measurement can oscillate between two discrete levels 
causing an apparent gradient even when there is none. To avoid the impact of these 
erroneous readings on the filter, I made another design decision that requires the 
gradient be above 𝜖, which filters out very small gradients due to oscillations in the 
sensor output. 𝜖 can be determined by analyzing a small data set obtained from a 
sample run. The pseudo code for the filtering process is shown below. 
 

ALGORITHM 1. Bounded Filter 
Function PROCESS(v)  



39:6                                                                                                                            Abhinav Valada 
 

Data ← vdata  

Windows ←  MedianFilter(Data) 

gradient ← LinearRegression(Windows) 

cell ←  CellFor(vposition) 
if gradient < 𝜖 then 

  if celllower < vdata then 
   celllower ←  vdata 

 end if 
else if gradient < 𝜖 then 

  if cellupper > vdata then 
   cellupeer ← vdata 

  end if 
end if 

end function  	
  
 

 BOUNDED PLANNER 6.

 
Planning for information collection is a intriguing problem that has been extensively 
studied in recent years [Kian Hsiang Low et al, 2011]. Adopting the bounding filter 
opens up new challenges and opportunities for developing a planning algorithm. The 
sensor measurement with which the watercraft enters a cell is important as a change 
in the measurement will in turn affect the bounds of that cell. Closer the 
measurement with which the watercraft enters a cell is to the mid-point of bounds of 
the current cell, the more valuable the collected data is likely to be, since a change in 
the measurement will lead to the biggest expected change in the filter. Planning 
using the bounding filter is a challenge as it needs to take into account what 
measurement the sensor might output along the path, even though it can only be 
estimated based on the current value of the upper and lower bounds of a cell. 

 
Fig. 4. Illustration of the planning tree. 

 
I implemented an RRT based planner with horizon bounds. In this approach a tree is 
used to expand to the most promising nodes. As paths in the tree are expanded, an 
estimate of the sensor value is maintained as the mid-point between the upper and 
lower bounds of the filter, which is then used as the expected value of the sensor as 
the watercraft leaves the cell. The value of going into a cell is estimated as a function 
of how far the expected sensor measurement with which the watercraft enters the 
cell is from the mid-point between the upper and lower bounds of the cell, current 
difference between the upper and lower bounds and the number of times that cell has 
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been previously visited on the path. The value of expanding a particular node in the 
search tree is a heuristic based on the current expansion depth and the rate that 
value has accumulated on the path so far. The aim of the heuristic is to encourage 
exploration of the paths that have the highest value. The pseudo code for my planner 
is given below. 
 

ALGORITHM 2. Bounded Planner 
Function BOUNDED PLANNER  

n.loc ← currentLocation  

n.value ←  0 

n.sensor ← currentSensorValue 
quwuw.add(n) 
while expansions < maxExpansions do 

  n ←  queue.poll 

  for e ←  getExpansions(n) do 

   e.value ←  n.value + max(0.0, (e.cellupper – e.celllower)) - |((e.cellupper +  
e.celllower)/2) - n.sensor) 

   expectedSensorChange ←  min((e.cellupper + e.celllower)/2 – n.sensor,  
maxChange) 

e.sensor ← n.sensor + expectedSensorChange queue.add(e) 
end for 

end while 
end function  	
  
 
To further detail the functioning of the planner, lets take the following example. 
Three cells in the field are shown in Figure 5. Assume currently the robot is in the 
cell12 i.e, the second cell in the first row. Now the current sensor reading in this cell is 
shown as a continuous black line. The upper bounds in all the cells are shown as a 
red line and the lower bound in all the cells are shown as a green line. The 
corresponding representation of the sensor reading measured in cell12 in other cells 
(predicted value) is shown as a black dashed line. Now the robot will move to a 
neighboring cell that will give the maximum bounds contraction, in other words the 
cell where the predicted value will be closest to the midpoints of the bounds of that 
cell. In our example, the corresponds to cell22 i.e, the second cell in the second row. 
Hence the robot will now move to cell22 from cell12, in order to efficiently use the filter. 
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Fig. 5. Example of a cell selection step. Shown three cells in the field and the action taken by the planner based on the 

bounds 
 

 RESULTS 7.
 
I evaluated the potential of my algorithm in a simulated environment partitioned 
into a ten by ten grid and created a model of the dissolved oxygen sensor with mild 
hysteresis. The more number of grids, the better is the resolution but the longer it 
takes, therefore there is a trade off between the sensing time and resolution of 
sensing. Two experiments were performed to determine the utility of the filter and 
the planning approach. In the first experiment, the value of each cell in the 
environment was draw from a uniform random distribution and in the second 
experiment, the value of each cell in the environment was drawn from a mixture of 
gaussians. The results obtained using a simple averaging filter and the bounded 
filter along with three different path planning algorithms: random walk, lawnmower 
pattern and the bounded planner, are shown in Figures 6 and 7. In the figures the 
solid lines represent the bounded filters result with the appropriate planner and the 
dashed lines represent the averaging filters result with the appropriate planner. In 
the bounded filter, I measure the error from the mid-point of the filter which may not 
always be a good measure of the information in the filter. For example, one of the 
bounds may get changed much earlier than the other due to gradients in the 
environment. The graphs represent the average result of 100 randomly generated 
environments and one simulated boat. In both cases, random movement with the 
bounded filter eventually leads to the lowest error. The difference is dramatically 
higher in the random environment as the random variation between the cells makes 
the hysteresis effect more crucial and therefore makes the averaging approach 
perform more poorly. The lawnmower pattern performs well initially, in part because 
measurements are collected uniformly all over the field, in turn significantly 
reducing the overall error. However, with the bounded filter, the lawnmower 
approach asymptotes towards some non-zero error as the watercraft enters cells from 
the same direction with the same hysteresis trend each time. 
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Fig. 6. Comparison of different planning algorithms using the bounded filter and the averaging filter in a simulated 

environment having a random distribution. 
 

 
Fig. 7. Comparison of different planning algorithms using the bounded filter and the averaging filter in a simulated 

environment having a Gaussian distribution. 
 
The bounded planner surprisingly does not perform better than random walk over 
the long run, although it has an advantage for a short period. In early stages, the 
good performance appears due to visiting a wider number of cells and the reason for 
the poorer performance later on is not completely clear and will be investigated in 
future work. As the robot collects samples and tags each sample with the current 
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GPS position, I plotted the samples collected using a dissolved oxygen sensor during 
the initial data collection experiments. The plotted graph is shown in Figure 8. 
 

 
Fig. 8. Variation observed in dissolved oxygen during initial data collection experiments. 

 

 CONCLUSIONS 8.

In this paper, I address the problem of using a robot to accurately map different 
water quality parameters using an intelligent sampling algorithm. I describe an 
adaptive autonomous sampling approach to compensate for the hysteresis that is 
observed in some water quality sensors using a bounded filter and a complementary 
RRT based planner. The performance of this algorithm was analyzed using results 
from simulation. The results show that the bounded filter has the least total error 
and converges the fastest when compared to a lawn-mower pattern and random walk. 

Future work on the bounded filter includes developing a method for using zero 
gradients to bring the bounds to the current measured value and creating a new 
metric that can be used to assign values to cells while evaluating the bounded filter, 
as currently I only take the midpoint of the bounds as the cell value at each time-step. 
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