15-750: Graduate Algorithms

April 7, 2017

Lecture 30: Parallel Algorithms I: Prefix-Sum, List-Ranking

Lecturer: Gary Miller Scribe: Nimrah Shakeel

1 Motivation

Let \oplus be an associative binary operation:

Defination: All prefix sums

input : $[a_0, ..., a_{n-1}]$

output: $[a_0, a_0 \oplus a_1 \oplus a_3, ..., a_0 \oplus ... \oplus a_{n-1}]$ Prescan output: $[I, a_0, a_0 \oplus a_1, ..., a_0 \oplus ... \oplus a_{n-2}]$

Application: Packing Memory

Figure 1: Packing memory

2 Prescan

input : $(3,1,7,0,4,1,6,3) \oplus \text{addition}$

Here is the algorithm:

Algorithm:

- 1. Compute tree of partial sums
- 2. Set root to zero
- 3. DOWN!
 - (a) Right child \Leftarrow Parent \oplus Left child
 - (b) Left-child \Leftarrow Parent

Here is an example:

For this algorithm

$$T(n) = \omega(\log n), W(n) = O(n)$$

Figure 2: Original tree

Figure 3: After prescan

3 List Ranking

Input: linked list

Output: a mark on each node such that mark = distance from head or mark = distance to tail Assume:

- 1. Pointers are in consecutive memory
- 2. We know location of head and tail
- 3. Pointers are in arbitrary order

4 Wyllie's Algorithm

Algorithm 1 Wyllie's

```
1: In parallel rank(!) = 1; rank (tail) =0
```

- 2: In parallel while $\operatorname{succ}(\operatorname{head}) \neq \operatorname{nil} \operatorname{do}$
- 3: **if** $succ(!) \neq nil do$ **then**
- 4: $\operatorname{rank}(!) = \operatorname{rank}(!) \oplus \operatorname{rank}(\operatorname{succ}(!))$
- 5: $\operatorname{succ}(!) = \operatorname{succ}(\operatorname{succ}(!))$
- 6: end if

Using n processors and a CREW model for memory, this algorithm does $\omega(n \log n)$ work in $\omega(\log n)$ time. Our goal is to reduce it to $\omega(n)$ work in $\omega(\log n)$ time.

Figure 4: Wyllie's Algorithm

5 Random-Mate

Contraction Phase

- 1. Each live node randomly picks a sex
- 2. If $F \to M \to X$ then $F \to X$, M dies

3. Stop when head points to NILL (Only head is alive)

How many rounds needed?

Theorem 5.1. The contraction phase stops in $c \log n$ rounds with high probability.

Proof. Let P_i = Event that node i is still alive after one round

Note: If node i is some other node besides head, then $Prob(P_i) = \frac{3}{4}$

Let P_i^k = Event that node i is still alive after k rounds.

Note: $Prob(P_i^k) = (\frac{3}{4})^k i$ not head Set $k = c \log_{(\frac{4}{3})^k} n$ $Prob(P_i^k) = \frac{1}{(\frac{4}{3})^k} \le \frac{1}{(\frac{4}{3})^{(c \log_{\frac{4}{3}} n)}} = \frac{1}{n^c}$

Let $P^k =$ Event that some non-head node is still alive. Assume that $node_0$ is the head. $P^k = P_1^k \cup P_2^k \cup ... \cup P_n^k$ $Prob[P^k] = Prob[P_1^k \cup ... \cup P_n^k]$

 $\leq Prob[P_1^k] + ... + Prob[P_n^k]$ $\leq n.\frac{1}{n^c} = \frac{1}{n^{c-1}}$ If we set c=2 then the contraction phase stops with probability

In the expansion phase we run contraction phase "backwards".

Figure 5: