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ABSTRACT – This report presents the problem statement, approach, results of my 

15-780 Graduate Artificial Intelligence (Spring 2013) course project.  This project 

explores an approach to preemptive multi-robot motion planning for active target 

tracking.  Contrary to previous approaches, the technique presented here is to track 

the reachability set for a target, for a given look-ahead period, instead of tracking a 

target’s state.  Preemptive decisions are made using the following procedure: (1) 

apply a motion model to the target, (2) find the target’s reachability set for a set look-

ahead period, and (3) plan robot motions to maintain sensor coverage of the target’s 

reachability set.  Coverage gained by performing an action is proposed as a heuristic 

for robot motion planning.  Anticipated results are shown based on preliminary 

findings, and future work is outlined. 

1. INTRODUCTION 

Motion planning for autonomous active target tracking is a well established and 

studied problem in the Artificial Intelligence and Robotics communities.  Aspects of 

the problem span the full spectrum of topics from perception and state estimation to 

planning/decision systems and control.  Tracking using a single sensor [1] and in 

more recent years, multiple sensors [2], [3] have been explored.  Also, a variety of 

work has been done on using different observations for target state localization [4], 

[5], [6].  Although a wide range of techniques have been tried and tested over the 

years, many of the approaches we find in the literature are reactionary.  Reactionary 

approaches have the drawback of potentially falling into a game of “catch up”.  For an 

algorithm that tracks the state of a given target, this issue stems from the delays 

accrued in state estimation. 

 

This project explores a simple approach to avoiding this game of “catch up”.  The 

goal is to generate preemptive motion plans for a team of robots that cooperatively 

track a target in an environment with obstacles.  The concept at the heart of the 

approach is to plan for tracking the reachability set of a target (for a defined Δt look-

ahead) instead of planning to track the state of the target.  Of course, the first 

question that immediately arises: How do we calculate this reachability set?  For this 

we will need a model of the target’s behavior.  Making an assumption about the 

model and applying it to predict the behavior of a target is not all that unrealistic.  

For example, many ground vehicles can be modeled as differential drive vehicles. 

 

The work presented in this report simplifies the real world scenario for the 

purposes of a 15-780 Graduate Artificial Intelligence (Spring 2013) course project. 

 

Section 2 further details the problem statement.  Section 3 organizes the overall 

approach being used.  Sections 4 and 5 define state and motion models for the target 

and robots.  Section 6 describes the sensor model being used.  Section 7 describes the 

simulation setup being used.  Section 8 and 9 show anticipated results.  And finally, 

Section 10 and 11 discuss some directions in which future work can be taken and 

conclusions. 
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2. PROBLEM STATEMENT 

2.1 Time and Space 

For the purposes of the simplified problem at hand, time is discretized into time 

steps (t0, t1, t2, etc …).  The environment is also discretized, into an X-by-Y grid 

world with obstacles.  Grid cells can be occupied by a maximum of one entity (robot, 

target, or obstacle) at any given time.  An example environment is shown in Figure 1.   

 

 
 

Fig. 1. Example Environment 

2.2 Target 

There is one target in the environment which occupies one grid cell of the 

environment.  This target traverses a path through the environment trying to reach a 

goal.  The target’s goal is given by an (x, y) position.  In order to achieve the objective, 

described in Section 2.4, we will need to have a model (Section 4) describing the 

motion of the target.  The purpose of having a model is to enable the computation of 

the reachability set of the target for a given Δt look-ahead. 

2.3 Robots 

There are M robots in the environment which need to cooperatively track the 

target’s movement in the environment.  Each robot occupies one grid cell of the 

environment.  Every robot has a sensor that can detect the target’s state.  However, 

these sensors have a limited range of operation; hence, each robot has a limited field 

of view.  The limited field of view will motivate the motion of robots.  Robots 

themselves will have a simple motion model (Section 5). 

2.4 Objective 

The goal of this project is as follows: Given the state of the target and a model of 

the target’s behavior, generate feasible and safe motion plans, for the M robots, 

which guarantee that at least n robots maintain view of the target’s reachability set 

(for a given Δt look-ahead).  A feasible motion plan is one that can be executed by a 

robot, given the constraints of its motion model. Safe motion plans keep the robots 

inside the grid world and do avoid collisions among robots, collisions with the target, 

and collisions with obstacles. 

3. APPROACH 

For this project, a simple centralized approach based on search will be used to 

generate plans.  First we define state and motion models for the target and the robots.  

Using the target’s model, a planner is employed to generate the target’s motion.  
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Next, as a prerequisite to robot motion planning, the target’s motion model is used to 

compute the target’s reachability set at a given time step for a given Δt look-ahead. 

Finally, a centralized search based planner is used to generate robot motion plans.  

The goal of the planner is to ensure that the fields of view of at least n robots cover 

the reachability set of the target (for the given Δt look-ahead).  The coverage gained 

by a robot performing an action is used as a heuristic. 

4. TARGET STATE AND MOTION MODEL  

4.1 Target State 

The state of the target is given by: (1) the grid cell that it occupies, and (2) its 

orientation.  A grid cell is specified by its (x, y) location, and the orientation can be: 0 

(zero), N (north), S (south), E (east), or W (west).  The zero orientation is used to 

represent the target’s state when it is not moving (i.e. when it has zero “velocity”). 

4.2 Target Action Schema 

In one time step the target can move from its current grid cell to a neighbouring 

grid cell.  The action schema for the target is shown in Figure 2 using a STRIPS [7], 

[8] like formulation.  In the problem formulation presented here, there is no 

uncertainty associated with the effect of actions performed by the target. 

 
Action: TargetNorth 

Pre:  targetAt(x, y) ^ (targetFacing(N) v 

targetFacing(0)) ^ unoccupied(x, y+1) 

Effect: targetAt(x, y+1) ^ ~targetAt(x, y) 

 If targetFacing(0) 

  targetFacing(N) ^ 

~targetFacing(0) 

Action: TargetSouth 

Pre:  targetAt(x, y) ^ (targetFacing(S) v 

targetFacing(0)) ^ unoccupied(x, y-1) 

Effect: targetAt(x, y-1) ^ ~targetAt(x, y) 

 If targetFacing(0) 

  targetFacing(S) ^ 

~targetFacing(0) 

Action: TargetEast 

Pre:  targetAt(x, y) ^ (targetFacing(E) v 

targetFacing(0)) ^ unoccupied(x+1, y) 

Effect: targetAt(x+1, y) ^ ~targetAt(x, y) 

 If targetFacing(0) 

  targetFacing(E) ^ 

~targetFacing(0) 

Action: TargetWest 

Pre:  targetAt(x, y) ^ (targetFacing(W) v 

targetFacing(0)) ^ unoccupied(x-1, y) 

Effect: targetAt(x-1, y) ^ ~targetAt(x, y) 

 If targetFacing(0) 

  targetFacing(W) ^ 

~targetFacing(0) 

Action: TargetNorth-East 

Pre:  targetAt(x, y) ^ (targetFacing(N) v 

targetFacing(E)) ^ unoccupied(x+1, y+1) 

Effect: targetAt(x+1, y+1) ^ ~targetAt(x, 

y) 

 If targetFacing(N) 

  targetFacing(E) ^ 

~targetFacing(N) 

 Else 

  targetFacing(N) ^ 

~targetFacing(E) 

Action: TargetNorth-West 

Pre:  targetAt(x, y) ^ (targetFacing(N) v 

targetFacing(W)) ^ unoccupied(x-1, y+1) 

Effect: targetAt(x-1, y+1) ^ ~targetAt(x, 

y) 

 If targetFacing(N) 

  targetFacing(W) ^ 

~targetFacing(N) 

 Else 

  targetFacing(N) ^ 

~targetFacing(W) 

Action: TargetSouth-East 

Pre:  targetAt(x, y) ^ (targetFacing(S) v 

targetFacing(E)) ^ unoccupied(x+1, y-1) 

Effect: targetAt(x+1, y-1) ^ ~targetAt(x, 

y) 

 If targetFacing(S) 

  targetFacing(E) ^ 

~targetFacing(S) 

 Else 

  targetFacing(S) ^ 

~targetFacing(E) 

Action: TargetSouth-West 

Pre:  targetAt(x, y) ^ (targetFacing(S) v 

targetFacing(W)) ^ unoccupied(x-1, y-1) 

