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 INTRODUCTION 1.

The past few years saw significant amount of research in the personal robotics space. 

Slowly but steadily progress is made in areas of perception, manipulation and 

mobility. These robots must cope with environments that are partially observable, 

stochastic, dynamic and continuous. Many AI concepts such as probabilistic state 

estimation, perception, planning, unsupervised learning and reinforcement learning 

are used by these robots to solve the above problems. 

 

In my pursuit of personal robotics domain, I have chosen to study algorithms and AI 

methods that would help enable me to contribute towards research in personal 

robotics space. I’m working on a project (as a requirement for the class 16-662 Robot 

Autonomy, Prof. Siddhartha Srinivasa) where three other team mates and I are 

working on the PR2 robot of the Search Based Planning Lab in the Robotics Institute. 

The aim of the project is to make the PR2 play a simplified version of 8-ball billiards 

game. This involves perception, cognition, manipulation and motion planning. In 

addition to this, the mission requires the AI required for the game itself. The latter is 

the main focus of this project while the former is the focus of the Robot Autonomy 

class project. 

 

The AI engine guides the robot as to what action to execute next, which shots of the 

game are suitable for the robot etc. Even though general purpose AI billiards engines 

exist[1], they do not take in to consideration the constraints and the physical 

capabilities of the robot. It requires artificial intelligence to select the ‘best’ shot 

taking into account the accuracy of the robot, the noise inherent in the domain, the 

continuous nature of the search space, the difficulty of the shot, and the goal of 

maximizing the chances of winning. 

 

It would be interesting to study how the constraints of the robot limit the game 

playable by the robot. In addition it would also be useful to make observations of shot 

selection and representing shot difficulty and probability of success of the shot. 

. 

 BACKGROUND AND SYSTEM DESCRIPTION 2.

 Billiards Physics Simulation 2.1

The outcome of any billiards shot depends on the physical interactions between the 

balls moving and colliding on the table. The physics of billiards are quite complex, as 

the motion of balls and results of collisions depend on the spin of the ball(s) involved 

as well as their direction and velocity. Alon Altman’s FastFiz[5] is a physics 

simulator that, given an initial table state and a shot to execute, finds the resulting 

table state after the shot completes. Simulation results are deterministic, whereas 

the outcomes of shots made by a human or robot player on a physical table are non-

deterministic. To capture this stochastic element, the input shot parameters to 

FastFiz are perturbed by a noise model at game time. This results in a slightly 

different shot outcome every time for a given set of input parameters. The noise 
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model is described in detail later. The AI engine uses FastFiz to build search trees. 

From a given state, candidate shots are simulated to find successor states. For a 

sufficiently realistic simulator, shots that work well in simulation will work well in 

the real world. 

 

 Lever Stick-Cue Stick-Bridge assembly 2.2

A special assembly was required in order to make the robot play the game. The PR2 

robot’s fastest joint is its wrist joint. In order to convert the angular velocity of the 

wrist into a linear velocity at the cue stick tip, a lever stick was connected to the end 

of the cue stick using a revolute joint. This also facilitates the robot to apply an 

impulse force on the ball it strikes rather than a gradual force. The assembly is 

shown in Fig. 1. 

 

 
Fig. 1. The custom made assembly for the robot to play a shot. The left gripper holds the bridge, while the 

right gripper holds the lever stick connected to the cue stick. 

 

 Perception Noise 2.3

The robot perceives the table state using its high resolution camera system. The 

camera was modeled as a pin-hole camera. First the balls were found in the image 

and by re-projecting a ray through the camera center through the pixel in the image, 

we get the physical ray of light that caused the pixel. This ray intersects a plane 

parallel to the billiards table plane, offset from it by the radius of the ball. This point 

corresponds to the ball’s physical location in the world. 
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This measurement however has a lot of noise to it. In order to account for the noise, 

an error model was created. Several measurements were taken with the balls in 

random positions with the PR2 placed at several locations around the table. Based on 

the data collected, a bivariate Gaussian sensor model was created. The mean of the 

distribution was 0 and the standard deviation was 5 cm. 

 IMPLEMENTATION OF BILLIARDS AI 3.

 Move Generation 3.1

A move generator provides, for a given game state, a set of moves for the search 

algorithm to consider. For deterministic games like chess, this is often as simple as 

enumerating all legal moves. For games with a continuous action space, it is 

impossible to enumerate all moves; a set of the most relevant ones must be 

selectively generated. 

Every billiards shot is defined by five continuous parameters [3], illustrated in Fig. 2: 

• φ, the aiming angle, 

• V , the initial cue stick impact velocity, 

• θ , the cue stick elevation angle, and 

• a and b, the x and y offsets of the cue stick impact position from the cue ball center. 

 

Fig. 2. Parameters defining billiards shot 

 

However, of all the five parameters only the aiming angle φ and the cue stick impact 

velocity V, are relevant for the robot. The elevation angle θ is fixed at approximately 

5° since the joint angles of the robot itself are fixed. The offsets a and b are ignored 
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because they rarely affect the shot itself and with the current accuracy of the robot, it 

is not trivial to implement these offsets while taking the shot. 

 

When the current state of the table is given, the move generator generates all the 

possible shots by discretizing the continuous variables φ and V. The aiming angle was 

discretized to 0.1° and the velocity was discretized to steps of 0.5 m/s, starting at a 

minimum velocity. 

 

 Constraints of the Robot 3.2

The robot has many constraints that need to be satisfied in order to make a shot. The 

constraints are shown in Fig 3. There are two main constraints that have to be 

respected. The robot base constraint is to avoid any collisions of the robot with the 

table. However the arms remain outstretched and can come into collision. But the 

fixed joint angles are such that the arm remains above the table’s height. 

 

 
Fig. 3. The constraints of the robot are shown. The light orange circle represents the base radius of the 

robot. The green areas represent the areas inaccessible to the robot for placing the bridge. 

 

The second constraint is of the bridge. The left arm of the robot holds a bridge in its 

gripper. The extension or collapsing of the arm limits where the bridge can be placed. 

The bridge has to be placed on the table in order to stabilize the cue stick. Hence any 
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placement of bridge outside of the table is not accepted. Similarly any placement of 

the bridge inside the table but unreachable by the arm is also removed. 

 

Based on these constraints the shots generated before are filtered and only the shots 

that respect these constraints are considered for the search and evaluation described 

later. 

 

 Evaluation Function 3.3

An evaluation function was developed to assign a cost or reward to each of the shots. 

When the generated shots are passed to the FastFiz simulator, the simulator gives 

the resultant state of the table along with the events that occurred during the 

execution of the shot. The two main events that concern us are potting the object ball 

and potting the cue ball. Potting the object ball was given a score of +1, whereas 

potting the cue ball was assigned a score of -10.  

 

In addition to this scoring system, wide angle shots were preferred over normal angle 

shots. This was easier for the robot to perceive the ball and the bridge thus reducing 

the uncertainty in the action. Hence the scores shots with wide angles were boosted 

over the shots with a more normal angle. 

 

 Monte-Carlo Search 3.4

A Monte-Carlo sampling is a randomly determined set of instances over a range of 

possibilities. Their values are then averaged to provide an approximation of the value 

of the entire range. This makes the vastness of these domains tractable. This 

suggests sampling is a good candidate for billiards[4].  

 

In this implementation, sampling is done over the range of possible shot outcomes. At 

each node, for each generated shot, a set of num_samples instances of that shot are 

randomly perturbed by the noise model, and then simulated. Each of the 

num_samples resulting table states becomes a child node. The score of the original 

shot is then the average of the scores of its child nodes. This sampling captures the 

breadth of possible shot outcomes.  

 

The larger num_samples is, the better the actual underlying distribution of shot 

outcomes is approximated. However, tree size grows exponentially with 

num_samples. This results in searches beyond 2 levels being intractable for 

reasonable values of num_samples. Fig. 4 shows pseudo-code for the Monte-Carlo 

approach. PerturbShot() randomly perturbs the shot parameters according to the 

noise model.  

 

In addition to adding noise to the shot parameters itself, noise is also added to the 

table state according to the sensor model described earlier. This addition of noise to 

the table state makes the shot computed more immune to the uncertainty in 

perception of the table state. 

 

The search depth was fixed as one for the shots tried because the strategy was not of 

concern initially since it was only one person play for our trials. However, the search 

depth can be increased based on the need. 
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Function Monte_Carlo_Search(TableState state, int depth) 

{ 

 //If it is a leaf node, evaluate and return 

 if(depth == 0) return Evaluate(state); 

 

 //else, generate shots for this table state 

 shots[] = Move_Generator(state); 

 shots[] = Check_Constraints(shots[]) 

 

 best_score = -1; 

 TableState nextState; 

 Shot thisShot; 

 

 // search each generated shot 

 foreach(shots[i]) 

 {   

  sample_sum = 0; 

for(k = 1 to num_state_samples) 

{ 

 sum = 0; 

 thiState = PerturbState(state); 

for(j = 1 to num_shot_samples) 

{ 

thisShot = PerturbShot(shots[i]); 

nextState = Simulate(thisShot, thisState); 

 if(!ShotSuccess()) continue; 

 sum += Monte_Carlo_Search(nextState, depth - 1); 

  } 

  sampleSum += sum / num_shot_samples; 

 } 

 score = sampleSum/num_state_samples; 

 if(score > bestScore) bestScore = score; 

 } 

 return bestScore; 

} 

 

 

 

 

 PERFORMANCE EVALUATION 4.

When the implementation was complete the entire system was tested using a 

simulated robot in a simulated environment. The “perceived” table state was passed 

to the AI engine. It computed the shot with the maximum expected success and 

returned to the robot. Not only did it present the shot with the maximum expected 

success, it also returned top ten shots in its search. This way the robot can choose to 

take the shot which requires it to move the minimum distance in configuration space. 

 

Testing with the real robot has been affected by some issues in perception and 

navigation and it still ongoing. However, the AI system is ready for integration with 

the rest of the system. When some manual intervention was provided in perception 

Fig. 4. Monte Carlo Search Algorithm 
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sub-system, the robot was able to take the shot computed by the AI engine. Using 

only one level of search, the search took approximately 100 s to compute for 10 

perturbed table states and 10 perturbed shots in each of them.  

 CONCLUSIONS 5.

This article described an adaption of game search techniques to the continuous, 

stochastic domain of billiards. The program’s approach to move generation, 

constraint filtering, evaluation function, and Monte-Carlo search algorithms were 

described. There certainly is room for improvement. One obvious improvement is a 

pre-computed shot table that computes scores for different cue ball object ball 

combinations. Then the search would actually just lookup rather than online 

simulation thus reducing search time. However, it has not been implemented since 

there are more bottlenecks in the robot’s other sub-systems. 
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