15-750: Graduate Algorithms Mar 27, 2017

Lecture 24: Compressed Sensing and JL property

Lecturer: David Witmer
Scribe: Ziye Tang

1 Recap

Recall the JL Lemma from last class. We have t points in $\mathbb{R}^{n}:\left\{x_{1}, \ldots, x_{t}\right\}$. We want to map all points to R^{m} for $m \ll n$ such that all distances are 'approximately' maintained. The idea is made clear in the lemma:

Lemma 1.1. Let $\epsilon \in\left(0, \frac{1}{2}\right)$. Given any set of points $X=\left\{x_{1}, \ldots, x_{t}\right\}$, then there exists a map A : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ such that $(1-\epsilon)\left\|x_{i}-x_{j}\right\|_{2}^{2} \leq\left\|A\left(x_{i}\right)-A\left(x_{j}\right)\right\|_{2}^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|_{2}^{2}$. Furthermore, we can take A to be linear.

Here is one way to construct A : let M be a $m \times n$ matrix such that each entry $M_{i j}$ is an independent subgaussian random variable with mean 0 and variance 1 . Let $A=\frac{1}{\sqrt{m}} M$. We showed the following lemma with respect to such A :

Lemma 1.2. Let $\epsilon \in\left(0, \frac{1}{2}\right)$. For every unit vector $x \in \mathbb{R}^{n}$ and some constant $c>0, \mathbb{P}[1-\epsilon \leq$ $\left.\|A x\|_{2}^{2} \leq 1+\epsilon\right] \geq 1-e^{-c \epsilon^{2} m}$

Now we generalize and say that a distribution D has JL property if D is a distribution over $\mathbb{R}^{m \times n}$ and lemma 1.2 holds for $A \in \mathbb{R}^{m \times n}$ drawn from distribution D. We will explore the connection between JL property and compressed sensing in this lecture. The lecture is based on Matousek's notes.

2 Compressed Sensing

Definition 2.1. For vector x, let x_{i} be its i th entry. Define $\operatorname{supp}(x):=\left\{i: x_{i} \neq 0\right\}$.
Applications of compressed sensing can be found in section 2 here. The main question we ask is the following: given $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, find x such that $A x=b$ and $|\operatorname{supp}(x)| \leq r$. The following theorem gives a necesssary and sufficient condition for the existence of such a solution:

Theorem 2.2. $A x=b$ has at most one solution x with $|\operatorname{supp}(x)| \leq r$ if and only if every set of $2 r$ columns of A is linearly independent.

Proof. The proof is based on definitions of linear independence.
'if': suppose by contradiction that $A x=b$ has two sparse solutions x_{1}, x_{2}. Let $\Delta x=x_{1}-x_{2}$. Observe $\operatorname{supp}(\Delta x) \leq 2 r, A \Delta x=0$ which is a contradiction.
'only if': suppose there are $2 r$ columns that are linealy dependent, this means that $\exists y$, such that $|\operatorname{supp}(y)| \leq 2 r, A y=0$. Write $y=x_{1}-x_{2}$ where $\left|\operatorname{supp}\left(x_{i}\right)\right| \leq r, \forall i=1,2$, which is a contradiction.

Despite the nice characterization, it is shown that finding such a sparse solution is NP-hard. The following idea called 'basis pursuit' is a heuristic to find a sparse solution. We consider the following optimization problem $\min \left\{\|x\|_{1}: A x=b\right\}$. Moreover it is easy to see that it is equivalent to the following LP.

$$
\begin{array}{ll}
\min & \sum_{i} u_{i} \\
\text { s.t. } & A x=b \\
& -u_{i} \leq x_{i} \leq u_{i} \\
& u \geq 0
\end{array}
$$

The above heuristic works well in practice. Can we prove that it works well for some natural class of matrices A ?

Definition 2.3. Matrix $A \in \mathbb{R}^{m \times n}$ is BP-exact for sparsity r if for all $b \in \mathbb{R}^{m}$ such that $A x=b$ has a unique sparse solution \widetilde{x} with $|\operatorname{supp}(\widetilde{x})| \leq r$, the BP LP has a unique optimum \widetilde{x}.

Here is the main result we shall prove:
Theorem 2.4 (Donoho; Candes-Tao; Rudelson-Vershynin). There exists constants $C, c_{1}>0$ such that if n, m, r are integers with $1 \leq r \leq n / C$ and $m \geq C r \log \frac{n}{r}$ and if $A \in \mathbb{R}^{m \times n}$ is a random matrix drawn from a distribution D satisfying JL property, then the following holds:

$$
\mathbb{P}[A \text { is } B P \text {-exact for sparsity } r] \geq 1-e^{-c_{1} m}
$$

3 Proof

We outline the proof following Matousek's lecture notes:

1. Define restricted isometry property (RIP)
2. Show RIP \Longrightarrow BP-exactness
3. Show JL property \Longrightarrow RIP

3.1 Restricted isometry property

Definition 3.1. Let $A \in \mathbb{R}^{m \times n}$ and $\epsilon \in(0,1)$. A is an ϵ-almost isometry if for all unit vector $x \in \mathbb{R}^{n}, 1-\epsilon \leq\|A x\|_{2} \leq 1+\epsilon$

Definition 3.2. A is a t-restricted ϵ-almost isometry if for all unit vector $x \in \mathbb{R}^{n}$ such that $|\operatorname{supp}(x)| \leq t, 1-\epsilon \leq\|A x\|_{2} \leq 1+\epsilon$.
Lemma 3.3 (RIP \Longrightarrow BP-exactness). There exists a constant $\epsilon_{0}>0$ such that if A is 3 r-restricted ϵ_{0}-almost isometry, then A is BP-exact for sparsity r.

Proof. Suppose there exists $\Delta \neq 0$ such that $\widetilde{x}+\Delta$ is a solution to $A x=b$ and $\|\widetilde{x}+\Delta\|_{1} \leq\|\widetilde{x}\|_{1}$. Since $A \widetilde{x}=b$, we know $A \Delta=0$. Note if A is almost isometry, then we would have a contradiction from $A \Delta=0, \Delta \neq 0$. Since we only have control of small subsets of columns in A, we need to estimate more carefully. Below we shall show, roughly speaking, that supp (\widetilde{x}) accounts for most L_{1} and L_{2} norm. For notation ease, let $S:=\operatorname{supp}(\widetilde{x})$ and Δ_{S} be the components of Δ indexed by S.

Below is the claim w.r.t. 1 -norm, where we use that $\|\widetilde{x}\|_{1} \geq\|\widetilde{x}+\Delta\|_{1}$

Claim 3.4. $\left\|\Delta_{S}\right\| \geq\left\|\Delta_{\bar{S}}\right\|$, where $\bar{S}=[n] \backslash S$
Proof.

$$
\begin{aligned}
\|\widetilde{x}\|_{1} & \geq\|\widetilde{x}+\Delta\|_{1} \\
& =\left\|(\widetilde{x}+\Delta)_{S}\right\|_{1}+\left\|(\widetilde{x}+\Delta)_{\bar{S}}\right\|_{1} \\
& =\left\|\widetilde{x}_{S}+\Delta_{S}\right\|_{1}+\left\|\Delta_{\bar{S}}\right\|_{1} \\
& \geq\|\widetilde{x}\|_{1}-\left\|\Delta_{S}\right\|_{1}+\left\|\Delta_{\bar{S}}\right\|_{1}
\end{aligned}
$$

Next we shall show the 2-norm part. To this end, let us order each $i \in \bar{S}$ by its corresponding Δ_{i} value in nonincreasing order and partition the ordered index set \bar{S} into blocks B_{1}, B_{2}, \ldots of size $2 r$ each (except possibly for the last block of remaining indices). Namely, B_{1} are the indices of the $2 r$ largest coordinates of $\Delta_{\bar{S}}$ etc.. This choice implies that for every $i \in B_{j+1}$,

$$
\left|\Delta_{i}\right| \leq \frac{\left\|\Delta_{B_{j}}\right\|_{1}}{2 r}
$$

Summing over $i \in B_{j+1}$, we have

$$
\begin{aligned}
& \sum_{i \in B_{j+1}}\left|\Delta_{i}\right|^{2} \leq \frac{\left\|\Delta_{B_{j}}\right\|_{1}^{2}}{2 r} \\
\Longrightarrow & \left\|\Delta_{B_{j+1}}\right\|_{2} \leq \frac{\left\|\Delta_{B_{j}}\right\|_{1}}{\sqrt{2 r}}
\end{aligned}
$$

Then we can bound

$$
\begin{align*}
\sum_{j \geq 1}\left\|\Delta_{B_{j+1}}\right\|_{2} & \leq \sum_{j \geq 1} \frac{\left\|\Delta_{B_{j}}\right\|_{1}}{\sqrt{2 r}} \\
& =\frac{1}{\sqrt{2 r}}\left\|\Delta_{\bar{S}}\right\|_{1} \\
& \leq \frac{1}{\sqrt{2 r}}\left\|\Delta_{S}\right\|_{1} \tag{claim3.4}\\
& \leq \frac{1}{\sqrt{2}}\left\|\Delta_{S}\right\|_{2} \quad(\text { claim 3.4) }
\end{align*} \quad\left(\|z\|_{1} \leq \sqrt{d}\|z\|_{2} \text { for } z \in \mathbb{R}^{d}\right)
$$

Now we can derive a contradiction:

$$
\begin{aligned}
0 & =\|A \Delta\|_{2} \\
& \geq\left\|A_{S \cup B_{1}} \Delta_{S \cup B_{1}}\right\|_{2}-\sum_{j \geq 2}\left\|A_{B_{j}} \Delta_{B_{j}}\right\|_{2} \\
& \geq\left(1-\epsilon_{0}\right)\left\|\Delta_{S \cup B_{1}}\right\|_{2}-\left(1+\epsilon_{0}\right) \sum_{j \geq 2} \| \Delta \\
& \geq\left(1-\epsilon_{0}\right)\left\|\Delta_{S}\right\|_{2}-\frac{1+\epsilon_{0}}{\sqrt{2}}\left\|\Delta_{S}\right\|_{2} \\
& =\left\|\Delta_{S}\right\|_{2}\left(1-\epsilon_{0}-\frac{1+\epsilon_{0}}{\sqrt{2}}\right)
\end{aligned}
$$

$$
\geq\left(1-\epsilon_{0}\right)\left\|\Delta_{S \cup B_{1}}\right\|_{2}-\left(1+\epsilon_{0}\right) \sum_{j \geq 2}\left\|\Delta_{B_{j}}\right\|_{2} \quad \quad \quad \text { (almost-isometry) }
$$

When ϵ_{0} is small enough, this is a contradiction.

3.2 Proof of main theorem

In light of lemma 3.3, we need to prove that if A has JL property as specified in lemma 1.2, then with probability at least $1-e^{c_{1} m}$ for some constant c_{1}, A is a $3 r$-restricted ϵ_{0}-almost isometry. For notational ease, let $t:=3 r$. Note that we only need to consider unit vectors. Below we show an upper bound on the probability that A does not have this property on S^{t-1}, where $S^{t-1}:=\left\{x \in \mathbb{R}^{t}:\|x\|_{2}=1\right\}$.

Suppose A does not have this property. Then there exists a t-element set $T \subset[n]$ such that A_{T} is not an ϵ_{0}-almost isometry. Note there are at most $\binom{n}{t}$ choices for T. Let A_{T} be the submatrix of A whose columns are indexed by T and rows the same as A. Below we use a union-bound type argument to upper bound the probability that A_{T} is not an ϵ_{0}-almost isometry. If we can do so, since there are at most $\binom{n}{t}$ choices for T, we will be done by a union-bound argument and choosing properly the magnitude of all parameters. To state two lemmas (see lemma 1.1 and 1.3 in Matousek's notes and the proofs therein), we need the following definition:

Definition 3.5. For a given set C in a Euclidean space, a subset $S \subset C$ is said to be ϵ-dense, if $\forall x \in C, \exists x^{\prime} \in S$ such that $\left\|x-x^{\prime}\right\|_{2} \leq \epsilon$.

The lemma below says roughly that the behaviour (in the sense of preserving distance) of F on a dense set is a 'good approximation' of the behaviour on the whole set, and how good the approximation is depends on density of the subset.

Lemma 3.6. Let $\epsilon \in\left(0, \frac{1}{3}\right)$, let $N \subset S^{t-1}$ be ϵ-dense. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map satisfying

$$
1-\epsilon \leq\|F(q)\|_{2} \leq 1+\epsilon, \forall q \in N
$$

Then F is a 3ϵ-almost isometry.
Let us fix an $\frac{\epsilon_{0}}{3}$-net N_{T} on S^{t-1} (we will show the finiteness of N_{T} later). Recall A_{T} is not an ϵ_{0}-almost isometry, so the above lemma says that there exists $q \in N_{T}$ such that the following does not hold:

$$
1-\frac{\epsilon_{0}}{3} \leq\left\|A_{T} q\right\| \leq 1+\frac{\epsilon_{0}}{3}
$$

By JL property, we know that for a fixed unit vector q, the above inequality does not hold with probability at most $e^{-c^{\prime} m}$ for some positive c^{\prime} depending on ϵ_{0}. Now we can use a union bound argument to finish the proof if we can upper bound the size of N_{T}. The following lemma allows us to do this.

Lemma 3.7. $\forall \epsilon \in(0,1)$, there exists an ϵ-dense set $N \subset S^{t-1}$ such that $|N| \leq\left(\frac{4}{\epsilon}\right)^{t}$.
There are at most K^{t} choices for N_{T} with K depending on ϵ_{0} and $\binom{n}{t}$ choices for $T \subset[n]$. Therefore the probability that A does not have t-restricted ϵ_{0}-almost isometry property is at most

$$
\binom{n}{t} K^{t} e^{-c^{\prime} m} \leq\left(\frac{n e}{t}\right)^{t} K^{t} e^{-c^{\prime} m}=\exp \left(3 r\left(\ln \frac{n e}{3 r}\right)+\ln K-c_{2} m\right)
$$

With the assumption that $m \geq C r \log (n / r)$ from our main theorem, it is not hard to check that the last expression is bounded above by $e^{-c_{2} m / 2}$ if C is sufficiently large. So we are done.

