# Lecture 7: Van Emde Boas Trees 

Lecturer: David Wajc
Scribe: Dravyansh Sharma, Daanish Ali Khan, Zoe Wellner
" $\log \log n$ has been proven to go to $\infty$ but has never been seen to do so."
-Anonymous

### 7.1 Ordered Dictionary

We can have the following operations in an ordered dictionary:

- insert $(x)$
- delete $(x)$
- member $(x)$
- next $(x)$
- $\operatorname{prev}(x)$
- max
- min

But we will not be focusing as much on the max and min operations. We can also note that all operations available to heaps are implementable.

## Applications

- Priority queues and their applications
- Sorting
- Sorted key value store (by adding satellite data), which we will not discuss.


## Examples with run time

|  | Balanced BST | Sorted Array | Bit Array | VEB Trees |
| :---: | :---: | :---: | :---: | :---: |
| insert | $O(\log n)$ | $O(n)$ | $O(1)$ | $O(\log \log u)$ |
| delete | $O(\log n)$ | $O(n)$ | $O(1)$ | $O(\log \log u)$ |
| member | $O(\log n)$ | $O(\log n)$ | $O(1)$ | $O(\log \log u)$ |
| next | $O(\log n)$ | $O(\log n)$ | $O(U)$ | $O(\log \log u)$ |
| prev | $O(\log n)$ | $O(\log n)$ | $O(U)$ | $O(\log \log u)$ |

Today all elements we are dealing with are integers in the range $\{1,2 \ldots, U-1\}$.
Question Too good to be true? How can we have something sort in $O(n \log \log U)$ time when we have $\Omega(n \log n)$ lower bound for sorting?

Answer This is NOT comparison based sorting and so the lower bound doesn't apply! (Also $\log \log U$ can be $\Omega(\log n)$ )

### 7.2 Bit Array

### 7.2.1 Bit Array v1.0

| 0 | 1 | $\ldots$ | $U-1$ |
| :--- | :--- | :--- | :--- |

Figure 7.1: Bit Array

## Idea

$A[i]=1$ if and only if $i$ is in the set while initially $A[i]=0$ for all $i$.
$O(1)$ insert $(i): A[i]=1$
$O(1)$ delete $(i): A[i]=0$
$O(1)$ member $(i)$ : return $A[i]$
$O(U)$ next $(i)$ :
for $j=i, i+1, \ldots, U$
if $A[j]==1 \quad$ return $j$ return nil
$O(U) \operatorname{prev}(i):$ symmetric to above
Question Both prev and next take $O(U)$ time. How can we make this faster?
Answer We can break up the range into smaller pieces allowing us to search fewer pieces.

### 7.2.2 Bit Array v2.0

No we can try a similar process but with two levels.
We have an array $A$ of size $\sqrt{U}$ of pointers to other arrays of size $\sqrt{U}$.

## Idea

$A[0]$ corresponds to $\{0, \ldots, \sqrt{U}-1\}$
$A[1]$ corresponds to $\{\sqrt{U}, \ldots, 2 \sqrt{U}-1\}$
$\vdots$
$A[\sqrt{U}-1]$ corresponds to $\{U-\sqrt{U}, \ldots, U-1\}$
Therefore element $i$ is represented by $i \bmod \sqrt{U}$ in $A\left[\left\lfloor\frac{i}{\sqrt{U}}\right\rfloor\right]$


Figure 7.2: 2-level Bit Array

$$
\begin{aligned}
& O(1) \text { insert }(i): B=A\left[\left\lfloor\frac{1}{\sqrt{U}}\right\rfloor\right] \\
& B . \text { insert }(i \bmod \sqrt{U}) \\
& O(1) \text { delete and member-similar } \\
& O(\sqrt{U}) \text { next }(i): \\
& B=A\left[\left\lfloor\frac{i}{\sqrt{U}}\right\rfloor\right] \\
& B . \operatorname{next}(i \bmod \sqrt{U}) \\
& \text { if } j \neq \text { nil } \\
& \quad \text { return } j+\left\lfloor\frac{i}{\sqrt{U}}\right\rfloor \sqrt{U} \\
& \text { for } k=\left\lfloor\frac{i}{\sqrt{U}}\right\rfloor+1,\left\lfloor\frac{i}{\sqrt{U}}\right\rfloor+2, \ldots, \sqrt{U}-1 \\
& \quad \text { if } A[k] . \operatorname{size} \neq 0 \\
& \quad \operatorname{return} A[k] . \operatorname{next}(0)+k \sqrt{U}
\end{aligned}
$$

return nil

Question How can we do better for prev and next?
Answer More levels!!

### 7.2.3 Bit Array vk. 0

The 2-level bit array can be extended to a k-level bit array. In this data structure, each array is of size $U^{\frac{1}{k}}$, and contains pointers to bit arrays of size $U^{\frac{1}{k}}$. Similar to the 2-level bit array, each element will also store a count field that tracks the total number of elements in its children arrays. All count fields are initialized to zero. The 1st level can be indexed by the top $\frac{\log _{2} U}{k}$ bits, the 2 nd level by the next $\frac{\log _{2} U}{k}$ bits, and the last layer by the bottom $\frac{\log _{2} U}{k}$ bits. An element $i$, if in the set, can be found on the last layer.

## Insert, Delete, and Member

Similar to the 2-level bit array, insert, delete and member can be done using $\mathrm{O}(1)$ operations per level. This results in $\mathrm{O}(\mathrm{k})$ time as there are k levels.


Figure 7.3: $k$-level Bit Array

## Next and Previous

In the worst case for the next operation, there will be two scans per level (one going upwards and one downwards), each scan requiring $U^{\frac{1}{k}}$ operations. With a total of k levels, we can bound the work as:

$$
\leq O(1) * 2 * k * U^{\frac{1}{k}}=O\left(k U^{\frac{1}{k}}\right)
$$

## Best Choice of $k$

The optimum choice of $k$ minimizes $k U^{\frac{1}{k}}$. Minimizing $g(k)=k U^{\frac{1}{k}}, k \geq 1$, is equivalent to minimizing $\ln \left(k U^{\frac{1}{k}}\right)$, $k \geq 1$.

Let $f(k):=\ln \left(k U^{\frac{1}{k}}\right)=\ln (k)+\frac{1}{k} \ln (U)$
To minimize $f(k)$, we will take the derivative with respect to k and equate it to 0 .

$$
\begin{gathered}
f(k)=\ln (k)+\frac{1}{k} \ln (U) \\
f^{\prime}(k)=\frac{1}{k}-\frac{1}{k^{2}} \ln (U)=0 \\
\frac{1}{k}=\frac{1}{k^{2}} \ln (U) \\
k=\ln (U)
\end{gathered}
$$

Thus, our minimum for k is $\ln (U)$.

$$
g(k)=g(\ln U)=(\ln U) * U^{\frac{1}{\ln U}}=\ln U * e=O(\log U)
$$

Another value of $k$ that achieves the $O(\log U)$ asymptotic bound for $g(k)$, is $k=\log _{2} U$.

$$
g(k)=g\left(\log _{2} U\right)=\left(\log _{2} U\right) * U^{\frac{1}{\log _{2} U}}=\log _{2} U * 2=O(\log U)
$$

Taking $k=\log _{2} U$, each array would be of size $U^{\frac{1}{k}}=U^{\frac{1}{\log _{2} U}}=2$.
Insert, delete, and member will take $O(k)=O(\log U)$ time. Next and previous will take $O\left(k U^{\frac{1}{k}}\right)=O(\log U)$ time. Thus, all operations will take $O(\log U)$ time.


Figure 7.4: Bit Array Vk. 0 with optimal $k$
We have re-invented balanced search trees!
Consider the member operation. The run-time can be represented by the following recurrence:

$$
T(U)=T\left(\frac{U}{2}\right)+1=\Theta(\log U)
$$

This divides the universe size by constant 2 every recursive call, each of which costs 1 . Hence, this recurrence is in $\Theta(\log U)$.

Our Goal: Recurrences of the form:

$$
T(U)=T(\sqrt{U})+1=\Theta(\log \log U)
$$

This recurrence divides the exponent of the universe size by a constant 2 every recursive call, each of which costs 1 . Hence, this recurrence is in $\overline{\Theta(\log \log U)}$.

