15-750: Graduate Algorithms
April 7, 2017
Lecture 30: Parallel Algorithms I: Prefix-Sum, List-Ranking
Lecturer: Gary Miller

1 Motivation
Let \oplus be an associative binary operation:
Defination: All prefix sums
input: $\left[a_{0}, \ldots, a_{n-1}\right]$
output: $\left[a_{0}, a_{0} \oplus a_{1} \oplus a_{3}, \ldots, a_{0} \oplus \ldots \oplus a_{n-1}\right]$
Prescan output: $\left[I, a_{0}, a_{0} \oplus a_{1}, \ldots, a_{0} \oplus \ldots \oplus a_{n-2}\right]$
Application: Packing Memory

Figure 1: Packing memory

2 Prescan

input: $(3,1,7,0,4,1,6,3) \oplus$ addition
Here is the algorithm:
Algorithm:

1. Compute tree of partial sums
2. Set root to zero
3. DOWN!
(a) Right child \Leftarrow Parent \oplus Left child
(b) Left-child \Leftarrow Parent

Here is an example:
For this algorithm
$T(n)=\omega(\log n), W(n)=O(n)$

Figure 2: Original tree

Figure 3: After prescan

3 List Ranking

Input: linked list
Output: a mark on each node such that mark $=$ distance from head or mark $=$ distance to tail Assume:

1. Pointers are in consecutive memory
2. We know location of head and tail
3. Pointers are in arbitrary order

4 Wyllie's Algorithm

```
Algorithm 1 Wyllie's
    In parallel \(\operatorname{rank}(!)=1 ;\) rank (tail) \(=0\)
    In parallel while succ \((\) head \() \neq\) nil do
    if succ( \((!) \neq\) nil do then
        \(\operatorname{rank}(!)=\operatorname{rank}(!) \oplus \operatorname{rank}(\operatorname{succ}(!))\)
        \(\operatorname{succ}(!)=\operatorname{succ}(\operatorname{succ}(!))\)
    end if
```

Using n processors and a CREW model for memory, this algorithm does $\omega(n \log n)$ work in $\omega(\log n)$ time. Our goal is to reduce it to $\omega(n)$ work in $\omega(\log n)$ time.

After two rounds

Figure 4: Wyllie's Algorithm

5 Random-Mate

Contraction Phase

1. Each live node randomly picks a sex
2. If $F \rightarrow M \rightarrow X$ then $F \rightarrow X, M$ dies
3. Stop when head points to NILL (Only head is alive)

5.0.1 How many rounds needed?

Theorem 5.1. The contraction phase stops in $c \log n$ rounds with high probability.
Proof. Let $P_{i}=$ Event that node i is still alive after one round
Note: If node i is some other node besides head, then $\operatorname{Prob}\left(P_{i}\right)=\frac{3}{4}$
Let $P_{i}^{k}=$ Event that node i is still alive after k rounds.
Note: $\operatorname{Prob}\left(P_{i}^{k}\right)=\left(\frac{3}{4}\right)^{k} i$ not head
Set $\left.k=c \log _{(} \frac{4}{3}\right) n$
$\operatorname{Prob}\left(P_{i}^{k}\right)=\frac{1}{\left(\frac{4}{3}\right)^{k}} \leq \frac{1}{\left(\frac{4}{3}\right)\left(c \log _{\frac{4}{3}} n\right)}=\frac{1}{n^{c}}$
Let $P^{k}=$ Event that some non-head node is still alive. Assume that node e_{0} is the head.
$P^{k}=P_{1}^{k} \cup P_{2}^{k} \cup \ldots \cup P_{n}^{k}$
$\operatorname{Prob}\left[P^{k}\right]=\operatorname{Prob}\left[P_{1}^{k} \cup \ldots \cup P_{n}^{k}\right]$
$\leq \operatorname{Prob}\left[P_{1}^{k}\right]+\ldots+\operatorname{Prob}\left[P_{n}^{k}\right]$
$\leq n \cdot \frac{1}{n^{c}}=\frac{1}{n^{c-1}}$
If we set $c=2$ then the contraction phase stops with probability $\leq \frac{1}{n}$

In the expansion phase we run contraction phase "backwards".

Figure 5:

