
AI

Graduate AI Project: Integer Programming Applications in Solving
Static and Dynamic Kidney Exchange

Guofan Wu, Xiao Li, Department of Mechanical Engineering

ABSTRACT: Kidney transplantation is an efficient treatment in dealing with kidney malfunction. Arising
from the lack of compatible donor for individuals, the kidney exchange allows each patient-donor pair to join
in a ”pool” where they can swap donor with each other. Our project purpose is to study this problem from
AI prospective. In the first part, we make a solver based on Gurobi 5.5 to solve the static clearing problem
in kidney exchange. Using this solver we have tested the influence of ”altruist” donor on the overall per-
formance. Then combining this static-case solver with a learning-based method, a dynamic-matching solver
is proposed to improve the overall performance of the dynamic graphs which have multi-inputs. Several
experiments are performed to test its performance with the myopia one as well as tune its parameters. We
also add some comments to these results.

General Terms: Search, Linear Programming

Additional Key Words and Phrases: kidney exchange, breadth-first search, integer programming

1. INTRODUCTION
Kidney is the organ for human to filter out food toxi. The patients encoutnering kidney
malfunction usually resort to two treatments: transplant and dialysis. Compared with
dialysis, the average life quality and survival rate of transplant are much higher[2; 3].
But it requires a living donor which needs to be both blood and tissue compatible with
the patients. The kidney exchange problem arises from the fact that the demands for a
compatible live donor greatly surpass the current supply. In order to reduce the num-
ber of deaths among waiting patients, a large ”pool” keeps opening for these impatible
patient-donor pair where they can swap their donors with each other. In this project,
we are attempting to understand the AI methods exploited in kidney exchange prob-
lem and build up our own solver for small-scale kidney-exchange problem. The part of
this report could be divided into the following part.

— The basic clearing problem could be formulated as an integer programming within a
directed graph. Different from the previous search problems in AI, space cost becomes
a critical issue for this kind of search with respect to time cost. Thus, several specific
techniques for saving memory are introduced here. Also, some results are shown
here.

— Based on the previous static allocation solver, we propose two kinds of modified dy-
namic allocation solvers. One of them is performed online while the other could be
treated as an offline algorithm. Both of them are highly related to the ”potential”
concepts in [2] which we’ll give our understandings and comments.

2. STATIC ALLOCATION SOLVER
This solver deals with the static kidney exchange problems where the swapping pool
is static. In this case, the pool could be treated as a direct graph where each patient-
donor pair is a node of the graph(fig.1). In the graph, the compatiblity between donor
of a given node and patient of another one is indicated by an edge from the latter to the
former while its weight could be viewed as the utility of the donor for this patient. But
under most circumstances, we would only treat them as equal for the static allocation.
The tree basic clearing problem is to find out such a set of disjoint cycles in a given
direct graph that the sum of their weights are maximal. The concept ”disjoint” here
means that none of the cycles share the same node and the weight of a cycle is the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article AI, Publication date: March 2010.

AI:2 G.Wu, X. Li

sum of all the edges it contains. Here’s the mathematical abstraction of the previous
statements.

2.1. Kidney Exchange Abstraction: Problem Formulation
Given a directed weighted graph and a length cap

G = {V, (E ,W)}, max length = lc

find out such a set C = {c1, c2, · · · , cn} ⊆ C where C are the set of all the cycles with
length no greater than lc that the following conditions are satisfied:

(1) ∀x, y ∈ C, x ∩ y = ∅ (disjoint properties)
(2)

∑
i=1,··· ,n

w(ci) is the maximum value (optimality)

2.2. Subproblem: Search All the Cycles
Based on the previous model, the first issue that needs to be dealt with arises: how
to enumerate all the cycles in a given direct graph. Thus, after having tried several
special algorithms listed in wikipedia, we come up with the idea of breadth-first search.
We mention some of them in our milestone report. But now here’s a detailed description
about how the algorithm is performed and realized in C++.

The basic idea which lies behind the breadth-first is to find all the cycles sharing
the same vertex at one time and apply the same method to the others without
replications. Then the searching job has been decomposed into two separate tasks:
finding all the cycles containing a given vertex, checking and deleting the same cycles
found already. So the following two parts deal with them separately.

2.2.1. Finding all the Cycles Containing a Given Node. Now suppose we just want to search
all the cycles having the same given node without any knowledge of the other cycles.
A breadth-first search could accomplish that task from AI course. To easily illustrate
how it is actually performed, we cite the following example. For figure cited here, if we
want to find all the cycles with length no greater than 3 containing v2 initially, a tree
would be constructed by following these steps.

Fig. 1. Cited From [1]

(1) Initialization: Select the root node as v2

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article AI, Publication date: March 2010.

Report of AI Project AI:3

v2, {}

v3, {v2}v1, {v2}

⇓

v2, {}

v3, {v2}

v4, {v2, v3}

v5, {v2, v3, v4}v3, {v2, v3, v4}

v2, {v2, v3}

v1, {v2}

v2, {v2, v1}

Fig2. Schematic Diagram of How the tree is constructed

(2) Branching on root: Add all the nodes which v2 has an edge with or simply v2 points
to as the leaves

(3) For each leaf nodes, record all of its parents
(4) Branching on leaves: Take every leaf as the root of a new tree and branch on it by

adding all its connecting nodes
(5) Check for Cycles and Replication: If some leaf happens to be the root node, then a

new cycle is found. If some leaf happens to be one of its parents other than the
root, then throw this leaf away and prune it.

(6) Cycling: Repeating the steps (3),(4),(5) until the tree level has reached the maxi-
mal length.

So from the picture, we could enumerate all the cycles less than 4 involving v2 as
{v1, v2}, {v2, v3}. This holds true because of the commutative properties of a cycle
which indicates that

c =v1 → v2 → v3 → v1

=v2 → v3 → v1 → v2

=v3 → v1 → v2 → v3

So that means by exploiting the previous process, we could always construct any cycle
from the root node as long as it contains the root node. Though rigorous proof
hasn’t been given, it is intuitive enough for us to believe in this point. And the following
pseudo-code actually reflects the previous steps.

Here we’ll talk about some tricks in the data storage of the cycles. Since each node
in the tree has to record its parents in the path, usually it could be accomplished by
using arrays. Afraid of the fact that it might go beyond limitation as the cycle number
becomes huge, what we actually implement here is using different bits of a 64-bit
integer to represent parents at different levels. For example, if we put all the
vertex in the previous example in the order v1 : 1, v2 : 2, v3 : 3, v4 : 4, v5 : 5, then the tree
should have the form where all the numbers are in hex:
In this way, we could save a lot of memory since the original array would at least cost
8 bytes since the cycle length is at least 2 while this kind of storage only requires 8

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article AI, Publication date: March 2010.

AI:4 G.Wu, X. Li

ALGORITHM 1: Searching All Cycles
Input: input graph G;
a given vertex v in the graph;
the maximal length of a cycle lm;
Output: the set cv0 of all the cycles having v0
queue← empty;
c← empty;
push queue(v0, {}, 0);
repeat

node← pop queue();
if node.number = root then

c← {root, node.parents};
Add(c, c);

end
if node.depth < lm then

for each vertex v in V do
if (connected(v0, v)) then

parents← node.parents+ {node.number};
depth← node.depth+ 1;
cnode = {v, parents, depth};
push queue(cnode);

end
end

end
until queue is empty;

v2, {ex000}

v3, {ex002}v1, {ex002}

⇓

v2, {ex000}

v3, {ex002}

v4, {ex023}

v5, {ex234}v3, {ex234}

v2, {ex023}

v1, {ex002}

v2, {ex021}

Fig3. Modified Tree Representation

bytes. Also, for this kind of representation, there’s a limitation equation

dlog2(|V|+ 1)e × lm ≤ 64

For our solver, lm = 3, |V| ≤ 511 and thus

dlog2(|V|+ 1)e × lm ≤ 9 · 3 = 27 < 64

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article AI, Publication date: March 2010.

Report of AI Project AI:5

which satisfies the constraints.
So this kind of memory allocation is totally effective for our case.

2.2.2. Finding All the Cycles in a Graph. Then it would be quite natural to finish this task
by recursively selecting and deleting nodes as is shown in the algorithm below.

ALGORITHM 2: Breadth-First Search on Cycles
Input: lm the cap of the cycle length;
G the input graph
Output: c the set of all the cycles within the length cap lm
begin

c← empty;
G′ ← G;
repeat

Select a vertex v ∈ G′ ;
c← c+ Search All Cycles(G′, v, lm);
G′ ← G′/v

until G′ = empty;
end

ALGORITHM 3: Static Allocation
Input: lm: the cycle length cap;
G: the static graph;
Output: P: the set of saved patients vertex;
noptimal: the optimal value of saved patients;
begin

c← Breadth-First Search on Cycles(lm,G);
object← 0;
for c ∈ c do

weight(c)← Node number(c);
object← object+ weight(c) · c;

end
for v ∈ V do

constaints(v)← 0;
for c ∈ c do

if v ∈ c then
constaints(v)← constaints+ c;

end
end

end
(P, noptimal)←MIP Solver(object, constaints,Binary)

end

It is obvious that this algorithm is complete.

3. EXPERIMENTAL RESULTS OF STATIC ALLOCATION ON THE ROLE OF ALTRUIST DONOR
Based on the previous steps, we simply take advantage of the existing IP solver Gurobi
5.5 for finding the optimal solution. Using the generator for kidney exchange, we per-
form an experiment on the results between graph including and without altruists. The
percentage of altruists is %5. From it, we could see the role of altruist donor in improv-
ing the overall performance of static kidney exchange pool.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article AI, Publication date: March 2010.

AI:6 G.Wu, X. Li

Fig. 2. Performance Comparison for lm = 3: Red: 5% Altruists; Blue: No Altruists

Table I. Results of Static Allocation with and without Altruists

No Altruists With Altruists
Total Number Optimal Saved Number Total Number Optimal Saved Number

20 10 21 17
45 20 47 35
70 50 74 55
95 56 100 60

120 71 126 83
145 101 152 101
170 98 179 111
195 106 205 143
220 122 231 135
245 125 257 166
270 177 283 188
295 186 310 207
320 205 336 227

Table II. Percentage Comparison

No Altruist 5% Altruist Increased Percentage
50% 81% 31%
44% 74% 30%
71% 74% 3%
59% 60% 5%
59% 66% 7%
70% 66% -4%
58% 62% 4%
55% 58% 3%
51% 65% 14%
65% 66% 1%
63% 67% 4%
64% 68% 4%

From it, we could verify some of conclusions in the literature that the introduction of
chain could could affect the overall performance significantly. In order to better prove
that, the following table represents the percentage of the saved patients for these two
cases.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article AI, Publication date: March 2010.

Report of AI Project AI:7

From it we could see that in average case the ”altruist” donor can be treated as a
kind of more efficient vertex in the graph because there’s more nodes connecting
to it.

4. DYNAMIC ALLOCATION SOLVER
When the pool transits from stationary to dynamic state, the situation becomes a bit
different. The dominant challenge of dynamic allocation is the trade-off between
looking ahead and being greedy from our perspective. We know that if the graph
is adding more players at each turn, the totally greedy allocation strategy for it is
to perform static allocation recursively given the current graph structure. But in-
tuitively, it would be much better if some types of patient-donor pairs are saved so that
they can trigger longer cycles or chains in the future. Thus, lots of dynamic algorithms
are proposed in the literature [4],[2]. [4] proposes a sampling-based method in order
to maximize the expected value of saved patients given the probabilistic distribution
of future input. While in[2], the weights of different edge types are modified to make
bias towards some types of patients for future use from learning.
Inspired by this kind of ”learning-biased” method, we come up with an online-learning
based method for dynamic allocation. Its basic idea is just to decide when to look
ahead or become greedy based on some heuristics and conclusions. Here’s
some assumptions and concerning comments of our dynamic algorithm:

(1) No altruists at each input: Since our solver isn’t fast enough to handle large-scale
instances, this assumption could spare lots of memory.