We can also prove this by the substitution method:

Proof. Let $m:=\log _{2} U$ and $S(m):=T\left(2^{m}\right)$. Then,

$$
\begin{aligned}
S(m) & =T\left(2^{m}\right)=T(U)=T(\sqrt{U})+1 \\
& =T\left(2^{\frac{m}{2}}\right)+1=S\left(\frac{m}{2}\right)+1
\end{aligned}
$$

Thus, $S(m)=S\left(\frac{m}{2}\right)+1=\Theta(\log m)$.

$$
\Longrightarrow T(U)=T\left(2^{m}\right)=S(m)=\Theta(\log m)=\Theta(\log \log U)
$$

### 7.3 Van Emde Boas Trees

### 7.3.1 Take 1

Takeaways from our target recurrence $T(U)=T(\sqrt{U})+1$ :

1. Different Universe Size structures at each level: $(U, \sqrt{U}, \sqrt[4]{U}, \sqrt[8]{U}, \cdots)$.
2. Single recursive call.
3. Constant run-time per recursive call.

Let $V E B(U) \equiv$ Van Emde Boas Tree for universe of size U .


Figure 7.5: VEB(U): Van Emde Boas Tree of size U
$\begin{array}{ll}\text { Insert(i): } \quad & B=A\left[\left\lfloor\frac{i}{\sqrt{U}}\right\rfloor\right] \\ & B . \operatorname{insert}(i \bmod \sqrt{U})\end{array}$

The delete and member operations can be done similarly.
It can be seen that the run-time of these operations can be represented by our target recurrence:
$T(U)=T(\sqrt{U})+1=\Theta(\log \log U)$.
Next(i):

$$
\begin{align*}
& B=A\left[\left\lfloor\frac{i}{\sqrt{U}}\right\rfloor\right] \\
& j=B . \text { next }(i \bmod \sqrt{U}) \\
& \quad \text { if } j \neq \text { nil } \\
& \quad \text { return } j+\left\lfloor\frac{i}{\sqrt{U}}\right\rfloor * \sqrt{U} \\
& \text { for } k=\left\lfloor\frac{i}{\sqrt{U}}+1, \cdots, \sqrt{U}-1 \quad(\star)\right. \\
& \quad \text { if } A[k] . \operatorname{size} \neq 0 \\
& \quad \text { return } A[k] . \text { next }(0)+k * \sqrt{U} \\
& \text { return nil }
\end{align*}
$$

The run-time for the next and prev operations can be described by the following recurrence:

$$
T(U)=2 T(\sqrt{U})+\sqrt{U}
$$

The per-recursive-call cost of $\sqrt{U}$ is due to the scan loop at $(\star)$.
Fix: We can maintain another $\operatorname{VEB}(\sqrt{U})$ of entries k of array A such that $A[k]$.size $\neq 0$. We will call this VEB Top. This allows us to re-write the next operation, replacing the scan with a next call to Top.
next(i):
$B=A\left[\left\lfloor\frac{i}{\sqrt{U}}\right\rfloor\right]$
$j=B \cdot \operatorname{next}(i \bmod \sqrt{U})$
if $j \neq \mathbf{n i l}$
return $j+\left\lfloor\frac{i}{\sqrt{U}}\right\rfloor * \sqrt{U}$
$k=$ Top. next $\left(\left\lfloor\frac{i}{\sqrt{U}}\right\rfloor+1\right)$
if $k==\mathbf{n i l}$ :
return nil
return $A[k]$.next. $0+k * \sqrt{U}$

We analyze this fix formally below.

### 7.3.2 Take 2



Figure 7.6: VEB(U): Van Emde Boas Tree with Top
To fix the additive $\sqrt{U}$ term in the recursion, we avoid the linear search across $A$ by adding yet another $\operatorname{VEB}(\sqrt{U})$ for entries $k$ of array $A$ with $A[k]$.size $\neq 0$ (called Top).
insert now requires two recursive calls - one to insert into $A[i / \sqrt{U}]$ and another for Top.

$$
T(U)=2 T(\sqrt{U})+1=\Theta(\log U)
$$

Proof. Substitution method again, $m:=\log U, S(m):=T\left(2^{m}\right)$

$$
S(m)=2 S(m / 2)+1=\Theta(m)=\Theta(\log U)
$$

But next $(i)$ is even worse now as it needs 3 recursive calls

$$
T(U)=3 T(\sqrt{U})+1=\Theta\left((\log U)^{\log _{2} 3}\right) \equiv \Theta\left((\log U)^{1.58}\right)
$$

Proof. As above, this time also relying on the master theorem. Alternatively, one could analyze the recursion tree $S(m)=3 S(m / 2)+1=\Theta\left(m^{\log _{2} 3}\right)$

So how do we decrease the number of recursive calls here? We can maintain min and max fields to decrease the number of recursive calls.

### 7.3.3 For real



Figure 7.7: VEB(U): Van Emde Boas Tree
Let us start by implementing next $(i)$ with min and max.

```
next \((i): \quad B=A[\lfloor i / \sqrt{U}\rfloor]\)
    if \(B \cdot \max \geq i \bmod \sqrt{U} \quad / /\) Previously recursed here
    return \(B\).next \((i \bmod \sqrt{U})+\lfloor i / \sqrt{U}\rfloor \sqrt{U}\)
    \(k=\) Top.next \((\lfloor i / \sqrt{U}\rfloor+1))\)
if \(k \neq\) nil
    return \(A[k] . \min +k \sqrt{U} \quad / /\) Previously \(A[k] \cdot\) next (0)
    return nil
```

Only one recursive call now, either in $A[i / \sqrt{U}]$ or Top.

$$
T(U)=T(\sqrt{U})+1=\Theta(\log \log U)
$$

What about insert? The introduction of Top led to 2 recursive calls - one to $A[i / \sqrt{U}]$ and one to Top in case $A[i / \sqrt{U}]$ was empty before.

Idea: Save recursive call in $A[i / \sqrt{U}]$ if $A[i / \sqrt{U}]$ was empty before, by not inserting min/max into recursive structures!

$$
\begin{gathered}
\text { insert }(i): \quad \text { if } \operatorname{size}==0 \\
\text { min }=\max =i \\
\\
\text { size }=1 \\
\\
\text { return }
\end{gathered}
$$

```
if \(i<\min\)
    \(\operatorname{swap}(i, \min )\)
if \(i>\max\)
    \(\operatorname{swap}(i, \max )\)
\(B=A[\lfloor i / \sqrt{U}\rfloor]\)
\(B\).insert \((i \bmod \sqrt{U})\)
if B.size==1
    Top.insert \((\lfloor i / \sqrt{U}\rfloor)\)
size=size +1
```

Note: When we add a new element to the data structure, we don't insert the new element and min/max recursively but only insert the new element (or old min/max in case this new element becomes min/max).
If $B$.size $==1$ after $B$.insert $(i \bmod \sqrt{U})$, then $B$.insert $(i \bmod \sqrt{U})$ takes $O(1)$ time.

$$
T(U)=T(\sqrt{U})+O(1)=\Theta(\log \log U)
$$

delete $(i)$ is symmetric.
find $(i)$ also requires only one recursive call.

$$
\operatorname{find}(i): \quad \text { if } i==\min \text { or } i==\max
$$

return true
$B=A[\lfloor i / \sqrt{U}\rfloor]$
return $B$. find $(i \bmod \sqrt{U})$

### 7.4 Summary

We saw an ordered dictionary with $\Theta(\log \log U)$ time for all operations. Main takeaways:

- Design and analysis go hand in hand. To get $\Theta(\log \log U)$ time we aimed for the right recurrence and fixed design along the way to get there.
- Be suspicious of assumptions of lower bounds. $\Omega(n \log n)$ only applies to comparison based bounds.
- If you need some information often, make it easily accessible. For example Top allowed us to quickly find next non-empty recursive $\operatorname{VEB}(\sqrt{U})$ to look at. Similarly, min (resp. max) saved us some recursive calls, viz. calls which find no larger element and calls intended to output min (resp. max).