Effect: targetAt(x-1, y-1) ^ ~targetAt(x, y) 

 If targetFacing(S) 

  targetFacing(W) ^ 

~targetFacing(S) 

 Else 

  targetFacing(S) ^ 

~targetFacing(W) 

Action: TargetStop  
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Pre:  targetFacing(dir) 

Effect: targetFacing(0) ^ 

~targetFacing(dir) 

 

Fig. 2. Target Action Schema 

4.3 Target Reachability Set 

The target’s reachability set for a given Δt look-ahead time is found by applying 

the definitions of the target’s state the target’s action schema.  Figure 3 illustrates 

some reachability sets.  If the target is standing still, in one time step it can move 

North, South, East, West, or stay where it is.  However, if the target has a “velocity”, 

as indicated by the orientation of the target, it can move “forward”, “forward-left”, or 

“forward-right” in one time step.  This behaviour is enforced by action preconditions 

in the action schema. 

 

 
 

Fig. 3. Target Reachability Sets 

5. ROBOT STATE AND MOTION MODEL 

5.1 Robot State 

The state of an individual robot is given by the grid cell that it occupies.  A grid 

cell is specified by its (x, y) location.  For simplicity, orientation is not used to 

characterize the state of a robot.  However, including orientation in the future can 

help one draw more realistic conclusions from the results of this project. 

5.2 Robot Action Schema 

In one time step an individual robot can move from its current grid cell to any of 

its eight neighbouring grid cells.  The action schema for the robot is shown in Figure 

4 using a STRIPS like formulation.  In the problem formulation presented here, there 

is no uncertainty associated with the effect of actions performed by the robot. 

 
Action: RobotNorth 

Pre: robotAt(x, y) ^ unoccupied(x, y+1) 

Effect: robotAt(x, y+1) ^ ~robotAt(x, y) 

Action: RobotSouth 

Pre: robotAt(x, y) ^ unoccupied(x, y-1) 

Effect: robotAt(x, y-1) ^ ~robotAt(x, y) 

Action: RobotEast 

Pre: robotAt(x, y) ^ unoccupied(x+1, y) 

Effect: robotAt(x+1, y) ^ ~robotAt(x, y) 

Action: RobotWest 

Pre: robotAt(x, y) ^ unoccupied(x-1, y) 

Effect: robotAt(x-1, y) ^ ~robotAt(x, y) 

Action: RobotNorth-East Action: RobotNorth-West 
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Pre: robotAt(x, y) ^ unoccupied(x+1, 

y+1) 

Effect: robotAt(x+1, y+1) ^ ~robotAt(x, y) 

Pre: robotAt(x, y) ^ unoccupied(x-1, 

y+1) 

Effect: robotAt(x-1, y+1) ^ ~robotAt(x, y) 

Action: RobotSouth-East 

Pre: robotAt(x, y) ^ unoccupied(x+1, y-

1) 

Effect: robotAt(x+1, y-1) ^ ~robotAt(x, y) 

Action: RobotSouth-West 

Pre: robotAt(x, y) ^ unoccupied(x-1, y-

1) 

Effect: robotAt(x-1, y-1) ^ ~robotAt(x, y) 

Action: RobotStop 

Pre:  robotAt(x, y) 

Effect: robotAt(x, y) 

 

 

Fig. 4. Robot Action Schema 

6. SENSOR MODEL 

Each robot has a sensor that can detect the target’s state (position and 

orientation).  Further, each sensor has a maximum range (r) defined by the number 

of rings of grid cells around the robot that it can “see”.  This is illustrated in Figure 5.  

In the problem formulation presented here, there is no uncertainty associated with 

measurements. 

 

 
 

Fig. 5. Sensor Model 

7. SIMULATION 

A simulation platform, with visualization, was created for this project using Java.  

For simplicity, the target and robots’ states are treated as properties of the 

environment.  This allows for a straight forward implementation.  Also, information 

about whether a grid cell of the environment is occupied or unoccupied is maintained 

by the environment itself.  The target and robot action schema make extensive use of 

this information; however, none of the actions effect the occupied/unoccupied 

information.  Instead, the environment updates the occupied/unoccupied information 

by keeping track of all actions.  The purpose of this arrangement is that we do not 

want the planners to move the target or the robots just to make space for each other. 

 

The environment needs to be static in order to generate a plan, so the simulation 

is executed in time steps.  After each time step, the environment is static.  At that 

point if the preconditions of the next planned action are met, that next action is 
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performed.  However, if the preconditions of the plans next action are not met, we 

replan based on the current state of the environment. 

8. TARGET MOTION PLANNING 

Figure 6 shows an example target path motivated by preliminary results of the 

target planning.  The planner is given the goal of reaching the (x, y) position of the 

goal regardless of the targets orientation (Figure 6).  Hence, there are four goal states 

(each with the same grid cell position).  Distance to the target can be used as a 

heuristic for optimal path planning. 

 
Goal: targetAt(goalX, goalY) 

 
Fig. 6. Target Planner Goal 

 

 
 

Fig. 7. Target Motion Plan 

9. ROBOT MOTION PLANNING 

Let us consider an example instantiation of the problem at hand.  Let M = 3 

robots, Δt = 1 time step, r = 2 rings, n = 2 robots.  In this example, there are three 

robots tracking the target, each with a sensor with maximum range of two rings 

around the robot.  A Δt look-ahead of 1 time step is used for calculating reachability 

sets.  And, the objective is to have the sensor ranges of at least two robots cover the 

reachability set of the target as the target moves in the environment. The coverage 

gained by performing a particular action in a particular state, given the state of the 

target, can be used as a heuristic.  In order to obtain results in the short period of 

time available, a simple brute force search of the 8 grid cells around each robot, at 

each time step, was used to find motion plans step-by-step.  Using this, the 

anticipated behavior of the robots, generated by the motion planning described above, 

is shown in Figure 7.  Areas where the trajectories of the blue arrows coincide show 

areas where interesting behavior will arise.  For example: collision avoidance, and 

breaking and re-forming robot formation. 
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Fig. 8. Robot Motion Planning 

10. FUTURE WORK 

There are many directions for future work on this project.  Several layers of 

complexity need to be added to answer the real world research questions which 

motivated the problem. 

 

The robot motion planning presented in this report evaluates motion plans only 

based on coverage of the target’s reachability set for a given Δt look-ahead.  A useful 

step forward from this stage will be to incorporate a constrained optimization to 

guide the robot motion planning.  The objective function for this constrained 

optimization can be used to control factors such as the distance between robots.  With 

a constrained optimization approach, safety, feasibility, and reachability set coverage 

can be factored in using constraints. 

 

Also, to gain a real world understanding, the assumption of certainty must be 

dropped.  Uncertainty can be modelled in three aspects of this problem: (1) target 

action schema, (2) robot action schema, and (3) sensor model.  One approach to 

handling uncertainty is to use the objective function of the aforementioned 

constrained optimization to minimize uncertainties.  And, filtering must be used for 

accurate target state estimation in the face of noisy measurements. 

 

In moving forward to pre-emptive motion plan with real systems, 

Kinematic/Dynamic models of robots and targets will have to be used in place of the 

discretized approximations used in this project.  Specifically, the first step is to use 

real differential drive models for describing the behaviour of the target and the 

robots.  This will allow for further development of a solution for implementation and 

experimentation using unmanned ground vehicles.  Of course, even further in the 

future would be incorporating motion models for aerial vehicles for active target 

tracking using a team of unmanned aerial vehicles. 

 

Finally, from an algorithmic stand point, an important aspect to explore for multi 

agent system is decentralization.  In the case of this project, decentralizing the 

individual robot motion planning will bring up significant and important challenge to 

be tackled.  First is the challenge of cooperative target state estimation, and second, 
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coordinated planning.  The core of the decentralization problem is that the robot 

motion plans are interdependent; hence, individual robots will have to form a team, 

communicating their beliefs and intentions to one another.   

11. CONCLUSION 

The lessons leaned over the course of this project will serve as a starting point for 

the planning aspects of my research project.  Even though the results generated thus 

far don’t seem to provide direct information regarding real robot behavior, the hope is 

that the fundamental principles will provide useful grounding points from which to 

continue building on top of the work accomplished in this project. 
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