
15-750 Graduate Algorithms Carnegie Mellon University
Spring 2019 Dept. of Computer Science
February 4

Lecture 7: Van Emde Boas Trees
Lecturer: David Wajc Scribe: Dravyansh Sharma, Daanish Ali Khan, Zoe Wellner

“log log n has been proven to go to∞ but has never been seen to do so.”

-Anonymous

7.1 Ordered Dictionary

We can have the following operations in an ordered dictionary:

• insert(x)

• delete(x)

• member(x)

• next(x)

• prev(x)

• max

• min

But we will not be focusing as much on the max and min operations. We can also note that all operations available to
heaps are implementable.

Applications

• Priority queues and their applications

• Sorting

• Sorted key value store (by adding satellite data), which we will not discuss.

Examples with run time

Balanced BST Sorted Array Bit Array VEB Trees
insert O(log n) O(n) O(1) O(log log u)
delete O(log n) O(n) O(1) O(log log u)
member O(log n) O(log n) O(1) O(log log u)
next O(log n) O(log n) O(U) O(log log u)
prev O(log n) O(log n) O(U) O(log log u)

7-1



Lecture 7: Van Emde Boas Trees 7-2

Today all elements we are dealing with are integers in the range {1, 2 . . . , U − 1}.

Question Too good to be true? How can we have something sort in O(n log logU) time when we have Ω(n log n)
lower bound for sorting?

Answer This is NOT comparison based sorting and so the lower bound doesn’t apply! (Also log logU can be Ω(log n))

7.2 Bit Array

7.2.1 Bit Array v1.0

0 1 . . . U − 1

Figure 7.1: Bit Array

Idea

A[i] = 1 if and only if i is in the set while initially A[i] = 0 for all i.

O(1) insert(i): A[i] = 1

O(1) delete(i): A[i] = 0

O(1) member(i): return A[i]

O(U) next(i):

for j = i, i + 1, . . . , U

if A[j] == 1 return j return nil

O(U) prev(i): symmetric to above

Question Both prev and next take O(U) time. How can we make this faster?

Answer We can break up the range into smaller pieces allowing us to search fewer pieces.

7.2.2 Bit Array v2.0

No we can try a similar process but with two levels.

We have an array A of size
√
U of pointers to other arrays of size

√
U .

Idea

A[0] corresponds to {0, . . . ,
√
U − 1}

A[1] corresponds to {
√
U, . . . , 2

√
U − 1}

...

A[
√
U − 1] corresponds to {U −

√
U, . . . , U − 1}

Therefore element i is represented by i mod
√
U in A[b i√

U
c]



Lecture 7: Van Emde Boas Trees 7-3

√
U

√
U

√
U

Figure 7.2: 2-level Bit Array

O(1) insert(i): B = A[b 1√
U
c]

B.insert(i mod
√
U)

O(1) delete and member - similar

O(
√
U) next(i):

B = A[b i√
U
c]

B.next(i mod
√
U)

if j 6= nil
return j + b i√

U
c
√
U

for k = b i√
U
c+ 1, b i√

U
c+ 2, . . . ,

√
U − 1

if A[k].size 6= 0

return A[k].next(0) + k
√
U

return nil

Question How can we do better for prev and next?

Answer More levels!!

7.2.3 Bit Array vk.0

The 2-level bit array can be extended to a k-level bit array. In this data structure, each array is of size U
1
k , and contains

pointers to bit arrays of size U
1
k . Similar to the 2-level bit array, each element will also store a count field that tracks

the total number of elements in its children arrays. All count fields are initialized to zero. The 1st level can be indexed
by the top log2 U

k bits, the 2nd level by the next log2 U
k bits, and the last layer by the bottom log2 U

k bits. An element i,
if in the set, can be found on the last layer.

Insert, Delete, and Member

Similar to the 2-level bit array, insert, delete and member can be done using O(1) operations per level. This
results in O(k) time as there are k levels.



Lecture 7: Van Emde Boas Trees 7-4

U
1
k

U
1
k

U
1
k U

1
k

U
1
k U

1
k

0

Figure 7.3: k-level Bit Array

Next and Previous

In the worst case for the next operation, there will be two scans per level (one going upwards and one downwards),
each scan requiring U

1
k operations. With a total of k levels, we can bound the work as:

≤ O(1) ∗ 2 ∗ k ∗ U 1
k = O(kU

1
k )

Best Choice of k

The optimum choice of k minimizes kU
1
k . Minimizing g(k) = kU

1
k , k ≥ 1, is equivalent to minimizing ln(kU

1
k ),

k ≥ 1.

Let f(k) := ln(kU
1
k ) = ln(k) + 1

k ln(U)

To minimize f(k), we will take the derivative with respect to k and equate it to 0.

f(k) = ln(k) +
1

k
ln(U)

f
′
(k) =

1

k
− 1

k2
ln(U) = 0

1

k
=

1

k2
ln(U)

k = ln(U)

Thus, our minimum for k is ln(U).

g(k) = g(lnU) = (lnU) ∗ U 1
lnU = lnU ∗ e = O(logU)



Lecture 7: Van Emde Boas Trees 7-5

Another value of k that achieves the O(logU) asymptotic bound for g(k), is k = log2 U .

g(k) = g(log2 U) = (log2 U) ∗ U
1

log2 U = log2 U ∗ 2 = O(logU)

Taking k = log2 U , each array would be of size U
1
k = U

1
log2 U = 2.

Insert, delete, and member will take O(k) = O(logU) time. Next and previous will take O(kU
1
k ) = O(logU) time.

Thus, all operations will take O(logU) time.

Figure 7.4: Bit Array Vk.0 with optimal k

We have re-invented balanced search trees!

Consider the member operation. The run-time can be represented by the following recurrence:

T (U) = T

(
U

2

)
+ 1 = Θ(logU)

This divides the universe size by constant 2 every recursive call, each of which costs 1. Hence, this recurrence is in
Θ(logU).

Our Goal: Recurrences of the form:

T (U) = T (
√
U) + 1 = Θ(log logU)

This recurrence divides the exponent of the universe size by a constant 2 every recursive call, each of which costs 1.
Hence, this recurrence is in Θ(log logU).

We can also prove this by the substitution method:

Proof. Let m := log2 U and S(m) := T (2m). Then,

S(m) = T (2m) = T (U) = T (
√
U) + 1

= T
(
2

m
2

)
+ 1 = S

(m
2

)
+ 1

Thus, S(m) = S(m
2 ) + 1 = Θ(logm).

=⇒ T (U) = T (2m) = S(m) = Θ(logm) = Θ(log logU)



Lecture 7: Van Emde Boas Trees 7-6

7.3 Van Emde Boas Trees

7.3.1 Take 1

Takeaways from our target recurrence T (U) = T (
√
U) + 1:

1. Different Universe Size structures at each level: (U,
√
U, 4
√
U, 8
√
U, · · · ).

2. Single recursive call.

3. Constant run-time per recursive call.

Let V EB(U) ≡ Van Emde Boas Tree for universe of size U.

√
U

V EB
(√

U
)

V EB
(√

U
)

V EB
(√

U
)

U:
size:

Figure 7.5: VEB(U): Van Emde Boas Tree of size U

Insert(i): B = A[b i√
U
c]

B.insert(i mod
√
U)

The delete and member operations can be done similarly.

It can be seen that the run-time of these operations can be represented by our target recurrence:

T (U) = T (
√
U) + 1 = Θ(log logU).

Next(i):

B = A[b i√
U
c]

j = B.next(i mod
√
U)

ifj 6= nil
return j + b i√

U
c ∗
√
U

for k = b i√
U

+ 1, · · · ,
√
U − 1 (?)

if A[k].size 6= 0

return A[k].next(0) + k ∗
√
U

return nil

The run-time for the next and prev operations can be described by the following recurrence:

T (U) = 2T (
√
U) +

√
U



Lecture 7: Van Emde Boas Trees 7-7

The per-recursive-call cost of
√
U is due to the scan loop at (?).

