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1 Recap

Recall the JL Lemma from last class. We have t points in Rn : {x1, . . . , xt}. We want to map all
points to Rm for m� n such that all distances are ‘approximately’ maintained. The idea is made
clear in the lemma:

Lemma 1.1. Let ε ∈ (0, 12). Given any set of points X = {x1, . . . , xt}, then there exists a map A :

R
n → Rm with m = O( logn

ε2
) such that (1− ε) ‖xi − xj‖22 ≤ ‖A(xi)−A(xj)‖22 ≤ (1 + ε) ‖xi − xj‖22.

Furthermore, we can take A to be linear.

Here is one way to construct A: let M be a m × n matrix such that each entry Mij is an
independent subgaussian random variable with mean 0 and variance 1. Let A = 1√

m
M . We showed

the following lemma with respect to such A:

Lemma 1.2. Let ε ∈ (0, 12). For every unit vector x ∈ Rn and some constant c > 0, P[1 − ε ≤
‖Ax‖22 ≤ 1 + ε] ≥ 1− e−cε2m

Now we generalize and say that a distributionD has JL property ifD is a distribution overRm×n

and lemma 1.2 holds for A ∈ Rm×n drawn from distribution D. We will explore the connection
between JL property and compressed sensing in this lecture. The lecture is based on Matousek’s
notes.

2 Compressed Sensing

Definition 2.1. For vector x, let xi be its ith entry. Define supp(x) := {i : xi 6= 0}.

Applications of compressed sensing can be found in section 2 here. The main question we ask is
the following: given A ∈ Rm×n, b ∈ Rm, find x such that Ax = b and |supp(x)| ≤ r. The following
theorem gives a necesssary and sufficient condition for the existence of such a solution:

Theorem 2.2. Ax = b has at most one solution x with |supp(x)| ≤ r if and only if every set of 2r
columns of A is linearly independent.

Proof. The proof is based on definitions of linear independence.
‘if’: suppose by contradiction that Ax = b has two sparse solutions x1, x2. Let ∆x = x1 − x2.

Observe supp(∆x) ≤ 2r,A∆x = 0 which is a contradiction.
‘only if’: suppose there are 2r columns that are linealy dependent, this means that ∃y, such

that |supp(y)| ≤ 2r,Ay = 0. Write y = x1 − x2 where |supp(xi)| ≤ r, ∀i = 1, 2, which is a
contradiction.
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Despite the nice characterization, it is shown that finding such a sparse solution is NP-hard.
The following idea called ‘basis pursuit’ is a heuristic to find a sparse solution. We consider the
following optimization problem min{‖x‖1 : Ax = b}. Moreover it is easy to see that it is equivalent
to the following LP.

min
∑
i

ui

s.t. Ax = b

− ui ≤ xi ≤ ui
u ≥ 0

The above heuristic works well in practice. Can we prove that it works well for some natural class
of matrices A?

Definition 2.3. Matrix A ∈ Rm×n is BP-exact for sparsity r if for all b ∈ Rm such that Ax = b
has a unique sparse solution x̃ with |supp(x̃)| ≤ r, the BP LP has a unique optimum x̃.

Here is the main result we shall prove:

Theorem 2.4 (Donoho; Candes-Tao; Rudelson-Vershynin). There exists constants C, c1 > 0 such
that if n,m, r are integers with 1 ≤ r ≤ n/C and m ≥ Cr log n

r and if A ∈ Rm×n is a random
matrix drawn from a distribution D satisfying JL property, then the following holds:

P[A is BP-exact for sparsity r] ≥ 1− e−c1m

3 Proof

We outline the proof following Matousek’s lecture notes:

1. Define restricted isometry property (RIP)

2. Show RIP =⇒ BP-exactness

3. Show JL property =⇒ RIP

3.1 Restricted isometry property

Definition 3.1. Let A ∈ Rm×n and ε ∈ (0, 1). A is an ε-almost isometry if for all unit vector
x ∈ Rn, 1− ε ≤ ‖Ax‖2 ≤ 1 + ε

Definition 3.2. A is a t-restricted ε-almost isometry if for all unit vector x ∈ Rn such that
|supp(x)| ≤ t, 1− ε ≤ ‖Ax‖2 ≤ 1 + ε.

Lemma 3.3 (RIP =⇒ BP-exactness). There exists a constant ε0 > 0 such that if A is 3r-restricted
ε0-almost isometry, then A is BP-exact for sparsity r.

Proof. Suppose there exists ∆ 6= 0 such that x̃+ ∆ is a solution to Ax = b and ‖x̃+ ∆‖1 ≤ ‖x̃‖1.
Since Ax̃ = b, we know A∆ = 0. Note if A is almost isometry, then we would have a contradiction
from A∆ = 0,∆ 6= 0. Since we only have control of small subsets of columns in A, we need to
estimate more carefully. Below we shall show, roughly speaking, that supp(x̃) accounts for most
L1 and L2 norm. For notation ease, let S := supp(x̃) and ∆S be the components of ∆ indexed by
S.

Below is the claim w.r.t. 1-norm, where we use that ‖x̃‖1 ≥ ‖x̃+ ∆‖1
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Claim 3.4. ‖∆S‖ ≥
∥∥∆S

∥∥, where S = [n]\S

Proof.