(2) Short cycles with length no greater than 3 suffices to make efficient allocations:
This is a conclusion cited from [3] while it might not be the cased in real applica-
tions

(3) The compatibility problem of kidney exchange can be simplified as only blood
type compatible problem: this assumption isn’t quite proper in real practice be-
cause the tissue compatibility and the relationship between patient and live donor
should also be taken into account.

(4) The distribution of each input is constant and all the inputs of the graph are i.i.d:
it has the same problem as the previous one. But the static distribution is easily to
quantify from a statistical approach. Also, the instance generator we utilize here
is also based on constant distribution. So, it could be satisfied in simulation.

4.1. Online Learning Potential
In [2], a special concept ”potential” for different types of patient-donor pair is exploited
to guide bias in the allocation. And this concept is learned offline based on a training
set using optimization algorithm. As for its meaning, the potential of a given patient-
donor pair reflects its ability of triggering longer cycles in the future input.
From our heuristics, the potential is interpreted as the expected number of vertex
in the next input which have an edge with or connect this type of vertex. Thus, if A
blood-type patient is the most popular in a given region, then the pair with A type
donor would be preferred since it is more likely to have more edges in the next input
according to assumption (3). In addition, we know that the distribution is constant and
the central limit theorem would guarantee that the frequency-based methods would
converge to the actual distribution as the graph becomes larger. Summing up these
statements, the following learning-based method of potential is proposed:
It’s a just simple method according to our heuristics though problematic.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article AI, Publication date: March 2010.

AI:8 G.Wu, X. Li

ALGORITHM 4: Online Learning Potential
Input: input: the current input;
nA, nB , nAB , nO: the accumulated number of patients of different blood types;
n0: the total number of patients
Output: pA, pB , pAB , pO: the learned potential for corresponding donor with the same type
begin

nA ← nA + input.patients number(A);
nB ← nB + input.patients number(B);
nAB ← nAB + input.patients number(AB);
nO ← nO + input.patients number(O);
n0 ← n0 + input.total patients number;
pA ← nA/n0;
pB ← nB/n0;
pAB ← nAB/n0;
pO ← nO/n0;

end

4.2. Decide When to be Greedy and Look ahead
The learned potential can be utilized to look ahead according to our assumptions. We
also assign additional parameters to decide when to become greedy. Because in real
applications, time would become an important issue for many patients. After a certain
period, it would be reasonable to make a greedy search for all the patients joined in
previously. So here’s the algorithm for the whole online dynamic allocation process.

4.3. Performance Evaluation
4.3.1. Comparison between Myopia and Dynamic Allocation. Using this algorithm, we have

generated some results of the myopia allocation and our weighted allocation laws be-
low for better comparison. The instance we exploit here is still the standard generator.

Fig. 3. Average Difference between Myopia and Dynamic Solvers

From it we could see that the performance of dynamic solver isn’t better than the
myopia one for small-scale problem, but it seems capable of saving more patients as
the pool becomes larger. Since we are attempting to learn potential based via learning

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article AI, Publication date: March 2010.