Fix: We can maintain another VEB(
√
U ) of entries k of array A such that A[k].size 6= 0. We will call this VEB

Top. This allows us to re-write the next operation, replacing the scan with a next call to Top.

next(i):
B = A[b i√

U
c]

j = B.next(i mod
√
U)

if j 6= nil
return j + b i√

U
c ∗
√
U

k = Top.next(b i√
U
c+ 1)

if k == nil :
return nil

return A[k].next.0 +k ∗
√
U

We analyze this fix formally below.

7.3.2 Take 2

√
U

V EB
(√

U
)

V EB
(√

U
)

Top:

V EB
(√

U
)

V EB
(√

U
)

U:
size:

Figure 7.6: VEB(U): Van Emde Boas Tree with Top

To fix the additive
√
U term in the recursion, we avoid the linear search across A by adding yet another VEB(

√
U) for

entries k of array A with A[k].size 6= 0 (called Top).
insert now requires two recursive calls - one to insert into A[i/

√
U ] and another for Top.

T (U) = 2T (
√
U) + 1 = Θ(logU)

Proof. Substitution method again, m := logU , S(m) := T (2m)

S(m) = 2S(m/2) + 1 = Θ(m) = Θ(logU)

But next(i) is even worse now as it needs 3 recursive calls

T (U) = 3T (
√
U) + 1 = Θ((logU)log2 3) ≡ Θ((logU)1.58)



Lecture 7: Van Emde Boas Trees 7-8

Proof. As above, this time also relying on the master theorem. Alternatively, one could analyze the recursion tree
S(m) = 3S(m/2) + 1 = Θ(mlog2 3)

So how do we decrease the number of recursive calls here? We can maintain min and max fields to decrease the
number of recursive calls.

7.3.3 For real

√
U

V EB
(√

U
)

V EB
(√

U
)

Top:

V EB
(√

U
)

V EB
(√

U
)

U:
size:
max:
min:

Figure 7.7: VEB(U): Van Emde Boas Tree

Let us start by implementing next(i) with min and max.

next(i): B = A[bi/
√
Uc]

if B.max ≥ i mod
√
U // Previously recursed here

return B.next(i mod
√
U) + bi/

√
Uc
√
U

k = Top.next(bi/
√
Uc+ 1))

if k 6= nil

return A[k].min + k
√
U // Previously A[k].next(0)

return nil

Only one recursive call now, either in A[i/
√
U ] or Top.

T (U) = T (
√
U) + 1 = Θ(log logU)

What about insert? The introduction of Top led to 2 recursive calls - one to A[i/
√
U ] and one to Top in case A[i/

√
U ]

was empty before.

Idea: Save recursive call in A[i/
√
U ] if A[i/

√
U ] was empty before, by not inserting min/max into recursive struc-

tures!

insert(i): if size == 0
min = max = i
size = 1
return



Lecture 7: Van Emde Boas Trees 7-9

if i < min
swap(i, min)

if i > max
swap(i, max)

B = A[bi/
√
Uc]

B.insert(i mod
√
U)

if B.size == 1

Top.insert(bi/
√
Uc)

size = size +1

Note: When we add a new element to the data structure, we don’t insert the new element and min/max recursively -
but only insert the new element (or old min/max in case this new element becomes min/max).

If B.size == 1 after B.insert(i mod
√
U), then B.insert(i mod

√
U) takes O(1) time.

T (U) = T (
√
U) + O(1) = Θ(log logU)

delete(i) is symmetric.
find(i) also requires only one recursive call.

find(i): if i == min or i == max
return true

B = A[bi/
√
Uc]

return B.find(i mod
√
U)

7.4 Summary

We saw an ordered dictionary with Θ(log logU) time for all operations. Main takeaways:

• Design and analysis go hand in hand. To get Θ(log logU) time we aimed for the right recurrence and fixed
design along the way to get there.

• Be suspicious of assumptions of lower bounds. Ω(n log n) only applies to comparison based bounds.

• If you need some information often, make it easily accessible. For example Top allowed us to quickly find next
non-empty recursive VEB(

√
U) to look at. Similarly, min (resp. max) saved us some recursive calls, viz. calls

which find no larger element and calls intended to output min (resp. max).