‖x̃‖1 ≥ ‖x̃+ ∆‖1
= ‖(x̃+ ∆)S‖1 +

∥∥(x̃+ ∆)S
∥∥
1

= ‖x̃S + ∆S‖1 +
∥∥∆S

∥∥
1

≥ ‖x̃‖1 − ‖∆S‖1 +
∥∥∆S

∥∥
1

Next we shall show the 2-norm part. To this end, let us order each i ∈ S by its corresponding
∆i value in nonincreasing order and partition the ordered index set S into blocks B1, B2, . . . of size
2r each (except possibly for the last block of remaining indices). Namely, B1 are the indices of the
2r largest coordinates of ∆S etc.. This choice implies that for every i ∈ Bj+1,

|∆i| ≤
∥∥∆Bj

∥∥
1

2r

Summing over i ∈ Bj+1, we have

∑
i∈Bj+1

|∆i|2 ≤
∥∥∆Bj

∥∥2
1

2r

=⇒
∥∥∆Bj+1

∥∥
2
≤
∥∥∆Bj

∥∥
1√

2r

Then we can bound ∑
j≥1

∥∥∆Bj+1

∥∥
2
≤
∑
j≥1

∥∥∆Bj

∥∥
1√

2r

=
1√
2r

∥∥∆S

∥∥
1

≤ 1√
2r
‖∆S‖1 (claim 3.4)

≤ 1√
2
‖∆S‖2 (‖z‖1 ≤

√
d ‖z‖2 for z ∈ Rd)

Now we can derive a contradiction:

0 = ‖A∆‖2
≥ ‖AS∪B1∆S∪B1‖2 −

∑
j≥2

∥∥ABj∆Bj

∥∥
2

(triangle inequality)

≥ (1− ε0) ‖∆S∪B1‖2 − (1 + ε0)
∑
j≥2

∥∥∆Bj

∥∥
2

(almost-isometry)

≥ (1− ε0) ‖∆S‖2 −
1 + ε0√

2
‖∆S‖2 (above bound)

= ‖∆S‖2 (1− ε0 −
1 + ε0√

2
)

When ε0 is small enough, this is a contradiction.
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3.2 Proof of main theorem

In light of lemma 3.3, we need to prove that if A has JL property as specified in lemma 1.2, then
with probability at least 1 − ec1m for some constant c1, A is a 3r-restricted ε0-almost isometry.
For notational ease, let t := 3r. Note that we only need to consider unit vectors. Below we
show an upper bound on the probability that A does not have this property on St−1, where
St−1 := {x ∈ Rt : ‖x‖2 = 1}.

Suppose A does not have this property. Then there exists a t-element set T ⊂ [n] such that AT
is not an ε0-almost isometry. Note there are at most

(
n
t

)
choices for T . Let AT be the submatrix

of A whose columns are indexed by T and rows the same as A. Below we use a union-bound
type argument to upper bound the probability that AT is not an ε0-almost isometry. If we can
do so, since there are at most

(
n
t

)
choices for T , we will be done by a union-bound argument and

choosing properly the magnitude of all parameters. To state two lemmas (see lemma 1.1 and 1.3
in Matousek’s notes and the proofs therein), we need the following definition:

Definition 3.5. For a given set C in a Euclidean space, a subset S ⊂ C is said to be ε-dense, if
∀x ∈ C,∃x′ ∈ S such that ‖x− x′‖2 ≤ ε.

The lemma below says roughly that the behaviour (in the sense of preserving distance) of F
on a dense set is a ’good approximation’ of the behaviour on the whole set, and how good the
approximation is depends on density of the subset.

Lemma 3.6. Let ε ∈ (0, 13), let N ⊂ St−1 be ε-dense. Let F : Rn → Rm be a linear map satisfying

1− ε ≤ ‖F (q)‖2 ≤ 1 + ε, ∀q ∈ N

Then F is a 3ε-almost isometry.

Let us fix an ε0
3 -net NT on St−1 (we will show the finiteness of NT later). Recall AT is not an

ε0-almost isometry, so the above lemma says that there exists q ∈ NT such that the following does
not hold:

1− ε0
3
≤ ‖AT q‖ ≤ 1 +

ε0
3

By JL property, we know that for a fixed unit vector q, the above inequality does not hold with
probability at most e−c

′m for some positive c′ depending on ε0. Now we can use a union bound
argument to finish the proof if we can upper bound the size of NT . The following lemma allows us
to do this.

Lemma 3.7. ∀ε ∈ (0, 1), there exists an ε-dense set N ⊂ St−1 such that |N | ≤ (4ε )
t.

There are at most Kt choices for NT with K depending on ε0 and
(
n
t

)
choices for T ⊂ [n].

Therefore the probability that A does not have t-restricted ε0-almost isometry property is at most(
n

t

)
Kte−c

′m ≤ (
ne

t
)tKte−c

′m = exp(3r(ln
ne

3r
) + lnK − c2m)

With the assumption that m ≥ Cr log(n/r) from our main theorem, it is not hard to check that
the last expression is bounded above by e−c2m/2 if C is sufficiently large. So we are done.
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