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Lecture 5: Splay Trees
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1 Introduction

Recall from previous lecture that balanced binary search trees (BST) are those whose max depths
are O(logn). While this property guarantees balanced BST to have O(logn) worst-case perfor-
mance, sometimes the worst-case performance may not be of the most interest. Indeed, suppose
a worst-case query is searched multiple times, ideally we would want the data structure to adjust
itself to accommodate the observed empirical frequency so that when the same query is searched
again, a faster time can be achieved. The splay tree is a variant of BST that does exactly that.
Every time SEARCH(z) is called on a splay tree, (assume z is indeed in the tree), in addition to the
searching, the splay tree also rotates = to the root using a specialized function SPLAY(z).

Although splay trees are not balanced according to the worst-case standard, they are “self-
balancing” thanks to SPLAY(x) in that no information is stored to maintain the balance. In the
long run, the amortized complexity works out to O(logn) per operation.

2 Splay(z)

As mentioned above, the distinguished feature of splay trees is the function SPLAY(x). SPLAY(z)
rotates a node x to the root using a series of three rules, which are described below. We give to
definitions of these rules. The first is an imperative description using rotations, while the second
describes the new BST as a change to an insertion order or priority order that determines the
original tree. Note that an element can be moved up in a BST by moving it earlier in the insertion
order.
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Depending on the relative positions of x and its parent(x) and grandparent(z), one of the above
rules will dictate how the rotation takes place. x will keep rotating up until it becomes the root.
In addition to a set of rotation rules, SPLAY(z) can also be described by rules of changing
priorities for a treap.
Priority version of Splay: Given z,y, z such that parent(x) =y and parent(y) = z.

e move y in front of z
e move x in front of y

One might ask why it is not sufficient to rotate x with parent(z). In other words, why include
the Zig-Zig rule involving grandparent(x)? This can be illustrated through an example.

Example 2.1. Let the keys be 0,1,2,3,4 and the priorities be (4,3,2,1,0). Suppose we do not
include the Zig-Zig rule and simply rotate x with parent(z) each time. Consider the following
sequence of operations.

e Move 0 to the front (MTF 0) Priorities: (4,3,2,1,0) = (0,4,3,2,1)

4 rotations

e MTF 1 Priorities: (0,4,3,2,1) = (1,0,4,3,2)



4 rotations

3 rotations

2 rotations

e MTF 4 Priorities: (3,2,1,0,4) = (4,3,2,1,0)



0
1 rotation
The total number of rotationsis 4 +4+3+2+4 1= 14.

In general, given key (n,n — 1,...,0) and insertion order (n,n — 1,...,0) if we leave out the
Zig-Zig rule and splay 0,...,n in this order we get the following number of rotations performed.
Thus the average number of rotation: 6(n).

Operation MTF(0) MTF(1) MTF(2) --- MTF(n) n+ 1 operations
rotations n n n—1 - 1 Q(n?)

On the other hand, if we include the Zig-zig rule, then the resulting trees would look as follows:

Splay(0) 4 4 0
3/ 3/ \
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1 / Rule 3 \ Rule 3 1\ 4



The total number of rotationsis 6 +2+2+1+1 =12 < 14.

3 Splay Dictionary Operations

We next show how one can use Splay to implement an efficient dictionary. The basic operations of
splay trees all employ SPLAY(z,T).



Algorithm 1 Splay Dictionary Operations
function INSERT(z,T")
VANILLAINSERT(z,T")
SPLAY (2, T)
end function

function DELETE(z,T)

/\
SPLAY(x,T'), giving A B
if B is empty then

return A

else
Y

/

SpLAY (largest(A), A), giving €

Y
return C/ \B
end if

end function

function Lookup(z,T")
SEARCH(z,T)
if z is found then
return SPLAY(z,T)
else
return SPLAY(parent(z),T)
end if

end function

Note that SPLAY(z,T) is called even if LOOKUP(x) fails to find the query. This is because
splay trees are designed to change all the time precisely to address the problem discussed in the
introduction.

4 Amortized Analysis of Splay

4.1 Preliminaries

We use potential method to study the amortized cost of SPLAY. In order to do so, we first need to
define a potential function ®(7"). Conceptually, ®(7T") should be large for unbalanced trees.

Definition 4.1. Let T' be a binary search tree, S(z) is the number of nodes in subtree rooted at
x.

Definition 4.2. Let T be a binary search tree, the rank of node x is

r(z) = [logy (S (x))]



Definition 4.3. The potential of a binary search tree T is given by

®(T) =7 r(x)

zeT

Example 4.4. If T is a line, then
n
o (T) = Z log, (i ZlogQ =log (n!) = © (nlog (n))
i=1

To see the last equality, first note that
log (n!) < log (n") = nlog(n) = log (n!) € O (nlog(n))

In addition, n n
log (n!) Zlog Zlog (@) > Zlog (g) - <g> log (%)
=2 i=3

= log (n!) € Q (nlog (n))
Hence log (n!) = O (nlog (n)).
Example 4.5. If T is balanced, then ® (T) = O (n)

Claim 4.6. For all T, ®(T) = Q(n) and ®(T') = O(nlogn). That is, lines and balanced trees
provide upper and lower bounds of the complexity of the trees.

Given the potential function, we are ready to defined the amortized cost (AC):
AC = Unit-Cost + A®

where .
depth.  Number of rotations

21_ 2

Unit-Cost = Number of rule applications = |

4.2 Access Lemma

In order to study the amortized cost of searching in a splay tree, we first need to understand the
run time of SPLAY. The Access Lemma is the main result in this regard. We first state the Access
Lemma.

Lemma 4.7 (Access Lemma). AC(SPLAY (2)) < 3 (r(root) —r(z)) + 1
Corollary 4.8. AC (SpLAY (z)) < 3logn+1

The proof of Access Lemma requires some preliminaries results regarding the rank, which we
will show first.

Lemma 4.9 (Simple Fact 1). If node = has two children a,b such that r(a) = r(b) = r, then
r(z)=1">r.

Proof.
S(z) = S(a) + S(b) +1 > S(a) + S(b) > 27 4 27®) — o7 4 97 — gr+l

=>r(z)>r+1
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Figure 1: Simple Fact 1. v/ > r
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Figure 2: Simple Fact 2. r > 1/

Corollary 4.10 (Simple Fact 2). If node = has two children a,b such that r(z) = r(a), then
r(x) > r(b)

Corollary 4.11 (Simple Fact 3). If node = has two children a,b such that r(z) = r(a), then
2r(z) > r(a) +r(b)

X(r)

/I\ I’
a(r) b(@")

Figure 3: Simple Fact 2. 2r > ¢’ + 1"

Proof of Access Lemma

Proof. Throughout the proof, we will let C, P, GP denote child, parent, grandparent, respectively.
We claim that it is sufficient to show that

AC(Zig) < 3(r (root) —r(C))+1 (1)

AC(Zig-zag), AC(Zig-zag) < 3 (r (GP) —r (C)) (2)

This can been illustrated through an example.



Zig

Zig-zag

Zig-zig

Zig-zag

In the figure above, SPLAY(x) takes four steps. Each r; represents the rank at the corresponding
node. If (1) and (2) are true, then

AC (SpLaY(X)) = AC (Zig-zag) + AC (Zig-zig) + AC (Zig-zag) + AC (Zig)
S3(7‘1 —7’0)+3(7“2—7“1)+3(T’3—7“2)+3(7"4—T’3)—|—1
=3 (7"4 — 7“0) -1

which is the statement of Access Lemma.
We first show (1):

root(r)

c(r)

ACZ é Old root(r'")

As labeled in the above figures, the rank of the root r stays constant throughout the rotation.
Furthermore,

®(After Zig) =7+ 1" + ®(a) + ®(8) + @(7)

®(Before Zig) =1+ 1 + ®(a) + ®(B) + (v)
Hence

AC(Zig) = 1+ AdD

:1+r//_rl
<l+r—7 since r(P) > r(C)
<3(r—r)+1



We now show (2): In the following portion of the proof, we let r = r(GP),b = r(P),a = r(C)
be the ranks before the rotations.

e Case 1: 7 >a
®(Before) = r + b + a + ®(subtrees) > r + 2a + P(subtrees)
O (After) < 3r 4+ ®(subtrees)

Hence,
A® <3r—(r+2a) =2(r—a)
and
AC=14+AP<1+2(r—a)<3(r—a)

e Case 2: r=ua
Since r > b > a, r = a implies » = b = a. Hence
®(Before) = r + b + a + ®(subtrees) = 3r + ®(subtrees)

We claim that ®(After) < 3r — 1 + ®(subtrees). In the case of Zig-zag, the tree after the
rotation would have the following structure with C' as the new root:

P/ \GP

By 4.11 we have r(GP) + r(P) < 2(C). Therefore,
O (After) = r(C)+r(GP)+r(P)+®(subtrees) < 3r(C)—1+P(subtrees) = 3r—1+®(subtrees)

In the case of Zig-Zig, we have

/ \
P
c/ ) C/ \GP \GP

Note that from the left stage to the middle stage, the subtree rooted at C is the same. Hence
r(C) = r for both figures. In the middle stage, r(P) = r(root) = r. Hence r(GP) < r by
4.10. And since the subtree rooted at GP is the same for the middle and the right stages,
r(GP) < r after the rotation. Therefore,

O (After) = r(C)+r(P)+r(GP)+®(subtrees) < r+r+(r—1)+®(subtrees) = 3r—1+®(subtrees)
Therefore for both Zig-zag and Zig-zig.
AP = d(after) — ®(before) < —1

and
AC=14+AP <1+ (-1)=0<3(r—r)
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