Report of AI Project AI:9

ALGORITHM 5: Potential Guided Allocation
Input: lm: the cycle length cap;
G: the remaining graph;
{nA, nB , nAB , nO}: the accumulated frequency of each type;
n0: the total patients’ number
Output: P: the set of saved patients vertex;
noptimal: the optimal value of saved patients;
begin

c← Breadth-First Search on Cycles(lm,G);
{pA, pB , pAB , pO} ← Online Learning Potential(G, {nA, nB , nAB , nO}, n0);
object← 0;
for c ∈ c do

weight(c)← 0;
for v1, v2 ∈ c, connect(v1, v2) do

weight(c)← weight(c) + 1− 1

2
(pv1.patient type + pv2.patient type)︸ ︷︷ ︸

biased weight

;

end
object← object+ weight(c) · c;

end
for v ∈ V do

constaints(v)← 0;
for c ∈ c do

if v ∈ c then
constaints(v)← constaints+ c;

end
end

end
(P, noptimal)←MIP Solver(object, constaints,Binary)

end

the probabilistic distribution, the randomness of problem could affect this solver to a
great extent if the problem size is very small.

4.4. Tuning Parameter β
Since the parameter β in this method could be changed arbitrarily, we’d like to test its
effects on the improvement of the overall performance. So the previous instances are
utilized here for testing the performance of dynamic solver with different values of β.
Here’s the results.

From the table, the largest value has the best performance which is reasonable
since we have saved many high-potential patients in the previous turns that could
trigger more cycles for overall performance.

5. CONCLUSION
In this project, we have made two solvers for kidney exchange based on the current
MIP solver: static and dynamic solver. The static solver could give the optimal value of
a stationary compatibility based on the method of ”branching on cycles”. Using it, the
importance of ”altruist” donor in practice can be proved experimentally. The dynamic
solver could be exploited for the dynamic graph where the patient-donor pairs keep
coming in and out. It attempts to learn the ”potentials” of different types of patient-
donor pairs during the whole process based on some assumptions which seem quit

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article AI, Publication date: March 2010.

AI:10 G.Wu, X. Li

ALGORITHM 6: Online Dynamic Allocation
Input: Input set {gi1, gi2, · · · , gin};
The greedy time period β;
The length cap lm;
Output: The total number saved ndo

begin
ndo ← 0;
G ← empty;
{nA, nB , nAB , nO} ← {0, 0, 0, 0};
n0 ← 0;
for j ← 1 to n do
G ← G + gij ;
{nA, nB , nAB , nO} ← Online Learning Potential(gij , {nA, nB , nAB , nO}, n0);
if remainder(j/β)! = 0 and j < n then

(cj, noj)← Potential Guided Allocation(lm,G, {nA, nB , nAB , nO}, n0);
end
else

(cj, noj)← Potential Guided Allocation(lm,G);
end
ndo ← ndo + noj ;
G ← G/cj;

end
end

Table III. Average Optimal Number of Myopia and Dynamic Allocation for 20 Instances

lm 3
β 4

Number per input 50
Number of Patients Myopia Dynamic Average Difference Standard Deviation

100 39.87 39.67 -0.2 2.3664
150 69.8 71.1 1.26 2.96
200 99.2 95.6 -3.6 4.8
250 129 128 -1 7.44
300 163.7 164.7 1 6.85
350 197.2 199.1 1.9 8.08

Table IV. Performances for Different Values of β

lm 3
Number per input 50

Number of Patients 350
β Average Standard Deviation
2 197.8 11.296
3 197.2 10.53
4 197.13 10.9926
5 198.6 11.975

strong. The results show that it does have some tiny improvements over the myopia
allocation one which treats the graph as static each time.

REFERENCES
D.J. Abraham, A. Blum, T. Sandholm, ”Clearing Algorithms for Barter Exchange Markets: Enabling Nation-

wide Kidney Exchange”, ACM, 2007.
J.P. Dickerson, A.D. Procaccia, T. Sandholm, ”Dynamic Matching via Weighted Myopia with Application to

Kidney Exchange”, AAAI, 2012.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article AI, Publication date: March 2010.

Report of AI Project AI:11

J.P. Dickerson, A.D. Procaccia, T. Sandholm, ”Optimizing Kidney Exchange with Transplant Chains: Theory
and Reality”, AAMAS, 2012.

P. Awasthi, T. Sandholm, ”Online Stochastic Optimization in the Large: Application to Kidney Ex-
change”,IJCAI, 2009.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article AI, Publication date: March 2010.

